IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON SMART CITIES

Received December 31, 2015, accepted January 29, 2016, date of current version March 30, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2541999

CityPulse: Large Scale Data Analytics
Framework for Smart Cities

DAN PUIU', PAYAM BARNAGHI?, (Senior Member, IEEE), RALF TONJES?, DANIEL KUMPER3,
MUHAMMAD INTIZAR ALI*, ALESSANDRA MILEO*, JOSIANE XAVIER PARREIRA®,

MARTEN FISCHER?, SEFKI KOLOZALI2, NAZLI FARAJIDAVAR2, FENG GAO?,

THORBEN IGGENA3, THU-LE PHAM?, COSMIN-SEPTIMIU NECHIFOR!,

DANIEL PUSCHMANNZ, AND JOAO FERNANDES®

!Siemens Romania, Brasov 500007, Romania

2Institute for Communication Systems, University of Surrey, University of Surrey, Surrey GU2 7XH, U.K.
3University of Applied Sciences Osnabriick, Lingen 49809, Germany

“#Insight Centre for Data Analytics, National University of Ireland Galway, Lower Dangan, Galway, Ireland
5Siemens AG Austria, Vienna 1210, Austria

6 Alexandra Institute, Aarhus 8200, Denmark

Corresponding author: D. Puiu (dan.puiu@siemens.com)

This work was supported by the European Union Seventh Framework Programme through the CityPulse Project under Grant 603095.

ABSTRACT Our world and our lives are changing in many ways. Communication, networking, and
computing technologies are among the most influential enablers that shape our lives today. Digital data
and connected worlds of physical objects, people, and devices are rapidly changing the way we work,
travel, socialize, and interact with our surroundings, and they have a profound impact on different domains,
such as healthcare, environmental monitoring, urban systems, and control and management applications,
among several other areas. Cities currently face an increasing demand for providing services that can
have an impact on people’s everyday lives. The CityPulse framework supports smart city service creation
by means of a distributed system for semantic discovery, data analytics, and interpretation of large-scale
(near-)real-time Internet of Things data and social media data streams. To goal is to break away from silo
applications and enable cross-domain data integration. The CityPulse framework integrates multimodal,
mixed quality, uncertain and incomplete data to create reliable, dependable information and continuously
adapts data processing techniques to meet the quality of information requirements from end users. Different
than existing solutions that mainly offer unified views of the data, the CityPulse framework is also equipped
with powerful data analytics modules that perform intelligent data aggregation, event detection, quality
assessment, contextual filtering, and decision support. This paper presents the framework, describes its
components, and demonstrates how they interact to support easy development of custom-made applications
for citizens. The benefits and the effectiveness of the framework are demonstrated in a use-case scenario

implementation presented in this paper.

INDEX TERMS Data analytics framework, smart cities.

I. INTRODUCTION

Cities have always faced a demand from their citizens to
provide services that support a quality of life and enhanced
services. While cities have been evolving in terms of oppor-
tunities, these opportunities also reveal many challenges that
can impact citizens’ daily life [1]. Technology has always
been at the centre of this evolution, and over the years it
has greatly changed our world and lives. Digital data and
connected worlds of physical objects, people and devices are
affecting the way we work, travel, socialise and interact with

our surroundings and have a profound impact on different
domains such as healthcare, environmental monitoring, urban
systems, and control and management applications, among
several other areas.

Smart cities initiatives are exploring advancements in
Internet of Things (IoT) domain to tackle common urban
challenges such as reducing energy consumption, traffic con-
gestion and environmental pollution. However, the current
services are still largely limited to specific domains, thus
creating disconnected silos. Despite the wealth of available

2169-3536 © 2016 IEEE. Translations and content mining are permitted for academic research only.

1086 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 4, 2016

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

information from numerous data sources, city authorities still
encounter several difficulties in implementing, sustaining,
and optimizing operations and interactions among differ-
ent city departments and services [2]. There still remains
a need for smart city application tools which support easy
development of smart applications. The technical issues
include heterogeneity, velocity, mixed quality, uncertainty
and incompleteness of the data collected from the smart city
environments.

The CityPulse! project started with the idea of tackling
these challenges, in order to help municipalities and devel-
opers in creating better city services. This paper presents the
CityPulse framework — a distributed, large scale approach
for semantic discovery, data analytics and reasoning of
large-scale real-time Internet of Things and relevant social
data streams for knowledge extraction in a city environment.

The CityPulse framework allows the development of appli-
cations that can provide a continuous and dynamic view of a
city, thus enabling users to always know what is happening,
when it is happening and how it affects citizens, tourists, com-
panies and city administrators. Having such diverse insights
on the pulse of a city is possible by the fact that the framework
allows to integrate, manipulate and process a huge variety of
data in a flexible and extensible way. Different than exist-
ing solutions that only offer unified views of the data, the
CityPulse framework is also equipped with powerful data
analytics modules. In summary, the main contributions of the
CityPulse framework are:

o Data annotation and aggregation modules based on
novel algorithms that adapts to the changes in the input
sources in order to minimise information loss;

« An event detection module that generates higher level
information, which is also semantically annotated;

« A data federation module that implements a novel algo-
rithm to automatically find suitable data input sources at
run time, according to the user specifications;

« A quality monitoring module that implements a novel
method that applies machine learning to assess the qual-
ity of the data provided by input sources;

« A context filtering module that constantly monitors the
user’s current activity to automatically select relevant
events;

o A decision support module which combines semantic
technologies and Answer Set Programming (ASP) to
provide an expressive and scalable decision support
solution.

To demonstrate the benefits and usefulness of the frame-
work, we have developed an application in the context of
smart mobility — the adaptive Travel Planner smart phone
application. The prototype dynamically integrates traffic and
parking information to guide users to available parking spots,
while constantly monitoring events in the city and notify-
ing users regarding the events that occur in their driving
route.

1 http://www.ict-citypulse.eu/

VOLUME 4, 2016

The remainder of this paper is organised as follows:
Section II describes related work to smart city frameworks.
Section III details the components involved in CityPulse.
Based on the framework, Section IV demonstrates a use case
scenario, an adaptive Travel Planner that has been developed
within the CityPulse project. Section V concludes the paper
and provides an outlook of future work.

Il. SMART CITY FRAMEWORKS

IoT ecosystems play a vital role to gather rich sources of
information from smart cities. Different cities have already
deployed IoT infrastructures and various sensory devices
to collect continuous data from cities. For example, Intel
Labs Europe in collaboration with Dublin City Council is in
process of deploying citywide IoT infrastructure to monitor
and detect city environmental parameters [3]. IBM collects
Dublin city traffic data generated from state owned sen-
sors deployed over major roads of the city [4]. Singapore
Supertrees collect environmental data including air quality,
temperature and rainfall.? In the streets of Singapore, a net-
work of traffic sensors and GPS enabled devices embedded
in taxicabs, tracks city traffic and predicts future traffic con-
gestions. The city of Aarhus in Denmark has deployed traffic
sensors across major roads of the city. Similar IoT infrastruc-
tures have been deployed by many smart city initiatives across
the globe. These IoT infrastructures act as a major source of
continuous data collection and the enormous amount of data
can be harnessed by many smart city applications.

A large number of research projects and other simi-
lar initiatives mainly focus on collection and provision of
IoT data generated from smart cities; e.g. ODAA platform?
provides open data access to data collected from the City
of Aarhus using IoT infrastructure deployed within the city.
San Francisco Open Data* and City of Chicago Data
Portal® provide a centralized collection of relevant smart city
datasets, which are publicly accessible.

iCity [5] and SmartSantander [6] provide a centralised plat-
form to access data generated from multiple heterogeneous
sensors installed in different locations in several European
cities. These platforms also facilitate application developers
by providing access to different services and APIs for smart
city application development. However, both platforms aim
at providing access to low-level sensor observations and any
kind of data analytics over such raw data should be provided
within domain specific smart city applications, which results
into potential replication of data analytics’ functionalities and
silo architectures of domain specific smart city applications.

Realising the importance of semantic technologies to mit-
igate heterogeneity of data collection from cities, several
efforts have been conducted to use semantic technologies
for IoT data collection such as OpenloT [7], Spitfire [8]

2http://www. governing.com/topics/economic-dev/gov-singapore-
smartest-city.html

3http://www.odaa.dk

4https ://data.sfgov.org

5 https://data.cityofchicago.org

1087

IEEE Access

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

TABLE 1. loT and Smart City Frameworks Comparison (®:Yes O: No ©: Partial).

IoT Smart City iCity Smart Open iCore Spit PLAY Star VITAL CityPulse

Platforms and their Santandler IoT Fire City

supported features

IoT Data Collection ([o L [o o [[()

Semantic ® ® e o o O o ° °
nteroperability

Event Detecflon and o o o O o P P o Y
JData Amalyties

Application

Development [[® ® ® O O O] (]

Support

and iCore [9]. The European project OpenloT provides a
middleware for uniform access to IoT data, through the use
of semantic models such as SSN. The Spitfire project uses
semantic technologies to provide a uniform way to search,
interpret and transform sensory data. Spitfire also provides a
minimal set of services to access integrated IoT data, which
act as an abstraction layer between application layer and data
layer. Supported service oriented architecture facilitates easy
access to data but allows a limited set of operations which can
be performed over collected data. The iCore project proposes
a cognitive framework for IoT and smart city applications,
hiding the heterogeneity of objects and devices, providing
concepts such as virtual objects and composition of virtual
objects.

Real-time IoT data collected from the cities can play a
major role for designing smart city data analytics frame-
works, which can automatically detect important city events
(e.g. traffic accident) and trigger actions to recover from such
situations. PLAY [10] provides an event-driven middleware
that is able to process complex event detection in large highly
distributed and heterogeneous systems. PLAY architecture
facilitates event-driven adaptive process management, which
can automatically adapt after sensing the contextual infor-
mation. Outsmart® is a resource-oriented middleware com-
bined with rule-based system that allows the management
of distributed heterogeneous IoT resources. IBM’s Star City
is a semantic traffic analytics and reasoning system, which
integrates traffic related sensor data from human and sensor
based data collected from city [11]. Star City supports real-
time IoT data analytics for event detection pertaining to the
traffic domain e.g. traffic jams, accidents or road congestions.
Also for the traffic domain, Zhao et. all, propose a hybrid pro-
cessing system [12] which can be used to perform large scale
data analytics of the data coming from the traffic sensors.
The system supports streaming and historical traffic sensor
data processing, which combines spatio-temporal data parti-
tioning, pipelined parallel processing, and stream computing
techniques to support hybrid processing of traffic sensor data
in real-time.

6http://WWW.fi-ppp-outsmart.eu

1088

Recently some smart city projects and initiatives have
contributed to the strategic and technological development
of cities by providing application level support for smart
city applications. The VITAL project’ federates heteroge-
neous IoT platforms via semantics in a cloud-based envi-
ronment with focus on smart cities. This project provides
a uniform access layer for heterogeneous IoT platforms
(X-GSN, Xively,® FIT, Hi Reply’ and OpenloT) to collect
smart city data [13], [14]. In the Vital project, access to
existing IoT platforms is realised by adapting to the provided
interfaces and abstraction layers via a RESTfull platform.
Developers have to strictly follow the HTTP-REST concept
to build services.

The state-of-the-art for smart city frameworks has major
focus on existing smart city platforms and the existing works
are mainly in four key areas: (i) data acquisition (ii) semantic
interoperability, (iii) real-time data analysis and event detec-
tion, and (iv) smart city application development support.
While, the work conducted in CityPulse is complimentary
to data acquisition and semantic interoperability, CityPulse
progresses well beyond the state-of-the-art when it comes to
real-time data analytics techniques and smart city application
development support. Table 1 presents a comparison of smart
city platforms and their supported features. As shown in the
table, additional to data acquisition and semantic interop-
erability, the CityPulse framework provides a complete set
of domain independent real-time data analytics tools such
as data federation, data aggregation, event detection, quality
analysis and decision support. The application development
is support through a set of APIs provided by CityPulse. These
APIs provide open access to the complete smart city data
analytics framework and can prove to be a game changer
for smart city application development. API’s level support
for major components of the CityPulse framework facilitates
a loosely coupled architecture for smart city applications
development. Application developers can either use the com-
plete processing pipeline of the CityPulse framework or use

7http://vital—iot.eu
8https ://xively.com/platform/
9http:// www.reply.eu/en/content/hi-reply

VOLUME 4, 2016

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

only preferred components depending on their application
requirements.

