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Abstract

Interactive visual media enable the visualization and navigation of remote-world locations in
all gaze directions. A large segment of such media is created using pictures from the remote
sites thanks to the advance in panoramic cameras. A desirable enhancement is to facilitate the
stereoscopic visualization of remote scenes in all gaze directions. In this context, a model for the
signal to be acquired by an omnistereoscopic sensor is needed in order to design better acquisition
strategies. This omnistereoscopic viewing model must take into account the geometric constraints
imposed by our binocular vision system since we want to produce stereoscopic imagery capable
to induce stereopsis consistently in any gaze direction; in this paper, we present such model.
In addition, we discuss different approaches to sample or to approximate this function and we
propose a general acquisition model for sampling the omnistereoscopic light signal. From this
model, we propose that by acquiring and mosaicking sparse sets of partially overlapped stereo-
scopic snapshots, a satisfactory illusion of depth can be evoked. Finally, we show an example of
the rendering pipeline to create the omnistereoscopic imagery.
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1 Introduction
The goal of interactive visual media is to evoke an immersive experience by means of high-quality
images and videos of remote real-world locations. The interactivity is implemented by enabling the
user to dynamically choose the gaze direction (D) and viewpoint location (r) in the virtual scene.
This can be done by using synthetic 3D-models of the remote sites or by using panoramic imagery.
A feature that can enhance the realism of such navigable imagery is to incorporate binocular vision.

The development of image-based virtual reality (VR) applications has gained momentum re-
cently with the popularization of head mounted displays (HMD) [1]. Companies such as Google [2]
and Samsung [3] have recently proposed omnistereoscopic 3D cameras to produce HMD suitable
content. This is done by acquiring the necessary data set of images to produce correct stereoscopic
views in all gaze directions; this is a challenging problem in terms of the 3D panoramic camera
design.

One of the novelties of this paper resides in the derivation of functions that represent the visual
signals to be acquired by an omnidirectional (stereoscopic) sensor. We present in Section 3 the
omnidirectional viewing function derivation from the plenoptic model discussed in Section 2. This
function is used to justify a general model for the acquisition of omnistereoscopic imagery and
its different variations or configurations [4, 5]. The acquisition model can be applied to most of
the panoramic cameras capable to produce stereoscopic imagery suitable for human viewing, e.g.,
stereoscopic images with horizontal parallax. We describe the acquisition model in Section 4.

In the second part of this paper, we argue that a satisfactory approximation of the omnistereo-
scopic viewing function can be achieved by using sparse sets of stereoscopic snapshots. This is
important since some configurations of our acquisition model are suitable for the simultaneous cap-
ture of multiple stereoscopic images, covering the whole scene in one simultaneous snapshot [6] of
multiple sensors. These geometric configurations lead to the design of panoramic cameras to acquire
stereoscopic snapshots and videos of dynamic scenes omnistereoscopically. Finally, we present in
Section 5 our rendering algorithm for creating omnistereoscopic visual media by stitching images
from the acquired sparse sets.

This paper’s goal is to propose a general model for omnidirectional acquisition of stereoscopic
images to be used in analyzing various cameras and techniques to produce stereoscopic panoramas
for human viewing. A main conclusion derived from these models is that a satisfactory illusion of
depth based on horizontal disparity between the scene’s elements can be achieved by using a lim-
ited number of stereoscopic samples of the viewing function. We illustrate this claim by producing
various omnistereoscopic views of different scenes which can be seen in Section 6 and whose nav-
igable versions can be explored in [7]. We evaluated our acquisition model using parameters such
as the amount of vertical disparities and the continuity of the depth illusion after mosaicking partial
samples based on horizontal disparity continuity [5]. The subjective evaluation of the sparse set
method to create omnistereoscopic imagery is not part of this paper, but its importance is discussed
Section 7.

The rendering procedure is given just as a tentative example of using sparse sets of stereoscopic
images; hence, we do not evaluate its complexity or contrast its efficiency against other methods.
However, in previous papers, we reported on the feasibility and limitations of using sparse sets
of stereoscopic images [5] and contrasted this approach against other acquisition-rendering meth-
ods [4].
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1.1 Background
Panoramic stereo consisting of coaxial cameras and mirrors, a.k.a. catadioptric stereo [4, 8], can

acquire images omnidirectionally by using relatively simple hardware; the acquired pairs of panora-
mas exhibits vertical (instead of horizontal) disparities. This is not an obstacle to produce omnidi-
rectional depth-maps of the scene, which can be used to render synthetic omnistereoscopic imagery
by means of region selective image warping guided by the calculated depth information. However,
this approach is computationally costly for a real-time scenario and it is prone to depth estimation
errors; rendering occluded areas poses another problem. All these limitations have motivated the
developing of alternative cameras suitable to produce gaze-direction-independent stereoscopic im-
agery intended for human viewing. These methods are based on mosaicking partially overlapped
stereoscopic views, which are directly acquired with horizontal baselines [2, 3].

Over the last decade, multiple omnistereoscopic techniques have been proposed to produce
stereoscopic panoramas [4]; the technique used is determined by the final application. For instance,
the virtual navigation of static environments can be implemented using the sequential acquisition
methods [9, 10, 11]. However, this approach cannot be used to acquire a large collection of omnis-
tereoscopic imagery, particularly when the scene is time-variant such as in the case of navigation
simulations. The latter may require multiple-camera sensors which can acquire omnistereoscopic
imagery and videos in one snapshot [12, 13, 14, 15]. All these acquisition scenarios require the
sampling of the plenoptic function from two distinct viewpoints in every gaze direction with respect
to a reference viewpoint in space.

The omnistereoscopic viewing model represents the visual signal that, once measured and sam-
pled, can be used to produce stereoscopic images. The produced imagery must be suitable to emu-
late the appropriate stimulus for the binocular visual system. Hence, the model must incorporate the
constraints of our visual system to define the function to be acquired for a given gaze direction.

Our previous publications describe our path towards the definition of an omnistereoscopic view-
ing model. For instance, in [4], we reviewed the different methods and cameras to produce om-
nistereoscopic imagery for human viewing; we put special attention on techniques to capture the
whole scene at once. Then, in [12], we presented a possible solution based on using three panoramic
snapshots acquired in a co-planar triangular pattern. We generalized this technique in [16] where we
presented a method based on mosaicking a limited number of partially overlapped stereoscopic snap-
shots; we suggested in this publication what will become our acquisition model and possible render-
ing techniques. In our last contribution [5], we contrasted various acquisition configurations based
on parameters such as vertical disparities and minimum distance to each camera. However, it was
still missing a model to describe the omnistereoscopic light to be acquired by an stereo panoramic
sensor, so we introduce it in this paper.

The plenoptic model as defined by Adelson and Bergen [17] is a ray-tracing model of the light
arriving at a point in space that accounts for the light as a function of time and direction of arrival,
time-of-arrival and wavelength. This model has been used to define a model for the light function ac-
quired by an omnidirectional sensor [18] and for rendering of panoramic (monoscopic) images [19].
A typical omnidirectional sensor integrates the plenoptic function over a spectral range to reduce its
dimensionality [20]. This time-variant, direction-dependent function contains the color information
in a given color space. We denoted this signal as the viewing function, which is the omnidirectional
signal to be acquired by a panoramic sensor. The integration of each component of the viewing
function over a time interval (exposure time) produces an omnistereoscopic (monoscopic) image.
The spatial sampling of this image produces a discrete valued panoramic image.

The omnistereoscopic viewing model we propose herein is also derived from the plenoptic
model, but it considers the light arriving at two distinct viewpoints in space separated by a horizontal
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baseline. We define the omnistereoscopic viewing function that models the signal to be acquired to
produce omnistereoscopic imagery for human viewing. Our model is detailed in Section 3.1.

The geometric constraints of the omnistereoscopic acquisition model have been examined by
Huang et al. in [21, 22, 23]. However, this omnistereoscopic model is applicable to line cameras
only. Our model in contrast represents the general visual function to be acquired to reproduce a
satisfactory depth illusion in arbitrary gaze directions, including line cameras as an special case.