The NYC Open Data provides heterogeneous data on busi-
ness, city government, education, environment, health, social
services, transportation, to the general public. An annual
event named BigApps [15] competition joins hundreds of
developers, designers, makers and marketers in a compe-
tition to address different challenges through technology.
Examples of previous challenges include ‘“Zero Waste
Challenge”, “Affordable Housing Challenge’” among others.
Other than access to a large number of datasets there is
no provision of any data analytics or data pre-processing
components that the community of developers can make use
of in order to develop their services and applications. The
CityPulse framework has to potential to ease the development
process.

Similarly Khan et. al [16] proposed a prototype which has
been designed and developed to demonstrate the effectiveness
of the cloud based analytics service for Bristol aggregated
open data to identify correlations between selected urban
environment indicators such as Quality of Life. The proposed
system is divided in to three tires to enable the development
of a unified knowledge base. The lowest layer in the archi-
tecture consists of distributed and heterogeneous reposito-
ries and various sensors that are subscribed to the system.
The resource data mapping and linking layer (middle layer)
finds new scenarios and supports workflows to develop rela-
tions that were not possible in the isolated data repositories.
An analytic engine in top layer processes the data for appli-
cation specific purposes. Modules such as decision support,
contextual filtering or technical adaptation are not included
in this framework.

The Amsterdam Smart City (ASC) [17] includes a series
of projects ranging over several domains in order to make
the city smart. The project areas range over Smart Mobility,
Smart Living, Smart Society, Smart Areas, Smart Economy,
Big and Open Data, and Infrastructure. On a technical level,
to achieve the projects goals individual solutions have been
developed and optimised to solve one problem of the city at
a time.

Ill. THE CityPulse FRAMEWORK

The CityPulse framework integrates and processes large vol-
umes of streaming city data in a flexible and extensible way.
Service and application creation is facilitated by open APIs
that are exposed by CityPulse components.

The CityPulse components are depicted in Figure 1 and can

be divided in two main categories:

o Large scale data stream processing modules: repre-
senting the tools which allow the application devel-
oper to interact with the heterogeneous and unreliable
data sources from the cities. The tools allow also
discovering, summarizing and processing the data
streams.

« Adaptive decision support modules: containing the tools
which can be used for making various recommendations

VOLUME 4, 2016

GUI

Mobile App. CityDashboard

CityPulse framework

Routing Module

Contextual Parking/
Optimization P
Filtering Module Decision support

| Planning Module |

Technical adaptation

Event detection

Data federation

Data bus

Data Geospatial
Domain aggregation Data
knowledge Infrastructu

re

| Composite monitoring |

[Semantic anot.
Fault recovery
Atomic monit.

Semantic anot.
Fault recovery
Atomic monit.

Resource management

Data wrapper Data wrapper

City raw data

FIGURE 1. The components of the CityPulse framework with their APIs.

based on the user context and the current status of the
city.

The tools from the first category are used to handle and
process the city data streams. The CityPulse enabled appli-
cations will use Cloud-based components to run the services.
In this way the components continuously monitor and process
the streams. From this point, any application can interact with
the components, via the exposed APIs, in order to obtain at
any moment, information about the current status of the city.

In the CityPulse applications, the adaptive decision support
components are triggered when a recommendation is needed
or a certain context/situation needs to be monitored. As a
result of that this components are not running continuously as
the ones from the fist category. The remaining of this section
presents the CityPulse components.

A. LARGE SCALE DATA STREAM PROCESSING MODULES
1) DATA WRAPPERS AND SEMANTIC ANNOTATION

The Data wrapper component offers an easy and generic
way to describe the characteristics of a set of sensors using

1089

IEEE Access

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

sensory meta-data. This meta-data is called SensorDescrip-
tion. The SensorDescription contains general information
about the data stream, such as the source endpoint (e.g. HTTP
URL), the author/operator of the stream, the update interval
when new observations can be fetched, the location of the
sensor, and the category of data provided (e.g. traffic data).
The observations in the data stream are provided with features
such as data type, minimum and maximum observed values,
and configuration parameters for the aggregation method to
use.

City Semantically
raw annotated
data Sensor Message data
> Connestion B> Parser(s) B> Annotation Bus_ H—> ‘
Connection

History
Reader

Historic data

Data Wrapper

FIGURE 2. Data wrapper modules and processing chain.

Figure 2 depicts the process chain that is involved in the
Data wrapper component. The Sensor Connection is respon-
sible for the collection of sensor readings from the external
resources. Typically, this is accomplished via a network con-
nection (e.g. through a RESTful endpoint), but others such
as a serial link (USB) or querying a database are possible
as well. Once the raw data has been fetched, the received
message is passed onto an instance of a Parser, which will
extract the relevant information from the sensory resource.
In addition, the History Reader module provides an access
to the historical data for the Resource management’s replay
mode. The historical data can be embedded directly into Data
wrappers (as compressed archive) or provided by an external
data resource. The semantic annotation module enables to
annotate the parsed sensory data based on the CityPulse
ontologies, such as Stream Annotation Ontology (SAO), and
Quality Ontology (QO) and publish them on the message bus.
The annotation module is generic, and there is no need of
adjustment by the domain expert.

To semantically annotate data streams, CityPulse uses
lightweight information models that are developed on top of
the well-known information models, such as SSN Ontology,
PROV-0,10 and OWL-S.!! Figure 3 shows an overview of
the CityPulse information models, which consists of 4 main
modules, namely Stream Annotation Ontology (SAO),!?
Quality Ontology,'> User Profiles, and Complex Event
information. 4

SAO is used to express the temporal features (e.g. seg-
ments, window size) as well as data analysis features

10http://www.w3.orgfl"R/prov—O/

1 http://www.w3.org/Submission/OWL-S/
12http://iot.ee.surrey‘ac.uk/citypulse/ontologies/sao/sao
13 http://purl.oclc.org/NET/UASO/qoi
14http://citypulse.insight-centre.orglontology/ces/

1090

Person - Ability AbilityTypes
I AN S ~
| ~ =~

h Personal
(InterestType) CInterest) (Information)

ces:Primitive
ces:EventRequest - EventService
7 - -
- ces:Complex
ow/s:

ces:createdBy

ces:EventService

_- //]

. ~
qoi:Accuracy P |
- 7 |
I

e 7

Goi:SecuritD Goi:TimeIiness)

D
sao:subevent 4&

FIGURE 3. CityPulse information model.

(e.g. FFT, DFT, SAX) of a data stream. It allows publishing
content-derived data about IoT streams and provides concepts
such as sao:StreamData, sao:Segment, sao:StreamAnalysis
on top of the TimeLine ontology and the IoTest model.
We extent the ssn:Observation concept with sao:StreamData
to annotate sensory observations, and provide a link to
sao:Segment to describe temporal features in a granular
detail for each data segment. Each data point and seg-
ment are also linked to the sao:StreamAnalysis concept,
where we describe the name and parameters of the method
that has been used to analyse the data stream. The Qual-
ity Ontology consists of typical quality categories, such as
qoi:Accuracy, qoi: Timeliness, qoi:Communication, qoi:Cost.
It uses sao:Point or sao:Segment to annotate observations
with quality.

To build the provenance relationship, the StreamData class
is subclassed from prov:Entity. This Entity has an origin
indicated by the hasProvenance relation to the prov:Agent.
Complex Event Processing Service ontology is an extension
of the OWL-S ontology that allows defining a data stream as

VOLUME 4, 2016

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

a primitive or complex event service. It expresses the tem-
poral relationships captured by an event pattern according to
three basic types: sequence, parallel conjunction and parallel
alternation.

User profiles store the description of the characteristics of
people and their preferences, which are used as contextual
information for the applications. Once the sensory observa-
tions are semantically annotated, they are published on the
framework’s message bus, which can then be consumed by
other components.

2) RESOURCE MANAGEMENT

A resource in the context of the Resource management is
a Data wrapper. The application developer can use the
Resource management in order to achieve three main tasks.
First it can be used to deploy all Data wrapper units placed
in a predefined folder on start-up. Each unit consists of an
archived version of the Data wrapper’s code together with a
deployment descriptor —a JSON file stating the module — and
class name of the Data wrapper to be instantiated.

The second task of the Resource management is to
distribute the Data wrapper’s output (observations) to
other framework components. For flexibility reasons the
components in the proposed framework are loosely cou-
pled over a message bus. The framework uses the open
Advanced Message Queuing Protocol (AMQP) [18] to
exchange messages over the bus. The Resource management
is responsible for publishing semantically annotated obser-
vations and aggregated data coming from different parts of
the framework (e.g. the Data federation and Event detec-
tion modules, or even directly from CityPulse applications).
Other components can then consume the published data by
subscribing to one or more topics, which are defined by
the Domain Expert within the SensorDescription. The topics
of the messages are structured in such a way that allows
using wildcards in order to receive messages of the same
kind from multiple sources. Lastly, the Resource manage-
ment provides an API, where other framework components
or external third party application developers can perform
management functions or access details about the deployed
Data wrapper. Those functions include the deployment of
Data wrappers, access to previous observations, and retrieval
of a Data wrapper’s SensorDescription. The API can be
accessed via a HTTP interface.

The application developers can configure the Resource
management to operate in two different modes: normal
mode and replay mode. In replay mode a synthetic clock
is used, capable of running faster than real-time. Further-
more, instead of live sensor observations, historical data
is used. This way the framework offers the possibility
to experiment with newly developed algorithms, without
interfering with the live system, or to investigate historic
events more closely in fast motion. Features of the Resource
management are controlled over a series of command line
parameters.

VOLUME 4, 2016

3) DATA AGGREGATION

Data aggregation component deals with large volumes of
data using time series analysis and data compression tech-
niques to reduce the size of raw sensory observations that
are delivered by data wrappers. This allows reducing the
communication overhead in the CityPulse framework and
helps performing more advanced tasks in large scale, such as
clustering, outlier detection or event detection. To effectively
access and use sensory data, semantic representation of the
aggregations and abstractions are crucial to provide machine-
interpretable observations for higher-level interpretations of
the real world context. Most of the current smart city frame-
works transmit raw sensory data and do not provide energy
efficient time-series data analysis as well as granular semantic
representation of the temporal and spatial information for the
aggregated data.

Numerous approaches have been utilized for time series
analysis, including Discrete Fourier Transform (DFT) [19]
Discrete, Discrete Wavelet Transform (DWT) [20], [21] Sin-
gular Value Decomposition (SVD) [22] Piecewise Aggre-
gate, Piecewise Aggregate Approximation (PAA) [23]
Contrary to the numerical approaches, symbolic repre-
sentation of discretised time series data includes signifi-
cant benefits of existing algorithms. This involves efficient
manipulation of symbolic representations as well as the fram-
ing of time.

The CityPulse framework enables a domain expert to select
the data aggregation method in the configuration phase.
While it supports some of the traditional approaches, such as
DFT, PAA, DWT, it uses a multi-resolution data aggregation
approach, called SensorSAX, which is an extension of Sym-
bolic Aggregate Approximation (SAX), as a default method.
SensorSAX is computationally not expensive, ensures a
substantial data reduction and supports the lower bounding
principle.

The SensorSAX parameters need to be decided manually
and remain predetermined. However, due to the fact that
IoT data streams can be highly dynamic and may need to
adjust to rapid changes of the observed phenomena at dif-
ferent frequency level, the optimal value for the window
length cannot remain the same. SensorSAX overcomes this
challenge by presenting 3 new parameters, namely, minimum
window size, maximum window size, and sensitivity level.
While first two parameters, minimum and maximum window
sizes, enable to predetermine length of the window, sensitiv-
ity level enables to calculate the optimum window size for the
data stream between the plausible ranges. For that it finds the
maximum window size, say W*, in Wiy < W* < Wpay, such
that for 1 <i < w* where o (¢;) < sl holds. For such w*,
it computes average ¢ of {cq, ..., cy*} by:

1 Wk
cC=— E Ci
W*

i=1

Then, it finds the breakpoints f; to obtain a sax letter, ¢,
such that g1 < ¢ < p;. These letters, ¢, form a SAX

1091

IEEE Access

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

word, C. SAX words have got a fix length and allow having
different letters in the same word (e.g. ‘“‘aabe” with a word
length of “4”"). SensorSAX is energy-efficient and process-
efficient approach that enables a remarkable data reduction
for data streams.

4) DATA FEDERATION

The CityPulse framework uses the Data federation com-
ponent to answer users’ queries, e.g., what is the average
vehicle speed on my current route to the destination over
the past 5 minutes, over federated data streams. To do this,
this component first needs to find relevant streams (or stream
federations) for the user according to the functional and
non-functional requirements specified in the request. Then,
it translates the users’ requests into RDF Stream Pro-
cessing (RSP) queries and evaluates the queries over the
relevant streams to obtain query results. This component
integrates Semantic Web technologies (SW) [24], Service
Oriented Architecture (SOA) [25] and Complex Event
Processing (CEP) [26] to provide a data federation solution
for smart city applications based on Event Services. This
way we decouple the data stream providers and consumers,
allowing the CityPulse framework to discover and compose
heterogeneous data streams on-demand, regardless of sys-
tems or platforms providing the data streams. The query
transformation algorithms implemented allows the CityPulse
framework to use different RSP engines to answer the users
requests. Meanwhile, dynamic reasoning can be supported
when using some RSP engines, e.g., RDF level reasoning in
CSPARQL [27], RDEFS level materialisation can be realized
by extending CQELS [28].

Once the data has been annotated by the Data wrappers
and the and provided as event services, the problem of creat-
ing optimal federation of data streams is transformed into a
service discovery and composition problem. However, unlike
conventional goal-driven service composition approaches
which rely on matchmaking of input/output message types or
pre-/post-conditions in service descriptions, the event service
composition identifies the reusability of event services based
on the comparison of the event semantics described in event
patterns [29]. In addition, a genetic algorithm is developed in
the Data federation component to optimize the QoS for event
service compositions [30].

Figure 4 illustrates the architecture and processing chain of
this component. Upon receiving an event request without an
event pattern, an event service discovery is performed to find
matching sensor data streams based on the matchmaking of
requested and provided sensor descriptions. Then, a subscrip-
tion is made to the found sensor data stream and the consumer
starts receiving sensor observations from the data stream.
If the event request contains an event pattern, the event service
composition algorithm is invoked to create a composition
plan, describing how the streams are composed to answer
the query. Then, the composition plan is transformed into an
executable query of the target system, e.g., CQELS [28] or

1092

Application Interface A

Data Federation
<«——)» Event Service Discovery & Composition
o
)
©
e
o
%‘ Query Subscription
% Transformation Manager
] I_v_l
<
x
RSP Engines
,T_
1

Semantic
. Data Bus
Annotation

N S

f Stream MetaData .)
I ~—__ Streams

FIGURE 4. Architecture of data federation.

C-SPARQL [27] engines, and the query is evaluated while
the continuous results are delivered to the consumer.

The Data federation component receives its inputs from
the application interface. It queries the service metadata
stored in the Domain Knowledge to perform stream discovery
and composition. It then subscribes to the Data Bus to con-
sume real-time data and its outputs can be delivered to the
application interface or Decision support.

At design time, a third-party developer can configure the
data endpoints for the Data federation. He/she can also con-
figure the load balancing strategy used for the component,
in order to specify how concurrent queries are distributed over
multiple RSP engine instances. At run-time, a 3™ party devel-
oper can register requests (containing functional and non-
functional requirements) via a web socket connection. The
backend system will invoke the API’s register method and
perform necessary steps to deploy the RSP query and deliver
the continuous results via the same web socket session opened
by the client for registering requests. If the request is specified
as an one-time query, e.g., asking only the latest observations
of some sensors, the backend system will request a single
query result from the API, using the snapshot values cached
by the Resource Management component.

5) EVENT DETECTION

The CityPulse framework exposes two modules to detect the
events happening in the cities. The first module uses directly
the sensory data sources from the city. The second one can be
used to process the data from the social media sources. In the
case of CityPulse it is used for processing streams of tweets
from Twitter.

The stream Event detection component provides the
generic tools for processing the annotated as well as aggre-
gated data streams to obtain events occurring into the city.
This component has to be highly flexible in deploying new
event detection mechanisms, since different smart city appli-
cations require different events to be detected from the same

VOLUME 4, 2016

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

Configuration

parameters
Event
Detection
node Yvy
DWS ¢-}»
DWS 1>
DWS ¢-1» OES |
DWS ¢

FIGURE 5. Event detection node.

data sources. The component has been developed using the
Esper engine [31].

Usually, the development of an event driven applica-
tion consist of two main steps: 1) real-time data acqui-
sition, interpretation and validation; 2) execution of event
detection mechanism in order to detect the patterns of
events.

The first step is done automatically by the CityPulse
framework. When a new specific event detection mechanism
is deployed for processing the data coming from a set of
streams, the Event detection component performs automat-
ically (with no intervention from the application developer)
the following actions:

« makes a request to the Resource management to iden-
tify the description of the streams (i.e., the routing
keys where the requested streams are published on the
Data Bus, and the details about how to interpret an
observation);

o connects to the Data Bus and continuously converts
the received observations from RDF format to the one
requested by the Esper engine.

In order to fulfil the second step of the event detection
mechanism the application developer has to develop an event
detection node, under the form of a Java class, which contains
the event detection pattern.

The event detection node (see Figure 5) can be seen
as a black box with inputs being input streams from
Data wrappers (DWS) and configuration parameters, and
having as output the stream of detected events (OES).

In order to develop a new event detection node the applica-
tion developer has to extend a dedicated Java class, which
provides methods for defining the event detection pattern.
Existing event detection nodes can be reused by simply
changing the configuration parameters and the input streams.

The second module exposed by the Event detection com-
ponent is used to process the Social Media streams. The
module analyses and annotates large-scale real-time Twitter
data streams. A dedicated Data wrapper is used to connect
to the Twitter stream API and collect the data under the form
of tweets. The Data wrapper uses the Google-translate API
to automatically detect the source language and translate the
tweets to English to facilitate the Natural Language process-
ing step. This in fact enables the application developer to fetch
data from any area (e.g. the area surrounding a certain city).

VOLUME 4, 2016

The Social Media Event detection component reads a
sequence of words in the sentence (Tweet), and passes it to
a Natural Language Processing (NLP) unit (see Figure 6).

Twitter NS ¢ detecti
messages ocial media event detection
> > Cit
> > CRF-based NER det)t/d
> > Tagging electe
events
Multi-view Event N ‘
Extraction 4
N CNN PoS r
Tagging
o K] of |2
HEE 5| |E| |2
S |2 3158
w ol |9 [+

FIGURE 6. Social Media stream processing and event detection
component.

The processing unit is composed of three sub-components:
a Conditional Random Field Name Entity Recogni-
tion [32], [33], a Convolutional Neural Network for deep
learning for Part of Speech tagging, and a multi-view event
extraction.

During the design time, the internal sub-components are
trained with a large corpus of Wikipedia documents and
historical Twitter data to guarantee a generalisable Natural
Language Processing model.

The Conditional Random Field Name Entity Recogni-
tion component assigns event tags to the words in a Tweet
given an event-categories set ({TransportationEvent, Envi-
ronmentalEvent, CulturalEvent, SocialEvent, SportEvent,
HealthEvent, CriminalEvent}), which is tailored for city
related events. The categories have been defined generic
enough to cover future sub-categorical event assignments
(e.g traffic and weather forecast events can be perceived
as sub-categories of TransportationEvent and Environmen-
talEvent categories, respectively.) and they will be available
to third party developers for adoption and utilisation for new
scenarios. Additionally, their respective event vocabularies
are adaptive and extendible to future events.

During the run time, the Conditional Random Field Name
Entity Recognition component assigns event tags to the words
in a Tweet from the event categories set. Simultaneously,
the trained Convolutional Neural Network [34] component
generates Part-of-Speech tags for atomic elements of the
Tweet. The obtained two views of the data (Conditional Ran-
dom Field Name Entity Recognition view and Convolutional
Neural Network Part of Speech view) are then fed into a novel
multi-view event extraction component, where the obtained
tags of the two views are mutually validated and scored for a
final sentence-level inference. An example of sentence level
inference is in the case of tweets such as “‘seeing some-
one being given a parking ticket” where individual words
“parking” and “ticket” can belong to Transportation and

1093

IEEE Access

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

Cultural events categories respectively while considering the
sentence grammar can clear up this confusion and assign the
tweet to Transportation category. The real-time extracted city
events are then used by Real-time Adaptive Urban Reasoning
component to obtain a more comprehensive interpretation of
the city events. The extracted knowledge is utilised to com-
plement the sensor stream information extraction and allows
obtaining of a more detailed interpretation of the city events
when complementary citizen sensory data can be extracted
via social media processing.

6) QUALITY MONITORING

The CityPulse framework offers a two-layered quality cal-
culation mechanism to annotate data streams with a Quality
of Information (Qol) metric. The lower layer, called Atomic
monitoring, is a stream based quality calculation whereas
the upper layer, Composite monitoring, combines different
data streams to include several sensor observations into
Qol calculation. This enables applications utilising the City-
Pulse framework to select the best fitting data streams for
their needs. The current implementation of the framework
supports five Qol metrics: Age, Completeness, Correctness,
Frequency, and Latency.

To calculate this Qol metrics within the Atomic monitoring
the domain expert has to specify a SensorDescription within
the Data wrapper (compare section III A). The fields, which
are needed for the Qol metrics are listed below:

sensordescription.maxLatency = 2
sensordescription.updatelnterval = 60
sensordescription.fields = ["v1", "v2", “v3”]
sensordescription.field.vl.min = 0
sensordescription.field.vl.max = "@v3"
sensordescription.field.vl.dataType = "int"
sensordescription.field.v2.dataType = "datetime"
sensordescription.field.v2.format = "%Y-%m-%dT%H:%M:%S"
sensordescription.field.v3.dataType = “int”

S OONOOOAWN -

0

Listing 1. Sensor description.

The first line states the maximum latency in seconds
that should be met when the data wrapper accesses new
data. The following updatelnterval specifies the time interval
new observations can be fetched (i.e. with pull connection)
or the maximum time interval observations are published
(i.e. with push connection). The third line, namely
“sensordescription.fields”, contains all features contained in
a single observation of the sensor stream. In this example
the sensor stream consists of three different features. v/ is a
value of data type integer. The minimum value is 0. For the
maximum there is a special annotation with an @ followed
by another fieldname. This states that the maximum value is
the current value in the same observation identified by the
given fieldname. v2 specifies a field containing a timestamp.
The “format™ parameter describes the format of the incoming
data fields. v3 is another value of type int. Other parameters
for this field are omitted in this example.

1094

CityPulse Qol Expi

| Stream: 1b6c260r-1aa-S6ea-
2 7908

it o s ot s i i

Figure 7. Qol explorer.

Within the Atomic monitoring the values from the sen-
sor description are compared to the current observations
delivered by the data stream. Based on the comparison and
an internal rating algorithm the Qol for the data stream is
calculated.

To allow the domain expert to observe the quality of data
streams the CityPulse framework provides a tool called Qol
explorer to monitor deployed sensors in the city. Here, a map
visualises the state of each sensor (see Figure 7).

The tool shows an overview of all sensors within the city.
The Qol of the streams is marked with colours. There are
different options to select specific Qol metrics or detailed
views for individual streams.

The Composite monitoring layer combines information
from the Afomic monitoring components. Based on entity,
time, and geospatial relationships the different sources are
evaluated and checked for plausibility. Using the Composite
monitoring it is possible to detect faulty information sources
within a group of data sources by comparing to the other
group members. Composite monitoring compares acquired
data with similar streams to determine correlations and looks
for divergences. When outliers of single data streams are
detected, the Composite monitoring allows to search for sim-
ilar patterns in related data streams. Therefore, outliers can
be separated from corrupted sensor data.

Determine .
Compute Partial
Temporal g
G Correctness
Distance
Find Determine Compute
Compute Partial)
-Event—>| Correlated Temporal P P! Composite —>
. Correctness
Streams Distance Correctness
Determine q
Compute Partial
Temporal P
a Correctness
Distance

Figure 8. Composite monitoring process.

Figure 8 shows all the (four) phases of the process of the
Composite monitoring which calculates the plausibility by
utilising available overlapping information.

During the first phase spatially related streams are deter-
mined, which are able to support the information of the event.
In the second phase, the temporal distance is determined and
used to create a propagation model of the event. In the third

VOLUME 4, 2016

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

step, correctness plausibility for each individual correlated
stream is calculated by comparing seasonally adjusted time
series with the event. By weighting the individual values
with their spatio-temporal distance a combined composite
correctness value is calculated.

The Composite monitoring can be triggered by a set of
events that will be compared against raw data streams. The
Domain Expert can improve the Composite monitoring by
providing models that determine the configuration for spa-
tial distance model, temporal distance propagation and the
mapping between individual data stream types.