In addition to defining the omnistereoscopic function to be measured, we discuss different ap-
proaches to acquire this function. One of the acquisition systems that best approximates the direct
capture of the omnistereoscopic function is a stereoscopic rig where the user controls D by select-
ing the panning direction of the camera arrangement [24]. Alternative acquisition methods use a
cluster of stereoscopic panoramas to produce approximations of the binocular views predicted by
our model [12]. The imagery produced using these methods is correct in certain gaze directions,
but they exhibit disparity distortions in other looking angles. This problem also appears for column-
wise image scanning [9, 23], especially when they are displayed on curved surfaces [25, 26]. Other
deviations of the model are introduced by using sparse stereoscopic samples of the omnistereoscopic
function [16, 15, 13].

2 Omnidirectional viewing function
The viewing function (C) contains the necessary visual information to reconstruct omnidirectional
images. This function models the color information in a given color space (C ) as a function of the
gaze direction D and the instant t. The sampling of this signal by means of a panoramic sensor is
necessary to produce monoscopic, gaze direction-dependent imagery. The viewing function is nec-
essary to model another function, the omnistereoscopic function (CS), which, after being properly
measured and spatially-sampled, helps to produce omnistereoscopic imagery for human viewing.
The omnistereoscopic model, from where the CS is defined, consists a pair of wide-angle images,
acquired from two viewpoints (OL,OR) with horizontal parallax with respect to r, the reference
viewpoint in 3D-space where the acquisition takes place.

2.1 Plenoptic model
The plenoptic function (P) models the rays of light arriving at a reference viewpoint r and it is
a function of D or the direction of arrival of the ray and the light wavelength (λ ). The plenoptic
function is denoted

P(θ ,φ ,λ ,r, t), (1)

where r is a reference viewpoint with respect to a global frame of coordinates XYZ in R3, θ (az-
imuth) and φ (elevation) angles define the gaze direction D ∈ S2, where S2 is the unit sphere defined
by S2 = {ρ ∈ R3 : ‖ρ‖= 1}, λ ∈ R is the light wavelength and t ∈ R is the time variable.

In this context, the plenoptic function is used to derive the viewing function which models the
omnidirectional signal to be captured by a single-viewpoint panoramic sensor. A graphical interpre-
tation of the plenoptic model is illustrated in Fig. 1. The gaze direction D is measured with respect
to the singular viewpoint located at r. The reference of coordinates X′Y′Z′ is centered at r, which
is measured with respect to a global reference frame XYZ. Hence, the coordinate transformation
between X′Y′Z′ and XYZ is a pure translation T = r. The unit vector v̂, as shown in Fig. 1, indicates
the gaze direction with respect to X′Y′Z′.

Some dimensions of P are lost when acquired by a panoramic sensor, unless it is captured by an
image sensor specifically designed to preserve all plenoptic characteristic of the arriving light [27].

4



Figure 1: The image im is defined as a subset of I for a partial field-of-view (FOV) (∆θ ,∆φ ), a gaze
direction D and a location r.

2.2 Color function
The function to be measured is a direction-dependent signal for a given color space C , which is
determined by the sensor technology. The color signal is defined by integrating the product of the
color matching functions (Φn(λ )) and P over a wavelength range. This approach leads to define
a measurable signal C which is measured by all image sensors. The color matching functions of
the sensor are usually designed to approximate those of the human visual color space [28]. In our
model, we use trichromatic color spaces without loss of generality.

The measurable color information in the sensor sensitivity range is denoted by cn, also known as
the tristimulus values. A limited spectral range between λmin and λmax is used to produce imagery
matching the response in the human visual system. However, most sensors are capable of wider
spectral ranges. The tristimulus values are given by

cn(θ ,φ ,r, t) =
∫

λmax

λmin

P(θ ,φ ,λ ,r, t) ·Φn(λ )dλ , (2)

where cn : S2×R3×R→ R, for each chromatic component n ∈ {1,2,3}, are functions of r, the
gaze direction D and the instant t.
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2.3 Monoscopic viewing function
The viewing function C : S2×R3×R→ R3 is defined by

C(u) = (c1(u),c2(u),c3(u))T , (3)

where u = (D ,r, t). In other words, for a given point r ∈ R3, a gaze direction D ∈ S, and an
instant t ∈ R, the signal to be measured in a color space C is given by the array of three real-valued
functions (c1,c2,c3)

T . Note that we can choose to work with any non-singular transformation of C,
corresponding to different choices for the basis of the color space C .