7) FAULT RECOVERY

The Fault recovery component ensures continuous and ade-
quate operation of the CityPulse application by generating
estimated values for the data stream when the quality drops or
it has temporally missing observations. When the quality of
the data stream is low for a longer time period, an alternative
data source has to be selected. The selection can be performed
automatically by the Technical adaptation component.
In other words, the technical adaptation process does not
have to be triggered if the Qol of a stream is low only for
a short period of time because the Fault recovery component
provides estimated values.

As presented in Figure 1 the Fault recovery component is
integrated into the data wrapper. The fault recovery mech-
anism is triggered to generate an estimated value when the
atomic monitoring component has determined that the current
observation is invalid or missing.

Reference
data set

Fault <:| Atomic
recovery monitoring

»»»»»»»»4:4:! > B> >

Observations Observations with

. missing or invalid
and estimated values 9
values

Figure 9. Fault recovery component workflow.

The building blocks of the Fault recovery component are
presented in Figure 9. The component has a buffer which
temporary stores the latest observations generated by the data
stream, and a reference dataset which contains sequences of
valid consecutive observations from the data stream. When
an estimated value is requested, the k-nearest neighbour algo-
rithm [35] is used to select a few sequences of observations
from the references dataset, which are similar to the current
situation. At the end the estimated value is computed from the
selected sequences of observations.

During the normal operation, when the Qol of the stream
is high, the fault recovery component extends the reference
data set with the sequences of observations from the buffer if
a similar signal pattern was not included before.

VOLUME 4, 2016

Initially, when the Data wrapper is deployed, the reference
data set is empty and based on the normal operation (from
stream quality point of view) it is extended. As a result
of that, the work of the 3™ party application developer is
reduced, because he does not have to collect historic data
from the stream, to clean and to validate it in order to create
the reference dataset. Using the API exposed by the resource
management, the 3™ party application developer can turn on
and off this component based on the CityPulse application
requirements.

8) GEO-SPATIAL DATABASE

Reasoning in cities depends heavily on the spatial con-
text. For example, while temperature tends to marginally
vary across a neighbourhood, noise propagation depends
on shielding buildings and traffic flows on road networks,
ongoing construction work, traffic density etc. Hence, spatial
reasoning requires appropriate distance measures. However,
the integration of large amounts of data sources requires effi-
cient methods to provide the necessary information in (real)
time. A Geospatial Data Infrastructure is integrated to utilise
infrastructure knowledge of the city. It enables calculation of
different distance measures and allows enhanced information
interpolation to increase reliability. Furthermore, an enhanced
routing system enables multidimensional weighting on path,
e.g., depending on distance, duration, pollution, events or
combined metrics. Thereby, it is possible to avoid certain
areas or block partial routes for specific applications (see
Figure 10).

Figure 10. Weighting edges on a street graph (Green = Neutral,
Yellow = Higher Cost, Red = Infinite Cost).

As an example, Figure 3 depicts classes of edges in
the routable graph based on the weighted metric for pollu-
tion. The geo-spatial database can be used for developing
CityPulse applications via a Java API, which enables the
following functionalities:

« Calculate routes with:

o avoidance of areas,

1095

IEEE Access

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

o on a weighted street graph depending on priorities,
e.g. pollution level,
o multiple alternative routes, which are sorted by a
cost function;
« Find sensors in an area or on a route;
« Find events in an area or on a route;
« Find objects like hospitals, waste-bins, or further public
infrastructure.

9) CITY DASHBOARD

The CityPulse framework provides immediate and intuitive
visual access to the results of its intelligent processing and
manipulation of data and events. The ability to record and
store historical (cleaned and summarised) data for post-
processing makes it possible to analyse the status of the city
not only on the go but also at any point in time, enabling
diagnosing and “‘post mortem’ analysis of any incidents or
relevant situation that might have occurred. To facilitate that,
a dashboard for visualising the dynamic data of the smart
cities is provided on top of the CityPulse framework. Based
on this dashboard, the user has the possibility to visualise a
holistic and summarised view of data across multiple contexts
or a detailed view of data of interest, as well as to monitor
the city life as it evolves and as things happens. The inves-
tigation of past city events or incidents can be conducted
from different perspectives, e.g. by observing the correlations
between various streams, since the streaming data is stored in
the framework for a period of time which can be configured,
and it can be retrieved for visualisation and analysis at any
moment. Figure 11 depicts a snapshot of the CityPulse dash-
board application.

!
Get available data W _ b e //qb, ¢ v;l
sources L__tfo X ».p*‘ 3L 3008
/
Aarhus_Road_Traffic & & sensor Type: Aarhus_Road_Parking g
” . Field: vehicleCount
e 4 ¢
avgSpeed "«sc 7 Coordinates: 4
3 4 UUID : c97861a1-d917-5193-8a5a-491260546707 [
%, Coordinates: &
vehicleCount & - Latitude: 10.21149
A 3 - Longitude: 56.14952
Aarhus_Road_Parking { < £ 1| Lastvalue: 133 i
s e Qi‘ Show on chart A &
“IvehicleCount ¥
o & | ShowonchartB
&
| N S5 Barghroigae Show on chart C
totals| / I - o
otalSpaces Xomgesv ,‘: = & — , - .
AR)
f— ==\ F)8
& 5
¢
3 &
% 4
5 &
5 JAS
,"ﬂ*f %,
o 7 &
— &
m*()y "
3 i

Figure 11. CityPulse dashboard application.

In order to display the status of the city, the dashboard
application connects directly to the to the resource manage-
ment or to the data bus for fetching the description of the
available streams or the real-time/historic observations. The
dashboard application can be used out of the box and there are
no configuration or development steps that have to be done by
the application developer.

1096

B. REAL-TIME ADAPTIVE URBAN REASONING

Smart city applications in changing environments require to
take into account user preferences and requirements, as well
as dynamic contextual information represented by real-time
events, in order to provide optimal decision support to the end
user at any time.

The event-driven adaptation and context-driven user-
centricity of the CityPulse framework are materialized by
a close loop between the Contextual Filtering component,
the user application, and the Decision support component as
illustrated in Figure 12.

User Application

Reasoning
Request

Critical Events

Request A
Critical Events
-Answers

Contextual ‘

-

Decision Support

Filtering

Figure 12. Event-based user-centric decision support.

The user-centric and event-driven reasoning capabilities of
the framework strongly rely on the tight interaction between
the user application and the Contextual Filtering compo-
nent respectively, with the former being in charge of the
bidirectional communication with the other two. The user
application is also tightly connected with the Decision
support component in requesting to compute answers to a
decision problem by reflecting constraints and preferences
specified by the user himself.

This user-driven loop between the Contextual Filtering and
the Decision support component makes it easier for appli-
cation developer to decide whether to give complete control
to the end user on when and how to request adaptation after
critical events have been detected, or automatically suggest
new solutions.

In the remainder of this section we provide details of both
the Contextual Filtering and the Decision support compo-
nents for real-time adaptive urban reasoning.

1) CONTEXTUAL FILTERING
The main role of the Contextual Filtering component is to
continuously identify and filter events that might affect the
optimal result of the decision making task (performed by the
Decision support component), and react to such changes in
the real world by requesting the Decision support for the
computation of a new solution when needed. This not only
ensures that the selected solution provided to the user remains
the best option when situations change, but it also empowers
the CityPulse framework to automatically provide alternative
decisions whenever the selected best decision is no longer the
best for a particular situation.

The adaptive capability of identifying and reacting to unex-
pected events in a user-centric way relies on two aspects:

VOLUME 4, 2016

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

@prefix geo:http://www.w3.0rg/2003/01/geo/wgs84_pos# .
@prefix sao: <http://purl.oclc.org/NET/UNIS/sao/sao#> .
@prefix tl: <http://purl.org/NET/c4dm/timeline.owl#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix prov: <http://www.w3.org/ns/prov#> .

@prefix ec: <http://purl.oclc.org/NET/UNIS/sao/ect> .

sa0:¢2d69ca8-b404-4006-ad48-9317397251ab a ec:TrafficJam ;

ec:hasSource "SENSOR" ;

sao:hasLevel "1"“xsd:long ;

sao:hasLocation [a geo:Instant ;

geo:lat "56.17091325696965""xsd:double ;

geo:lon "10.15728564169882" " xsd:double
IE
sao:hasType
tl:time

ec:TransportationEvent ;
"2015-11-26T13:27:46.079Z"xsd:dateTime .

Listing 2. An example of an annotated event.

i) a characterisation of the user implicit and explicit context
provided by the user application (including user require-
ments, preferences, events of interests and activities), and ii) a
stream of events provided by the Event detection component.

The filtering capability of the Contextual Filtering com-
ponent is key not only for context-awareness, but also for
scalability. In fact, the Contextual Filtering component only
subscribes to a subset of events among those provided by the
Event detection component. The type of events the Contextual
Filtering subscribes to are application-specific and are in part
dependent on the domain (determined at design-time), and
in part contextualized, depending on the specific reasoning
task or user preferences specified by the user application
(determined at run-time). For example, in the Travel Planner
application (see section IV), traffic and weather conditions
are relevant types of events that can be characterise at design
time. However, when the user application provides a solution
to go from a starting point A to an ending point B, only traffic
and weather conditions in areas around that specific path are
potentially relevant, and they can be augmented by the user
interest in other types of events on the way (such as cultural
or social gathering).

The occurrence of such relevant events is notified to
the Contextual Filtering component by the Event detection
component, which provides additional metadata describing
the event. Listing 2 illustrates an example of an annotated
event about a traffic jam, as it is received by the Contextual
Filtering component. Information about the user context can
be gathered by the Contextual Filtering in several ways: it can
be either explicitly stated in the event request or in the user
application (e.g. specifying events of interest), or it can be
explicitly or implicitly acquired by identifying user’s current
activity (e.g. using the speed to detect that the user is in a
car, or having the user specifying in the application what type
of transportation he/she is using). With this information, the
Contextual Filtering component is able to: 1) select, among
the list of detected filtered events, the ones that are contextu-
ally relevant, and ii) continuously rank their level of criticality
to decide when an action is to be triggered.

The level of criticality of events is dynamically assessed
by the Contextual Filtering component based on metrics

VOLUME 4, 2016

() related_city_event(Id) :- filtering_event(Category),
Category, Source).
(r) 1 <= {selected_city event(Eventld) : related city event(Eventld),
not expired_event(Eventld)} <= 1.
(r3) value(RankEleName,Value):- selected_city event(Eventld),
ranking_city_event_data(Eventld, RankEleName,Value).
(r4) value_with_ranking_type(RankingElementName, M):-
value(RankingElementName,Value),
ranking_multiplier(RankingElementName,Int), M = Value*Int.
(rs) sum(C) : value with ranking type("EVENT LEVEL",Valuel),
value_with_ranking_type("DISTANCE",Value2),
C = Valuel+Value2.
(16) criticality(C) :- C = M/100, sum(M).
(r7) critical city event(Eventld,C):- selected city event(Eventld),
criticality(C).

city_event(Id,

Listing 3. Logic rules for contextual filtering of events with ranking
through linear combination.

such as the distance between a detected event and user’s
current location, or an explicit measure of how severe the
event is (referred to as Event Level). The current implemen-
tation of the Contextual Filtering component uses a linear
combination of these metrics. An application developer can
configure such metrics and users can modify them in order to
satisfy their own requirements. In terms of implementation,
the Contextual Filtering component is encoded as logical
rules. The underlying logic used to implement the Contextual
Filtering component is based on the Stable Model Semantics
of Answer Set Programming (ASP) [36] and relies on the
efficient implementation of such semantics in the Clingo
engine [37]. The ability of ASP to support common-sense and
default reasoning makes it possible to activate and deactivate
certain rules when a combination of unexpected changes in
the real world affect each other.

Listing 3 is an extract of the logic rules used in the
Contextual Filtering component. Rule 1 filters out unrelated
events. Rule 2 generates sets of solutions containing one
critical event each per solution, provided that the event is
not!3 expired. Rules 3-7 compute the criticality of an event.
Based on this level of criticality, the Contextual Filtering
refers back to the user application that an action is required,
which can be either generating a new request for the Decision
support component to automatically provide an alternative
(better) solution, or informing the user about the critical event
let the user decide whether a new solution is needed. The fully
declarative nature of ASP facilitates automatic generation of
such rules for application developers, starting from high-level
specification of what events are relevant for the application
and how the ranking metrics are formally defined. This is
a crucial advantage for customizing the Contextual Filtering
component to application-dependent behaviour.

Context-awareness has been long studied in the domain
of service provision and mobile computing, as the ability
of an application to ‘““‘automatically adapt to the discovered
context (environmental situations or conditions) by changing

I5Note that we use default negation here, a powerful way of reasoning
by default that is typical of non-monotonic approaches such as those based
on ASP.

1097

IEEE Access

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

the application behavior according to the latest context’ [38],
but scalable solutions to do that in dynamic settings and going
beyond complex event detection towards non-monotonic rea-
soning is still under investigation [39], [40].

The main novelty of this approach used by the
Contextual Filtering component for adaptive and context-
aware reasoning in dynamic environments is the ability to
use such complex reasoning capabilities to efficiently and
dynamically select only relevant information to tackle the
challenge of converting data into knowledge in dynamic
environments in a scalable way.

2) EVENT-BASED USER-CENTRIC DECISION SUPPORT

The Decision support component of the CityPulse framework
represents higher-level intelligence, and the main role of this
component is to enable reactive decision support function-
alities to be easily deployed, providing the most suitable
answers at the right time.

The reasoning capabilities needed to support users in mak-
ing better decisions require handling incomplete, diverse and
unreliable input, as well as constraints and preferences in the
deduction process. This expressivity in the Decision support
component is achieved by using a declarative non-monotonic
logic reasoning approach based on Answer Set Programming.
Semantic technologies for handling data streams, in fact,
cannot exhibit complex reasoning capabilities such as the
ability of managing defaults, common-sense, preferences,
recursion, and non-determinism. Conversely, state-of-the-art
logic-based non-monotonic reasoners can perform such tasks
but are only suitable for data that changes in low volumes
at low frequency. Therefore, the main challenge addressed
by the Decision support component is to enable expressive
reasoning for decision support in a scalable way. In our
approach we combine the advantages of semantic query pro-
cessing and non-monotonic reasoning based on the general
idea behind StreamRule [41]. We have identified features
that can affect scalability of such a combined approach and
we have exploited the user-centric features and adaptive fil-
tering of relevant events to reduce the input size and there-
fore the search space for the decision support task, thus
increasing the potential for better scalability. As mentioned
earlier in this paper, the user-centric and event-driven fea-
tures of the Decision support component strongly rely on the
tight interaction with the user application and the Contextual
Filtering component respectively, with the former being in
charge of the bidirectional communication with the other two,
as represented in Figure 12.

In what follows, we detail the input and output used by
the Decision support component, and also introduce the main
reasoning modules that are currently implemented as part of
the CityPulse framework. The input for the Decision support
component is illustrated in Figure 13.

A Reasoning request consists of:

o User Reference: uniquely identifies the user that made

the request. Such reference is related to user credentials
that will be used in the final integration activities in order

1098

User Application

Reasoning

Answers
Request

Knowleclge

External Modules }»Sub-answers} Decision Support 43“kgmu"d+ Knowledge Base

Data/Event
Snapshot

Data Federation

Figure 13. Decision Support 1/0.

to manage user logins and instances of the CityPulse
framework in different cities.

o Type: indicates the reasoning task required by the appli-
cation. This is used directly by the Decision support
component to select which set of rules to apply, and
needs to be identified among a set of available options
at design time by the application developer.

« Functional Details: represent the qualitative criteria used
in the reasoning task to produce a solution that best fits
the user needs.

The Functional details are composed by:

« Functional Parameters, defining mandatory information
for the Reasoning Request (such as start and end location
in a travel planner scenario);

« Functional Constraints, defining a numerical threshold
for specific functional aspects of the Reasoning Request
(such as cost of a trip, distance or travel time in a travel
planner scenario). These restrictions are evaluated as
hard constraints, which needs to be fulfilled by each of
the alternative solutions offered to the user;

« Functional Preferences, which encode two types of soft
constraints: a qualitative optimisation statement defined
on the same functional aspects used in the Functional
Constraint (such as minimisation of the travel time); or
a qualitative partial order over such optimization state-
ments (such as preference on the minimisation of the dis-
tance over minimization of the travel time). Preferences
are used by the Decision support component to provide
to the user the optimal solution among those verifying
the functional constraints.

Given to the fully declarative approach of ASP, we are
able to provide a specification of all aspects of a Reasoning
Request, which can be automatically mapped into logic rules.
As a result, we achieve a high degree of flexibility to adapt
to new scenarios and requirements, which makes it easier for
developers to build new applications. In the reasoning process
performed by the Decision support component, declarative
rules derived from the Reasoning Request are combined in a
single logic ASP program with the following input:

o Sub-Answers from external modules. These are facts
computed by external models as subtasks of the deci-
sion support problem. Calls to such external modules
can be used to improve scalability by reducing the

VOLUME 4, 2016

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

solution space, or for privacy reasons. For example, in
a travel planner scenario, a reduced list of all possi-
ble routes to go from A to B within a geographical
area is provided by the Geospatial Data Infrastructure
component. This does not imply any contextual rea-
soning, qualitative optimization, or event-driven adapta-
tion, which is instead provided by the Decision support
component.

o Background Knowledge. This is static information about
a particular domain (such as the location of parking
areas).

« Events Snapshot. This information comes from the Data
federation component, and consists of the latest values
of related events in the city (such as traffic levels in
particular areas). Events snapshots are used the first time
a solution is computed and ensures this solution is based
on the most updated values. Dynamic changes to these
values are then continuously detected and used by the
Decision support component via the adaptive filtering
mechanism of the Contextual Filtering component.

The Decision support component produces a set of answers
to the Reasoning Request that satisfy all user’s requirements
and preferences in the best possible way. These solutions are
computed by applying sets of rules deployed as scenario-
driven decision support modules. We currently support three
different types of decision support modules, covering a broad
range of application scenarios:

e Routing Module. It provides the best solution(s) for a
routing task, which is continuously updated based on
incoming events and their criticality; the travel planner
scenario relies on this module, and so do other scenarios
where finding the optimal route is the main task, but the
selection criteria (including constraints and preferences)
might vary. Examples include the ability to schedule
optimal pick-up for health services, green bike tours and
alike.

o Optimal Selection Module. It provides the best selection
among a set of alternative based on optimisation criteria,
constraints and preferences; the parking scenario is part
of this category.

o Planning Module. It provides optimal solutions to a
planning problem, and continuously updates the options
when the selected one is no longer feasible (based on
Functional Constraints) or is no longer optimal (based
on Functional Preferences); scenarios that are part of
the cultural sector (such as planning activities in the
city based on user interests or schedule) or the energy
sector (such as planning household usage based on user-
defined constraints and cost) are candidate scenarios for
using this module.

These modules are available as API to be used by applica-
tion developers in a broad range of applications. Since deci-
sion support tasks are strongly domain-dependent, different
type of reasoning tasks would require additional Decision
Support modules to be developed. The CityPulse framework

VOLUME 4, 2016

provides a set of guidelines for developing new decision
support modules, which requires knowledge of Answer Set
Programming to develop the proper application logic.

3) TECHNICAL ADAPTATION

The CityPulse framework leverages the Technical adaptation
component to automatically detect critical quality updates
for the federated data streams used in the Data federation
component and make adjustments. IoT streams are inher-
ently dynamic in nature and often unreliable, hence more
prone of getting fluctuations in the quality metrics. Therefore,
it is utmost necessary to have a quality-aware adaptation
mechanism for IoT streams. Using the Technical adaptation
component, the quality of user queries deployed by the Data
federation component can be maintained automatically by
dynamically replacing data sources, unlike existing adaptive
CEP systems which leverage query-rewriting and re-ordering
of the query operators.

The CityPulse framework facilitates adaptability in
quality-aware federation of IoT streams for smart city appli-
cations. In order to provide technical adaptation to increase
robustness of smart city applications, following three steps
are involved:

1. Monitoring Quality Updates: to monitor any updates
in the quality metrics of the IoT streams involved in
stream federation;

2. Evaluate Criticality: to determine whether any par-
ticular quality update is critical and if there is any
adaptation action that should be carried out based on
the composition plan and non-functional requirements;
and

3. Adaptation Handling: when adaptation is triggered,
determine the adaptation scope (i.e., part of the com-
position plan (produced by the Data federation com-
ponent) that needs to be changed), make an adaptation
request to the data federation and recompose the adap-
tation scope and redeploy the newly derived composi-
tion plan.

’—> Application Interface
Technical Adaptation

Adaptation
Failure

Evaluate
Criticality

QoS
Monitor

Qos _|
Updates

Adaptation
handler

QoS
_ Stream |

— o <

‘Adaptation Request—Composition Plan

Event

Request Data Federation

Figure 14. Adaptability in stream federation.

Figure 14 illustrates the process and the components used
to achieve adaptability in stream federation following the
above mentioned three steps.

During the event streams discovery and composition
process, numerical quality vectors can be used to specify con-
straints over the quality metrics for data streams. For exam-

1099

IEEE Access

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

ple, if we consider some typical quality attributes, including
latency, price, energy consumption, bandwidth consumption,
availability, completeness, accuracy and security, a numerical
quality vector:

Q= (L,P,E, B, Ava, C, Acc, S)

can be used to specify the quality of a data stream w.r.t. these
dimensions along with the static data stream description.
Similarly, a quality constraint vector Q’ can be used to specify
the quality constraints as thresholds for the quality metrics
in the stream discovery or composition requests. If none of
the quality values in Q breaks the threshold in Q’, the data
stream is considered to be a candidate for the discovery and
composition. A weight vector:

W = (Lw, Pw, Ew, Bw, Avaw, Cw, Accw, Sw)

contains 0 to 1 weights for each quality metrics within the
requests, representing the preferences over quality metrics.
The weight vector is used to normalize the quality vectors for
all candidates based on simple additive weighting, the results
are ranked and the top candidate is chosen. During runtime,
the quality vectors will be re-computed based on most recent
quality value updates, and the constraints are re-evaluated
to determine if the quality of the data stream still satisfy
the constraints. If optimal candidates must be used for the
application domain at all times, updated quality vectors are
also re-ranked, and the new top candidate is chosen to be the
adaptation result. It is worth mentioning that such preferences
and requirements are specified as a default configuration
within a specific application, and they can be overwritten by
user specific settings.

The Technical adaptation component is closely integrated
with the Data federation component. It receives quality
updates disseminated in the Data Bus. The quality updates are
originally produced by the Quality Monitoring component.
The Technical adaptation component is transparent to the
end user as long as the adaptations are successful. Other-
wise it may produce a failure notification to the application
interface. The adaptation strategies of the Technical adap-
tation component can be configured by a 3™ party devel-
oper by changing the AdaptationMode parameter in the API
offered by the Data federation component. Then, an initial-
ization API is invoked at the backend system to create an
AdaptationManager instance for the specific request.

C. COMPONENTS INTERDEPENDENCIES

The CityPulse components are highly flexible which allow
multiple configurations of exploitation. In other words, the
application developer can deploy only a subset of the com-
ponents based on the requirements of the application which
have to be developed.

There are interdependencies among the components of the
framework and it is possible that the application developer
will have to deploy also other CityPulse components in order
to have a certain feature running.

1100

Considering the out of the box installation, when the appli-
cation developer simply deploys and configures a compo-
nent, he has to deploy also the CityPulse components which
are bellow the considered component in the architecture
(see Figure 1). For other types of installations the applica-
tion developer can replace one or several components with
its own custom made modules. This is possible because
the components are using REST and AMQP protocols to
communicate.

IV. CONTEXT-AWARE REAL TIME TRAVEL PLANNER

In order to demonstrate how the CityPulse framework can be
used to develop applications for smart cities and citizens, we
have implemented a context-aware real time Travel Planner
using the live data from the city of Aarhus, Denmark. The
scenario was defined in collaboration with the IT departments
of the Aarhus municipality and the following criteria have
been considered: the impact of the application for the citizens
and the data availability. The selected scenario belongs to the
traffic domain, but as it was presented earlier in this paper the
CityPulse framework is generic and it can be applied in any
domain.

This scenario aims to provide travel-planning solutions,
which go beyond the state of the art solutions by allowing
users to provide multi dimensional requirements and pref-
erences such as air quality, traffic conditions and parking
availability. In this way the users receive parking and route
recommendations based on the current context of the city.
In addition to this, Travel Planner continuously monitors the
user context and events detected on the planned route. User
will be prompted to opt for a detour if the real time conditions
on the planned journey do not meet the user specified criteria
anymore.

In this case, the application developer has performed the
following activities:

o Configured the CityPulse framework components;

« Deployed the components into a back end server;

o Developed a smart phone application using the APIs
exposed by the framework in order to respond to the
user requests. This application does not perform any data
processing.

For this application, and very probably for most of the
CityPulse enabled applications, the framework components
can be divided in two different categories. First of all, the
large scale data stream processing modules are configured
and deployed in order to permanently monitor the status of the
Aarhus city. In this way, when a new user logs into the mobile
application and generates a request for a recommendation,
the back-end application can provide the answer based on the
current traffic or pollution situation from the city.