2.4 Exposure integration
Image sensors measure each cn by accumulating electric charges over a time interval ∆t . The voltage
produced is proportional to the light intensity for each color component of C . This technology is
used in charged-coupled devices (CCD) and the most widespread active pixel sensors (APS); the
latter technology is commonly found in mobile cameras, webcams, security and digital single lens
reflex (DSLR) cameras.

The vector function obtained by the exposure integration is the omnidirectional image (I ),
which can be defined as

I (θ ,φ ,r) =
∫

∆t

C(θ ,φ ,r, t) dt, (4)

= (I1,I2,I3), (5)

where

In(θ ,φ ,r) =
∫

∆t

cn(θ ,φ ,r, t) dt. (6)

Each color component of the omnidirectional image is In : S2×R3→R, which models the intensity
of the nth chromatic component as a function of D and r. Once the acquisition point r is defined,
In is dependent on D only. In that case, I (θ ,φ) defines a panoramic (omnidirectional) image that
satisfies the constraints of monocular vision.

2.5 Omnidirectional (monoscopic) image
Spatial multiplexing is normally used to sample each chromatic component In of I to produce an
omnidirectional (monoscopic) image (I). This is done by using color filter arrays (CFA) such as the
widely used Bayer filter and other well known spatial multiplexing techniques. The sampling of each
chromatic component of I for a given r leads to a panoramic image I, which can be represented in
any of the canonical panoramic formats; e.g., cylindrical, cubical.

Moreover, a partial FOV of the scene can be described by the same model. For instance, an
image im is obtained by acquiring C at r, for D restricted to (∆θ ,∆φ ) around Do. This image is
im = (im1, im2, im3), where imn : Z2→ Z after sampling and quantizing a subset of I . Each array
imn contains a two-dimensional array of color samples of the nth color component. This is illustrated
in Fig. 1 showing the generation of an image im by acquiring the function C by a sensor with a color
space C , for a partial FOV (∆θ ,∆φ ) around a gaze direction Do and for an exposure time ∆t .

The advent of panoramic photography in recent years has enabled the direct acquisition of C, or
at least its approximation. A direct acquisition of C can be done by catadioptric cameras by means
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of which panoramic images I can be acquired in a single snapshot. Alternatively, multiple images
from distinct viewpoints can be used to compose an approximation of I [4].

A lot of attention has been devoted to correcting visual artifacts caused by stitching and blending
partially overlapped images, attributing to these types of visual artifacts the source of most (if not
all) the visual discomfort. However, the amount of geometric distortion in a monoscopic panorama
that is actually perceived, which hinders the quality of the visual experience, is still undetermined.

3 Omnistereoscopic model
The omnistereoscopic function (CS) models the visual signal to be acquired to reconstruct a con-
tinuous omnistereoscopic image (IS) and, after being spatially sampled, a discrete stereoscopic
panorama (IS) of the scene. A depiction of the omnistereoscopic model is presented in Fig. 2.

Differently than the acquisition of CS, an image IS must provide binocular visual cues in every
D around the acquisition point. The same requirement must be satisfied by any partial FOV image
imS = (imL, imR).

The omnistereoscopic function can be defined by a pair of viewing functions, CL and CR, which
are respectively defined for rL = OL and rR = OR, respectively. This function is

CS = (CL(uL),CR(uR))
T , (7)

where CL and CR are respectively left and right viewing functions whose input parameters are u j =
(θ j,φ j,r j, t) with j ∈ {L,R}.