The second category of components, which perform real-
time adaptive urban reasoning, are triggered when the user
requests the routing or parking recommendation.

The following subsections present the specific workflows
for the two categories of components mentioned above. For
each particular workflow the activities, which have to be per-

VOLUME 4, 2016

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

3" party || City Data Data Resource Data Event Geospatial Data || Data
developer || Source wrapper ggregati { il bus
- -—————F————J————J—————J—————J————17 pr———

Develop the data wrapper by
extending the python class

Deploy data wrapper for various
sensor configurations

Configure data aggregation procedure

L

Develop event
detection nodes

Register event

streams

Deploy event detection nodes for various sensor configurations

Generate
observation g

:I monilorilng test

:I Generate estimation
if needed

|
| Perform semantic
annotation

Push semantic
annotated data

t
awn uny ——————————L———————aumuﬁ;saq———————l

Perform aggregation
:I procedure
Push aggregated
data "

Perform event
:I detection procedure

Register
event

L Update

graph
Publish |
event

A S S E ——

Figure 15. Large scale data stream processing workflow.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L
I
|
|
| Perform atomic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

form by the application developer at design time, are marked
at the beginning.

A. LARGE SCALE DATA STREAM PROCESSING WORKFLOW
For the considered scenario the large scale data stream pro-
cessing modules are configured to process in real time the
parking and traffic data coming from the city sensors with
the scope of detecting relevant events for the users traveling
in the city. Figure 15 depicts the workflow and this subsection
is dedicated to explain the activities.

For the realization of the envisaged Travel Planner appli-
cation the required data streams must be made available
within the framework at first in the design phase. For this,
corresponding Data wrappers for both data streams needed
to be developed. The Aarhus Traffic wrapper was realised
implementing a HTTP Pull Connection (i.e. HTTP client)
extending the abstract Sensor Connection. It fetches new sen-
sor readings from the ODAA portal. The response messages
are JSON encoded documents. Consequently a JSON Parser
was implemented to extract the relevant information out of
these messages, namely the number of vehicles passing the
two measurement points (‘“vehicleCount’’) and their average
speed (“‘avgSpeed™).

The second Data wrapper implemented fetches the parking
data of parking garages in Aarhus. Similar to the traffic data
stream the Aarhus Parking data is provided by the ODAA
platform and encoded as JSON message. Therefore the same
HTTP Pull Connection but a different JSON Parser is used.
The stream provides information about the total number of

VOLUME 4, 2016

insert into ParkingGarageStatusStream

select * from ParkingGarageStream.win:time(parkingMonitoringInterval sec)
having (max(ParkingGarageStream.
numberOfCars)-min(ParkingGarageStream.numberOfCars)/
ParkingGarageStream.parkingCapacity) > ocupancyChangeRateTreshold)

Listing 4. Detect parking occupancy rate events.

parking spaces in the garage (‘‘totalSpace”’) and the number
of occupied spaces/vehicles in the garage (*‘vehicleCount™).

Both Data Wrappers were deployed in the Resource
management. During run time new observations are fetched
in a five minute interval for the Aarhus Traffic stream and
in a one minute interval for the Aarhus Parking stream
respectively.

The next step was to configure the Data aggregation
component to use the SensorSAX algorithm as aggregation
method for the traffic and parking observations. Due to the
fact that it is a multi-resolution approach, it is triggered based
on the variation in data stream, and can be configured by
sensitivity level to instantly report any change to the system
for further processing, such as Event detection.

The last step considered during the design time was to
develop the Event detection nodes, which are used to process
the Aarhus traffic and parking aggregated data streams with
the scope of identifying relevant events from the end user
perspective. In that sense, Event detection nodes have been
developed and deployed in order to detect the traffic jams
and the parking status changes. In the following paragraphs
we will present the Event detection node used for parking
places fast vacancy modification (in other words when a lot
of vehicles enter the parking garage in a very short period of
time).

The input of the event detection adapter is represented by
one parking data stream and the configuration parameters are:

o ocupancyChangeRateTreshold: the rate of car entering
into the garage in order to generate the event;

o parkingMonitoringInterval: the length of the time inter-
val for which the occupancy change rate is computed.

The statement from Listing 4 represents the detection logic
which has to be included into the parking Event Detection
node in order to achieve the goal. First, it computes the
minimum and the maximum number of cars which have been
in the garage in the last parkingMonitoringlnterval seconds.
Then, the statement determines with what percentage the
parking occupancy has been modified by dividing the differ-
ence between the maximum and the minimum values to the
total capacity of the garage. If the percentage is bigger than
the ocupancyChangeRateTreshold, then a parking place fast
vacancy modification event is generated.

For the implementation of the Travel Planner application
the domain experts do not need to make changes to the Afomic
monitoring nor Composite monitoring. As the quality cal-
culation follows an application independent approach, there
is no need for any changes. The adaptations the Domain
Expert has to do are limited to providing a description for
newly deployed sensors (SensorDescription, see Listing 1)

1101

IEEE Access

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

20]
15] o
ol) i . Aﬂﬁ\
o 1 i M
F
{

o]

0.0

ﬂ
IR AN
-1.0f ﬁ“ﬁjﬁg W= \@J

—

—1.5¢

—-2.0 n . . n .
0 20 40 60 80 100 120

Figure 16. Data aggregation using SensorSAX with minimum window size

is 1 and sensitivity level is 0.3 for average speed observation of Aarhus
traffic data stream.

used by the application. In the case of the Travel Planner
application SensorDescriptions for the traffic and the parking
stream were provided. The introduced Qol Explorer enables
the application developer to check the quality of sensors along
a selected route and to check the results for plausibility.

At run time, after the CityPulse components have been
deployed, the Data wrappers start to fetch observations from
the Aarhus city data streams. When an observation is received
the atomic monitoring is performed and the Qol description
of the stream is updated. If the observation is missing or the
quality of the stream is low, the Fault recovery component is
triggered to generate an estimation.

The observations along with the Qol determined in the
Atomic monitoring is annotated semantically afterwards. The
annotation process is generic and uses the details provided in
the SensorDescription, where required information such as
the general domain of the stream; the nature/concept of an
observation; and the unit of measurement for the observation
are specified.

Next, the numeric values of the observation are aggregated
according using the selected algorithm. Figure 16 depicts the
data captured for average speed via the corresponding sensor
points and illustrate SensorSAX patterns created from the
raw data.

At the end the aggregated streams of observations are pro-
cessed by the Event detection component in order to extract
the parking and traffic events. Once an event is detected it is
published on the Data Bus, to be further used by the Decision
support and Contextual Filtering components and a notifi-
cation is sent to the Geospatial Data Infrastructure. In this
way, the process of computing the routes (see the Geospatial
Data Infrastructure APIs from Section 3) is influences by the
current city context.

B. REAL-TIME ADAPTIVE URBAN REASONING

FOR TRAVEL PLANNER

For the considered scenario, the real time adaptive urban
reasoning components are used to provide answers, when a
user generates routes and parking recommendation requests.

1102

=
filtering

3" party End
developer user

Mobile Data
application | | bus
i b =————F—==-1
Develop the mobile
[‘]: application

configure data endpoints and load balancing strategy

ial Data Data Domain

federation || knowledge

Decision
support

Generate route
recommendation

get possible routes based

Get route recommendations on road traffic status

get data snapshot

get domain information

| []

o
g
2
G
E]
3
H
i
|
|
|
|
|
|
|
|
|
|
T |
|
|
|
|
|
|
|
F
£
5
z
3
|
|
|
|
|
|
|
|
|
|
|

Filter routes based on
user preferences

Display routes

Select route”

) Get traffic event
start filtering streams for the
critical events selected route

ubscribe to
events streams

r-f—-———Ff-—-——-t-——-1 r——=nx

| Send traffic event
Execute
until the
user (1
reaches the
destination

I
Get user location

| Compute event
criticality

Send notification

e e e - —
Register event request

P b e e S S ————h
I
Compute 1
average |
traffic value n

|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I Start the journey
| a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[

[——

Figure 17. Real-time Adaptive Urban Reasoning workflow for Travel
Planner.

Figure 17 depicts the workflow executed by the components
for providing an answer when route a recommendation is
requested.

As mentioned above, all the CityPulse framework compo-
nents are deployed on a back-end server and are accessible via
a set of APIs. As a result of that the application developer has
only to develop a user-friendly front-end application, which
calls the framework APIs. In our case we have developed an
Android application.

Figure 18 depicts the user interfaces used by the end user
to set the travel preferences and the destination point.

After the user has filled in the details and made the request
using the user interface, the mobile application generates
the appropriate request for the Decision support component
which has the following main fields:

« Type: indicating what decision support module is to be
used for this application (“TRAVEL-PLANNER” in
this case);

« Functional details: specifying possible values of user’s
requirements, including:

o Functional parameters: mandatory information that
the user provides such as starting and ending loca-
tions, starting date and time, and transportation type
(car, bicycle, or walk).

o Functional constraints: numerical thresholds for
cost of a trip, distance, or travel time.

o Functional preferences: the user can specify his
preferences along selected routes, which hold the

VOLUME 4, 2016

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

PARKING PLACE ROUTE

SETTINGS
Route constraints

Walk Bicvel
Traffic
Default current location
[] Fastest
Aarhus, Denmarld ["] Shortest
Hinnerup
Trige Skodstrup
15 O
%= Egé
?skov
. Aarhus
Brabrand o,
02 \7
Vib
o by~ Hojbjerg
Worning | Tranbjerg
Googleierg waiing Save
0K Constraints
a) b)

Figure 18. The user interfaces of the Android application used to select
the starting point (a) and the travel preferences (b).

functional constraints. These preferences can be the
minimization or the maximisation of travel time or
distance.

The functional constraints and preferences specify differ-
ent thresholds and minimisation criteria for electing the route.
During the development of the mobile application the domain
expert has computed a default set of values for these thresh-
olds. As a result of that, the route constraints user interface
from.

Figure 18 b) allows the user to select between the
fastest/shortest routes. If needed, more fields can be added
in this user interface in order to allow more fine-grained
constraints specification, but the usability of the application
may suffer.

1. input_get routes(SP, EP, V,5) :-

parameter("STARTING_POINT", SP),

parameter("ENDING POINT", EP), route_costMode(V).
2. route(@get_routes(SP, EP, V,N)) :- input_get routes(SP, EP, V, N).
route_data(@get_routes_data(SP, EP, V, N)) :- input_get_routes(SP,
EP, V,N).
parameter("STARTING POINT","10.116919 56.226144").
parameter("ENDING_POINT","10.1591864 56.1481156").
minimize{AV@2 : valueOf("DISTANCE", AV)}.
minimize{AV@]1 : valueOf("TRAVEL_TIME ", AV)}.

W

oo v

Listing 5. A snapshot of logic decision support rules for the Travel
Planner scenario.

This concrete reasoning request is automatically mapped
into ASP rules (see example rules 4-7 in Listing 5), and com-
bined with the specific scenario-driven rules for the Travel
Planner Decision Support module.'® The Decision support

16Note that this can be fully automated due to the declarative nature of our
approach to rule-based reasoning based on ASP.

VOLUME 4, 2016

Trige

Elev
Seften

Event notification

The following events have been
received: TrafficJam[level = 1,
coordinates(10.1049860760575

56.2317206942822)];

Go to route Conti
selection nue

Go to parking
selection

Brabrand

433

Select Cancel

a) b)

Figure 19. The user interfaces of the Android application: a) select the
preferred route; b) notification of a traffic jam which appeared on the
selected route while the user is travelling.

component collects all possible routes from the Geo-spatial
database infrastructure as well as the last snapshot of values
of relevant functional properties for those routes which can
be produced dynamically by the Data federation component
or retrieved from the Knowledge base (rules 1-3).

Afterwards the Decision support component relies on the
Clingo4 ASP reasoner to compute the optimal routes that
satisfy the user’s reasoning request best. In the current imple-
mentation of the Decision support, the user will receive at
most 5 optimal routes.

Figure 19 a) depicts the user interface where the routes
computed by the Decision support are displayed to the end
user.

After the user selects the preferred route, a request is gener-
ated to the Contextual filtering component in order to identify
the relevant events for the use while he/she is traveling. The
request includes the following properties:

« Route of interest: the current route of the user

« Filtering Factors: used to filter unrelated (unwanted)

events out, and include event’s source, event’s category,
and user’s activity, as specified in a user-context ontol-
ogy.!” For this particular scenario, the activities included
in our ontology include CarCommute (user is traveling
by a car), or Walk, or BikeCommute (user is traveling
by a bike).

« Ranking Factor: identifies which metric is preferred by

the user for ranking the criticality of incoming events.
We have currently implemented the Ranking Factor
based on two metrics: distance, and gravity of the event.
In order to combine these two metrics, we use the
linear combination approach, where the user can identify
weights (or importance) for each metric.

Similar to the decision support constraints and preferences,
the filtering and ranking factors are selected by the domain

7Note that the ontology can be extended by adding new activities.

1103

IEEE Access

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

expert during the mobile application development stage, but
they can be made accessible to the end users.

Once the user has selected one of the routes com-
puted by the Decision support component, the Contextual
Filtering component sends a request to the Geospatial
Database Infrastructure component to obtain the description
of the event streams available on the selected route, as reg-
istered at design time by the Event detection component.
The Contextual Filtering component uses these descriptions
to subscribe to detected events via a Data Bus. In addition,
the Contextual Filtering also receives the contextual infor-
mation of the user (currently including location) from the
user/application as a stream. Whenever there is a new event
detected by the Event detection component, the Contextual
Filtering component filters and assigns the most appropriate
criticality (O if not critical, from 1 to 5 if it is critical) to
the new event. If the new event is marked as critical,!® the
user receives a notification and he/she has the option to
change the current solution and request a new one or ignore
the event.

Figure 19 b) depicts the notification received by the end
user, while s/he is traveling and a traffic event is detected on
his/hers route.

In addition to the contextual filtering request, the mobile
application triggers the Data federation to continuously com-
pute the average speed of the cars from the selected route.
At design time, the application developer has configured the
Data federation component to store the meta-data for the
traffic sensors and to use the “EL” load balancing strategy
(starts with one engine instance and creates more instances
elastically when all existing instances have reached maxi-
mum capacity).

The request generated by the mobile application contains
the following fields:

« ep: the query pattern, in this application it is a conjunc-

tion of primitive traffic report events,

o constraint: the QoS constraint vector, absence of the
constraint results in application of a set of defaulted
loose constraints,

« weight: the QoS weight vector, absence of the weights
results in equal weights configured to all QoS metrics,

« continuous: true have been selected to compute the aver-
age continuously;

« engineType: type of RDF processing engine to be used,
can be "CQELS’ or ’"CSPARQL’

« aggOp: aggregation operator, which for our particular
situation is average.

The ep in the request contains the functional requirements
for the primitive traffic data streams, e.g. what properties
should they measure and what are the locations of the sensors
(computed from the route selected by the user). Combining
the functional requirements with the QoS constraints and
preferences, the Data federation component creates the opti-

18Note that we currently provide all events marked with criticality higher
than 0, but this can be changed by fixing a different threshold or limiting the
notification to the top-k events.

1104

mal composition plan for the request based on the stream
meta-data provided in the knowledge based.

SELECT ?obld1 ?0bld2 ?v1 ?v2
WHERE { ?p1 a ct:AverageSpeed.
?p2 a ct:AverageSpeed.
STREAM <Traffic226> [range 3s]
{?0obld1 a ?0b.
?0bld1 ssn:observedProperty ?p1.
?0bld1 sao:value ?v1.}
STREAM <Traffic439> [range 3s]
{?0bld2 a ?0b.
?0bld2 ssn:observedProperty ?p2.
?0bld2 sao:value ?v2.}

Listing 6. Sample CQELS query generated from composition plan.

According to the engineType parameter specified in the
request, the composition plan is transformed into a CQELS
or CSPARQL query, as shown in Listing 6. A post-processing
is applied to the query evaluation results to aggregate the
observation values, using the aggregation operator specified
in the aggOp.If the aggOp is set to empty then no post-
processing is invoked.

The Data Federation is a generic component that gives
continuous query results over federated data streams. Since it
follows a service-oriented approach, the discovery and com-
position algorithms do not require changes based on specific
application domains, as long as the service description model
is used by the service providers and consumers.

The domain experts can choose between different default
target continuous query evaluation systems (currently
CQELS and C-SPARQL are integrated), based on the dif-
ferent characteristics of the application domains, e.g., the
average query size, the frequency of data streams and the size
of the background knowledge. These factors may affect the
performance of the target systems (for more information refer
to [42]) and a configuration based on specific scenario could
be beneficial, but it is not mandatory.

V. CONCLUSIONS AND FUTURE WORK
Providing enhanced services to citizens while cities are grow-

ing due to urbanisation, and while resources are limited
demands for a more intelligent use of the existing resources.
The cities have started to deploy sensor and actor devices
in their environment, e.g. intelligent lighting, and observa-
tion and monitoring devices to collect traffic, air quality
and water/waste data. However, the current focus is mainly
on collection, storage and visualisation of the datasets with
an emphasis on high performance computing and visual
computing solutions. While the recent efforts in this area
have enabled emerging technologies and solutions to develop
novel techniques for smart city applications and use-cases
scenarios, there is however a gap in providing efficient and
scalable methods that enable (near)real-time processing and
interpretation of streamed sensory and social media data in
smart city environments.

VOLUME 4, 2016

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

This paper proposes a framework for large-scale data ana-
lytics to provide information in (near-)real-time, transform
raw data into actionable information, and to enable creating
“up-to-date’ smart city applications. To deal with the hetero-
geneity of the datasets a virtualisation technique is employed
using Data Wrappers. However raw data will not be directly
machine-readable and it hinder automated interpretation of
the collected data. In our work, the datasets are semantically
annotated that enable interoperability and provide machine-
readable/interpretable representation of the data streams. The
varying quality of the data is considered from the begin-
ning by providing quality measures. Data stream aggrega-
tion and fault recovery techniques are used to enhance the
quality-aware access and processing of the data streams. To
extract events from the large data sets in (near-)real-time,
complex event processing and contextual filtering methods
are used.

The proposed framework has been demonstrated in the
paper by a smart Travel Planer application. The main con-
tributions of this work include integrating of heterogeneous
data streams, providing interoperability, quality analysis,
(near-) real-time data analytics and application development
in a scalable framework. The CityPulse components have
been developed as reusable entities and are provided as open-
source software that are available via the CityPulse github
repository (https://github.com/CityPulse).

The CityPulse middleware components are also reusable
in different application domains and are provided as open-
source.

In order to reduce complexity and time for developing
new applications a set of APIs is provided by each of the
CityPulse components. This way the developers of services
are able to abstract the complexity of the CityPulse middle-
ware and are not bound to use specific technologies for the
implementation.

The future work will focus on evaluation of the proposed
framework for (near-)real-time city data analytics in dif-
ferent domains. The framework will be also used to pro-
vide data access user interfaces and prototype applications
for smart city use-cases in the city of Aarhus and the city
of Brasov.

REFERENCES

[1]1 S. Beswick, “Smart cities in Europe enabling innovation,” Osborne
Clarke, London, UK., Tech. Rep., 2014. [Online]. Available:
http://www.cleanenergypipeline.com/Resources/CE/ResearchReports/
Smart%20cities%20in%20Europe.pdf

[2] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris,
“Smarter cities and their innovation challenges,” Computer, vol. 44,
no. 6, pp. 32-39, Jun. 2011.

[3]1 T. W. Mills. (Dec. 2015). Intel Corporation—Intel Labs Europe:
Open Innovation 2.0. [Online]. Available: http://dspace.mit.edu/handle/
1721.1/99033

[4] F. Lécué, R. Tucker, V. Bicer, P. Tommasi, S. Tallevi-Diotallevi,
and M. Sbodio, ‘Predicting severity of road traffic congestion using
semantic Web technologies,” in Proc. ESWC, Crete, Greece, 2014,
pp. 611-627.

[5] iCity Consortium. (Jun. 11, 2014). iCity Project. [Online]. Available:
http://www.icityproject.eu/

VOLUME 4, 2016

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs, “Building a big
data platform for smart cities: Experience and lessons from Santander,”
in Proc. IEEE Int. Congr. Big Data, New York, NY, USA, Jun./Jul. 2015,
pp. 592-599.

J. Soldatos et al., “OpenloT: Open source Internet-of-Things in the
cloud,” in Interoperability and Open-Source Solutions for the Internet
of Things, 1. P. Zarko, K. Pripuzi¢, M. Serrano, Eds. Berlin, Germany:
Springer, 2014, pp. 13-25.

D. Pfisterer et al., “SPITFIRE: Toward a semantic Web of things,” IEEE
Commun. Mag., vol. 49, no. 11, pp. 40-48, Nov. 2011.

R. Giaffreda, “iCore: A cognitive management framework for the Inter-
net of Things,” in The Future Internet, A. Galis and A. Gavras, Eds.
Heidelberg, Germany: Springer, 2013, pp. 350-352.

R. Stiithmer, Y. Verginadis, I. Alshabani, T. Morsellino, and A. Aversa,
“PLAY: Semantics-based event marketplace,” in Proc. IFIP Working
Conf. Virtual Enterprise-Special Session Event-Driven Collaborative
Netw., 2013, pp. 699-707.

F. Lécué et al., “Smart traffic analytics in the semantic Web with
STAR-CITY: Scenarios, system and lessons learned in Dublin City,” Web
Semantics, Sci., Services Agents World Wide Web, vols. 27-28, pp. 26-33,
Aug./Oct. 2014.

Z. Zhao, W. Ding, J. Wang, and Y. Han, “A hybrid processing system
for large-scale traffic sensor data,” IEEE Access, vol. 3, pp. 2341-2351,
Nov. 2015.

J.-P. Calbimonte, S. Sarni, J. Eberle, and K. Aberer, “XGSN: An open-
source semantic sensing middleware for the Web of things,” in Proc.
7th Int. Conf. Semantic Sensor Netw., Riva Del Garda, Italy, 2014,
pp. 1-6.

O. Fambon, E. Fleury, G. Harter, R. Pissard-Gibollet, and F. Saint-Marcel,
“FIT IoT-LAB tutorial: Hands-on practice with a very large scale testbed
tool for the Internet of Things,” in Proc. UbiMob, 2014, pp. 1-5.

NYC BigApps 2015, accessed on Dec. 20, 2015. [Online]. Available:
http://bigapps.nyc/

Z. Khan, A. Anjum, K. Soomro, and M. A. Tahir, “Towards cloud based
big data analytics for smart future cities,” J. Cloud Comput., vol. 4, p. 2,
Dec. 2015.

Amsterdam Smart City, accessed on Dec. 20, 2015. [Online]. Available:
http://amsterdamsmartcity.com/#/nl/home

AMQP Specification, accessed on Dec. 20, 2015. [Online].
Available: http://www.amqp.org/specification/1.0/amqgp-org-download
R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search
in sequence databases,” in Foundations of Data Organization and Algo-
rithms. Heidelberg, Germany: Springer, 1993.

A. Haar, “Zur theorie der orthogonalen funktionensysteme,”
Mathematische Annalen, vol. 69, no. 3, pp. 331-371, 1910.

Z. R. Struzik and A. Siebes, “The Haar wavelet transform in the time
series similarity paradigm,” in Principles of Data Mining and Knowledge
Discovery. Berlin, Germany: Springer, 1999, pp. 12-22.

K. Chakrabarti and S. Mehrotra, ‘“Local dimensionality reduction: A new
approach to indexing high dimensional spaces,” in Proc. VLDB, 2000,
pp. 89-100.

E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality
reduction for fast similarity search in large time series databases,” Knowl.
Inf. Syst., vol. 3, no. 3, pp. 263-286, 2001.

T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic Web,” Sci.
Amer., vol. 284, no. 5, pp. 28-37, May 2001.

M. P. Papazoglou, “Service-oriented computing: Concepts, characteris-
tics and directions,” in Proc. 4th Int. Conf. Web Inf. Syst. Eng. (WISE),
Washington, DC, USA, Dec. 2003, pp. 3—12.
D. C. Luckham, The Power of Events.
Addison-Wesley, 2002.

D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus,
“C-SPARQL: SPARQL for continuous querying,” in Proc. 18th Int. Conf.
World Wide Web, 2009, pp. 1061-1062.

D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth, “A native
and adaptive approach for unified processing of linked streams and linked
data,” in Proc. 10th Int. Semantiv Web Conf. (ISWC), Bonn, Germany,
Oct. 2011, pp. 1-16.

F. Gao, E. Curry, and S. Bhiri, “Complex event service provision
and composition based on event pattern matchmaking,” in Proc. 8th
ACM Int. Conf. Distrib. Event-Based Syst., Mumbai, India, 2014,
pp. 71-82.