The viewpoints rL and rR exhibit horizontal parallax with respect to a reference r. Even though
the subindex j ∈ {L,R} refers to the left or right viewpoints, this classification depends on the viewer
locations with respect to the camera coordinate frame.

3.1 Omnistereoscopic viewing function
The function CS : S2×S×R3×R×R→ R6, models the three tristimulus values from two stereo-
scopic viewpoints with horizontal parallax as a vector quantity

CS(uS) = (cL,1,cL,2,cL,3,cR,1,cR,2,cR,3)
T , (8)

where the input parameters for CS are

uS = (θ ,φ ,ω,r,b, t). (9)

The input parameters uL and uR can be derived from uS based on the geometric constraints of the
model.

The function CS is defined for θ ∈ [0◦,360◦) and for φ ∈ (0◦,180◦) and it is undefined in the
nadir and zenith gaze directions.

3.2 Stereoscopic viewpoints
The stereoscopic viewpoints rL and rR and the viewpoint r are located in the X′Z′-plane, which is
parallel to the reference XZ-plane (floor-plane), as illustrated in Fig. 2.

A baseline vector is defined by b = rL− rR. By definition, b is on the X′Z′-plane. The baseline,
defined by the Euclidean distance between stereoscopic viewpoints, is denoted b = ‖b‖. Finally, the
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Figure 2: Omnistereoscopic model.

direction between right and left viewpoints is given by the unit vector

b̂ =
rL− rR

‖rL− rR‖
. (10)

In this model, the direction of b̂ is always perpendicular to v̂ for any panning angle. This con-
straint determines that, for each point PW, a different location for rL and rR is uniquely defined.
Furthermore, the locations of these stereoscopic viewing points are defined uniquely by the panning
direction in azimuth.

The perpendicularity between b̂ and v̂ guarantees that the scene will be acquired from two dis-
tinct viewpoints with a constant (horizontal) parallax b independently of the gaze direction.

3.3 Gaze direction
The gaze vector v that connects the scene point PW with the reference viewpoint r is defined by

v = PW− r. (11)
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The magnitude v = ‖v‖ defines the fixation distance. This parameter will be used to determine the
relative skew ω or vergence angle between the left and right light rays. The unit vector is defined as

v̂ =
v
‖v‖

, (12)

determines the gaze direction of the left DL = (θL,φL) and right DR = (θR,φR) viewpoints (Fig. 2).
For any PW and r, there is a unique location for rL and rR which is determined by the parallax
between viewpoints, or more specifically, the baseline distance b.

3.4 Fixation point
Any point PW in the scene determines a fixation point. This point is defined by the intersection
between rays between PW and rL, which determines vL, and between PW and rR, which defines vR.
The set of all possible fixation points at the same distance v defines a sphere centered at r referred
to as the zero parallax sphere. This is the spherical region depicted in Fig. 2.

The fixation distance v determines two dependent gaze directions DL = (θL,φL) and DR =
(θR,φR) defined by

v̂L =
rL−PW

‖rL−PW‖
, (13)

and
v̂R =

rR−PW

‖rR−PW‖
. (14)

The gaze directions DL and DR are measured with respect to systems of coordinates XLYLZL
and XRYRZR, centered at rL and rR, respectively. These local references of coordinates can be
obtained from XYZ by applying a coordinate transformation consisting of a translation ±b/2 and
rotations defined by each viewpoint gaze direction.

3.5 Vergence
In this model, the vergence is defined by the difference in azimuthal gaze directions of each viewing
function. The perpendicularity constraint determines the relationship between DL, DR and the global
gaze direction D . The vergence angle ω determines the gaze directions DL and DR as follows

DL = (θ −ω,φ), (15)
DR = (θ +ω,φ).

The trigonometric relationship between the panning angles θL and θR given the vergence point
PW is illustrated in Fig. 3-(a). The vergence angle is ω = arctan

( b
2v

)
, where v is the vergence

distance to the scene as shown by the geometric relation ships in Fig. 3-(b). When the fixation
distance is v� b, ω ' 0◦ and θL = θR = θ . The latter is equivalent to a stereoscopic camera with
parallel optical axes.

The case of a point in the scene PW located at a distance ‖v‖ = v from the reference viewpoint
r is illustrated in Fig. 4-(a). According to the omnistereoscopic model, this situation determines
a vergence angle ω1 and the location of the stereoscopic viewpoints (rL,1,rR,1). In Fig. 4-(b), a
different point PW is chosen, which is at the same distance from the reference point as before but
in another gaze direction in azimuth θ2. The omnistereoscopic model determines that ω2 = ω1, but
different stereoscopic viewpoints (rL,2,rR,2) are determined by this new gaze direction. Finally, in
Fig. 4-(c) is shown the case of a point sufficiently far from the sampling point (v� b). In this final
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(a) Gaze directions (b) Geometric relationship

Figure 3: Geometric relationship between the gaze direction and location of the stereoscopic view-
points.

example, the gaze directions for left and right viewpoints are parallel, v̂L ‖ v̂R, and the vergence
angle ω = 0◦.

(a) (b) (c)

Figure 4: The perpendicularity constraint between b̂ and v̂ defines the locations of the stereoscopic
viewing points rL and rR: (a) and (b) illustrate the case of change in the stereoscopic viewpoints for
two scene points at the same distance from the reference point but in two different gaze directions in
azimuth, and the example (c) shows the case of a point in the scene sufficiently far from the reference
point.

3.6 Left and right viewing functions
The viewing functions for the left and right-eye viewpoints are given by

C j(u j) =
(
c j,1(u j),c j,2(u j),c j,3(u j)

)T
, (16)
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where c j,n, for j = {L,R} and n ∈ {1,2,3}, are the tristimulus values. The input vectors are defined
by

uL = (DL,rL, t) (17)
= (θ −ω,φ ,rL, t), (18)

uR = (DR,rR, t) (19)
= (θ +ω,φ ,rR, t). (20)

3.7 Viewing circle
The reference viewpoint r is defined in this model by the midpoint between rL and rR, in vector
expression

r = rL−
b
2

b̂ (21)

= rR +
b
2

b̂. (22)

The possible location of all the stereoscopic viewing points defines a circle centered at r, whose
diameter is the stereoscopic baseline b. This circle is the viewing circle which is depicted in Fig. 2.

In the case when the user’s head has total freedom of movement, e.g., in the case of a zero-
gravity environment, a more general omnistereoscopic viewing model would eliminate the restric-
tion of having (rL,rR) on the X′Z′-plane. In that situation, the set of all possible locations for the
stereoscopic viewpoints would fall on a spherical surface with center at r and diameter b that would
define a viewing sphere instead of a viewing circle. However, for this paper, limiting the possible
locations of (rL,rR) to a reference plane whose normal is the vertical axis defined by the user’s head
orientation (perpendicular to the floor plane) is a reasonable assumption.

The geometric constraints introduced so far reduce the necessary information to characterize CS
to only a few parameters: a reference viewpoint r, a gaze direction D , a time variable t a baseline
b and a vergence ω . The gaze directions defined for CL and CR can be calculated from these
parameters.

3.8 Omnistereoscopic image
As in the monoscopic case, an omnistereoscopic image IS is created by acquiring the function CS
in a point r, for a given a color space C and a defined exposure ∆t . For a given r, IS : S2→ R6 is
defined by

IS(θ ,φ ,r) =
(∫

∆t

CL(θ ,φ ,r, t) dt,
∫

∆t

CR(θ ,φ ,r, t) dt
)
, (23)

= (IL,1,IL,2,IL,3,IR,1,IR,2,IR,3), (24)

where I j,n : S2→R is the nth color intensity function for j ∈ {L,R} and for the acquisition point r.
This direction dependent color function is

I j,n(θ ,φ ,r) =
∫

∆t

cn(θ ,φ ,r j, t) dt. (25)

Furthermore, for a defined acquisition point r = ro, the omnistereoscopic image is a function of the
gaze direction only. In this case, each color component of the omnidirectional image is I j,n : S2→
R3.
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Figure 5: CS and the acquisition of a partial stereoscopic view of the scene.