Reading, MA, USA:

1105

IEEE Access

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

[30] F. Gao, E. Curry, M. I. Ali, S. Bhiri, and A. Mileo, ‘“QoS-aware complex
event service composition and optimization using genetic algorithms,”
in Proc. 13th Int. Conf. Service Oriented Comput., Paris, France, 2014,
pp- 386-393.

[31] Esper Reference Documentation Version: 0.7.5, EsperTech, Wayne, NJ,

USA, 2016.

LingPipe. Ling Pipe Documentation, accessed on Dec. 15, 2015. [Online].

Available: http://alias-i.com/lingpipe/index.html

[33] P. Anantharam, P. Barnaghi, K. Thirunarayan, and A. Sheth, “Extracting
city traffic events from social streams,” ACM Trans. Intell. Syst. Technol.,
vol. 6, no. 4, 2015, Art. no. 43.

[34] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12, pp. 2493-2537, Nov. 2011.

[35] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York, NY, USA: Wiley, 2000.

[36] M. Gelfond and V. Lifschitz, “The stable model semantics for
logic programming,” in Proc. ICLP, vol. 88. Seattle, WA, USA,
1988, pp. 1070-1080. [Online]. Available: http://dblp.uni-trier.de/
rec/bibtex/conf/iclp/GelfondL.88

[371 M. Gebser, B. Kaufmann, and T. Schaub, ‘“Conflict-driven answer
set solving: From theory to practice,” Artif. Intell., vols. 187-188,
pp- 52-89, Aug. 2012.

[38] G. Chen and D. Kotz, “A survey of context-aware mobile computing
research,” Dept. Comput. Sci., Dartmouth College, Hanover, NH, USA,
Tech. Rep. TR2000-381, 2000.

[39] C. Henson, P. Barnaghi, and A. Sheth, “From data to actionable knowl-
edge: Big data challenges in the Web of things [guest editors’ introduc-
tion],” IEEE Intell. Syst., vol. 26, no. 6, pp. 611, Nov./Dec. 2013.

[40] J. Gama, Knowledge Discovery From Data Streams. Boca Raton, FL,
USA: CRC Press, 2010.

[41] A. Mileo, A. Abdelrahman, S. Policarpio, and M. Hauswirth,
“StreamRule: A nonmonotonic stream reasoning system for the
semantic Web,” in Web Reasoning and Rule Systems. Berlin,
Germany: Springer, 2013, pp. 247-252.

[42] M.I Ali, F. Gao, and A. Mileo, “CityBench: A configurable benchmark
to evaluate RSP engines using smart city datasets,” in Proc. 14th Int.
Semantic Web Conf., 2015, pp. 374-389.

[32

DAN PUIU received the Engineering degree in
control systems and the Ph.D. degree in con-
trol systems from the Transylvania University
of Brasov, Romania. In 2011, he started as a
Research Engineer with Siemens Corporate Tech-
nology Romaina. He was a member in several
national and European research projects related
to Internet of Things (iCore, MOBILE.OLD).
He currently performs research activities within
CityPulse and COSMOS FP7 projects. His
research interests include data mining, stream processing, real-time data
analytics, machine learning, batch processing, and autonomic systems.

PAYAM BARNAGHI (SM’04) is currently a Lec-
turer (Assistant Professor) with the Institute for
Communication Systems, University of Surrey.
He’s also the Coordinator of the EU FP7 CityPulse
project. His research interests include machine
learning, the Internet of Things, the semantic Web,
adaptive algorithms, and information search and
retrieval. He is an Associate Editor of the IEEE
INTERNET OF THINGS JoURNAL. He is a fellow of the
Higher Education Academy.

RALF TONJES received the Dipl.-Ing. and
M.Phil. degrees in 1989 and 1990, respectively,
and the Dr.-Ing. (summa cum laude) degree in
electrical engineering from the University of Han-
nover, in 1998. From 1990 to 1998, he was a
Research Engineer and Teaching Assistant with
the Institute for Communication Engineering and
Information Processing, University of Hannover.
From 1998 to 2005 he was with Ericsson Research,
working on UMTS core network evolution, mobile
broadcast, and represented Ericsson in the DVB-CBMS (Convergence
Broadcast and Mobile Systems) standardization. In 2005, he joined the
University of Applied Sciences of Osnabriick as a Full Professor of Mobile
Communications. He is heading the Mobile Communications Group with
the University of Applied Sciences Osnabriick. He studied communication
engineering with the University of Hannover and biomedical engineering
with the University of Strathclyde, Glasgow. He has been the Responsible
Project Manager for the IST projects DRiVE and OverDRIiVE. He is a
TPC Member of several international conferences and (co-) authored over
70 scientific publications. His current research interests include wireless
communication networks, Internet of Things, context-aware service plat-
forms, and test automation.

DANIEL KUMPER received the Dipl.-Inf.
(FH) degree in computer engineering and the
M.Sc. (Hons.) degree in distributed and mobile
applications from the University of Applied Sci-
ences Osnabriick (UASO), Germany, in 2007 and
2009, respectively. He is currently pursuing the
Ph.D. degree in computer science in the research
scope of service testing in IoT architectures.
He was involved in the FP7 ICT IoT.est project and
is currently working in the CityPulse project. He is
a Research Associate with the Mobile Communication Research Group,
UASO. His research interests include geospatial analysis, mobile computing,
auto-deployment, and configuration technologies.

MUHAMMAD INTIZAR ALl received the
Ph.D. (Hons.) degree from the Vienna Univer-
sity of Technology, Austria, in 2011. He is an
Adjunct Lecturer, Research Fellow, and Project
Leader with the Unit for Reasoning and Querying,
Insight Centre for Data Analytics, National Uni-
versity of Ireland, Galway. His research interests
include semantic Web, data integration, Internet of
Things (IoT), linked data, federated query process-
ing, stream query processing, and optimal query
processing over large scale distributed data sources. He is actively involved
in various EU funded and industry-funded projects aimed at providing IoT
enabled adaptive intelligence for smart city applications and smart enterprise
communication systems. He serves as a PC Member of various journals,
international conferences, and workshops. He is also actively participating
in W3C efforts for standardization in RDF Stream Processing Community
Group and Web of Things Interest Group.

VOLUME 4, 2016

D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

IEEE Access

ALESSANDRA MILEO received the M.Sc. and
Ph.D. (Hons.) degree in computer science from
the University of Milan, in 2002 and 2006, respec-
tively. She is a Senior Research Fellow, an Adjunct
Lecturer, and the Unit Leader of the INSIGHT
Research Center for Data Analytics with the
National University of Ireland, Ireland. Since
2011, she has been leading the Reasoning and
Querying Unit, focusing on the ability to unlock
the potentials hidden in the fast growing torrent
of data generated on the Internet of Things, and investigating the resulting
economical and social impact on application domains, including smart cities,
smart transport, and remote health monitoring. She is a Principal Investigator
of the EU FP7 CityPulse project on large-scale data analytics for smart
cities, and for the primary industry collaboration within the Research Centre
portfolio on Enabling the Internet of Everything: a Linked Data infrastruc-
ture for networking, managing and analyzing streaming information. Her
research interests include Web stream reasoning, deductive systems, Internet
of Things, semantic Web and linked data, adaptive algorithms, inductive
learning, large-scale query processing and federation, and context-aware
systems, and she has authored over 40 articles in international conferences
and journals. As part of the Steering Committee of the INSIGHT Centre
for Data Analytics, she contributed to the global strategy for H2020 which
includes the proposal of a Magna Carta for Data.

JOSIANE XAVIER PARREIRA is a Senior
Research Scientist with Siemens AG. She is
involved in a number of projects in the area of
smart cities, smart grids, and building technolo-
gies. Before joining Siemens last year, she was
a Post-Doctoral Researcher/Adjunct Lecturer and
Project Leader with The INSIGHT Center for Data
Analytics, National University of Ireland, Galway,
where she was involved in a number of research
projects in the areas of semantic Web applied to
stream data management, graph-based stores, and federated query process-
ing. In particular, she worked in the Continuous Query Evaluation over
Linked Streams (CQELS), an approach that provides a scalable query pro-
cessing model for unified stream data in RDF format and Linked Open Data.

MARTEN FISCHER received the Diplom
Informatiker degree in computer engineering and
computer science from the University of Applied
Science Osnabriick, in2009. The topic of his
diploma thesis included the fields of service cre-
ation environments and service deployment. He is
currently a Research Assistant with the Mobile
Communication Research Group involved in a
research project covering the topics of automated
test generation and reliability in sensor networks.

SEFKI KOLOZALI received the B.Sc. degree in
computer engineering from Near East University,
Nicosia, Turkish Republic of Northern Cyprus,
in 2005, the M.Sc. degree from the University
of Essex, and the Ph.D. degree from the Queen
Mary University of London. His thesis was titled
Automatic Ontology Generation Based on Seman-
tic Audio Analysis. He is a Research Fellow with
the University of Surrey. His main research inter-
ests include signal processing, machine learning,
semantic Web technologies, semantic sensor networks, Internet of Things,
and future Internet technologies.

VOLUME 4, 2016

NAZLI FARAJIDAVAR received the B.Sc. degree
in electronics engineering from the Amirkabir
University of Technology, in 2008, the M.Sc.
(Hons.) degree in medical imaging from the Uni-
versity of Surrey, in 2010, and the Ph.D. degree
in computer vision and machine learning from the
University of Surrey, in 2015, with a focus on
scientific research project, Adaptive Cognition for
Automated Sports Video Annotation. She has been
a Research Fellow with the Institute for communi-
cation Systems, University of Surrey, since 2014. Her research interests lie in
the field of artificial cognitive systems, cognitive robotics, cognitive machine
learning, natural language processing, transfer learning, and IoT.

FENG GAO received the B.Sc. degree in software
engineering from Wuhan University, China, in
2008, and the M.Eng. (Hons.) degree in telecom-
munication from Dublin City University, in 2009.
He is currently pursuing the Ph.D. degree with
the INSIGHT Centre for Data Analytics, National
University of Ireland, Galway. His current research
interests include semantic Web, complex event
processing, and service computing.

THORBEN IGGENA received the M.Sc. degree
in computer engineering from the University of
Applied Sciences Osnabriick, in 2013. His mas-
ter’s thesis dealt with reliable transport of data
packages in ad-hoc, delay tolerant networks. He is
a Research Fellow with the University of Applied
Sciences Osnabriick. His current research interests
include data processing in context of smart cities,
evaluation and analyzation of information quality,
and delay tolerant routing algorithms.

THU-LE PHAM received the B.Sc. and
M.Sc. degrees in mathematics and computer sci-
ences from the University of Natural Sciences,
Ho Chi Minh City, Vietnam. She is currently
pursuing the Ph.D. degree with the INSIGHT
Centre for Data Analytics, National University of
Ireland, Galway. Her current research interests are
semantic Web and stream reasoning.

COSMIN-SEPTIMIU NECHIFOR received the
degree from the University Transilvania of Brasov,
in 1998, and the M.Sc. degree in VLSI design
techniques in 1999. He joined Siemens Corpo-
rate Technology in 2001, where he is current
the Research Group Head of Business Analyt-
ics and Monitoring Technology. His professional
experience covers topics like ERP, service ori-
ented architecture, distributed systems, knowledge
management, and applications. He is a Certified
Project Manager with experience in risk evaluation, software quality sys-
tems, and knowledge-based process development. He is driving Siemens
CT Romania research activities in a large number of IOT, Cloud, AAL, and
Green Data Centers EU funded projects. His research activities cover Internet
of Things, configuration and scheduling systems, Autonomic computing
and networking, constraints programming, event driven architectures, and
semantic Web applications.

1107

lEEEACCGSS D. Puiu et al.: CityPulse: Large Scale Data Analytics Framework for Smart Cities

DANIEL PUSCHMANN is currently pursuing the
Ph.D. degree with the Institute for Communica-
tion Systems, University of Surrey, Surrey, U.K.
His research interests include information abstrac-
tion and extracting actionable knowledge from
streaming data produced in the Internet of Things
using stream processing and machine learning
techniques.

JOAO FERNANDES received the master’s
degree in computer science engineering from the
New University of Lisbon. He did his master’s
thesis entitled Toward a Development Environ-
ment for Pervasive Web Services with Aarhus Uni-
versity. He is a Specialist Software/ICT Engineer
with the Data Science and Engineering Laboratory,
Alexandra Institute. During the last years, he has
been working in several research projects with
background on IoT and smart cities, where he
has been actively involved in EU funded projects, such as SmartSantander,
Urb-Grade, and IoT Lab.

1108 VOLUME 4, 2016