The spatial sampling of IS for 360◦ in azimuth and a wide but restricted elevation FOV deter-
mines a discrete omnistereoscopic image IS = (IL,IR), where each panoramic image is defined by
I j = (I j,1,I j,2,I j,3). These images are topologically equivalent to a cylinder.

Instead of acquiring the complete omnistereoscopic function at once for an acquisition point r,
we may be interested in acquiring a wide-angle stereoscopic image in the direction Do and for a
limited FOV (∆θ ,∆φ ). In that case, after sampling and quantizing a subset of IS, the stereoscopic
image imS = (imL, imR), where im j : Z2→ Z, can be produced. This is illustrated in Fig. 5.

4 Acquisition
The function CS can be acquired by capturing sets of monoscopic or stereoscopic images covering
the whole scene in azimuth. One of the earlier approaches relies on the simultaneous acquisition
of two cylindrical panoramas using a pair of catadioptric cameras co-axially aligned [29, 30]. This
method produces two single-viewpoint panoramas where the vertical disparities provides depth in-
formation of the scene. However, this approach is not suitable to acquire CS since it does not
correspond to the geometric constraints given by our omnistereoscopic model. Fortunately, other
omnistereoscopic techniques are well suited to acquire, or at least, to approximate the value of CS
according to the constraints of our model [4].

Next, we present an acquisition model that can represent the different omnistereoscopic tech-
niques to produce stereoscopic panoramas based on horizontal parallax.

4.1 Acquisition model
An acquisition strategy based on two pinhole cameras with horizontal parallax is suitable to sample
CS around a reference viewpoint O for arbitrary gaze directions. Furthermore, this acquisition
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model [5] can produce direction-dependent stereoscopic imagery that conveys correct binocular
cues of depth at the center and peripheral region of each image.

The acquisition model is used to derive four camera configurations which can be distinguished
by the relative location of the stereoscopic pair of cameras with respect to the reference center. The
location and orientation of the camera pair is restricted by the need to capture two snapshots from a
pair of viewpoints with horizontal parallax. One constraint is that all the possible locations for this
pair of pinhole cameras are restricted to the horizontal XZ-plane, which we denoted as the reference
horizontal plane. Another constraint is that the optical axes of both pinhole cameras are parallel
and lay on the XZ-plane. A consequence of these constraints is that the orientation (panning angle)
of each virtual stereoscopic rig is described by a pitch rotation around the Y-axis. The reference
point O is used to describe the panning direction of the stereoscopic rig. Hence, the locations of the
projection centers of each camera can be described by a Euclidean translation in the XZ-plane.

4.2 Acquisition configurations
The relative location of the projection centers for left OL and right OR cameras with respect to the
symmetry center O determines the four basic acquisition configurations. These basic configurations
can describe all the panoramic cameras capable of producing omnidirectional stereo with horizontal
parallax. We have demonstrated this point in our review paper on omnidirectional stereo [6] where
we showed with examples that cameras and methods to produce stereoscopic panoramas fall in one
or another of these four basic acquisition configurations.

The simplest arrangement of cameras is configuration 1 (Fig. 6-(a)), which can be used in se-
quential acquisition of stereoscopic images with horizontal parallax. It cannot be used for the simul-
taneous acquisition of multiple stereoscopic samples of CS due to self-occlusion between cameras.

The configuration 2 (Fig. 6-(b)) is a variation of configuration 1, which consists in making
O coincident with either OL or OR projection centers . This configuration enables the sampling
of one viewing function from a singular viewpoint (O), while a stereoscopic view for each D is
acquired by the off-centered image sensor. The result is an approximation of CS from closely located
viewpoints [10]. This model is suitable only for sequential acquisition due to the limitation of
spatially collocating multiple cameras at the same projection center. This constructive problem is
addressed in configurations 3 and 4.

Finally, configuration 3 (Fig. 6-(c)) is a variation of the configuration 2 where the stereoscopic
pair of cameras is radially displaced from O by a distance |rc|, but where their projection centers O j
remain in the XZ-plane.

The configuration 4 (Fig. 6-(d)) can be derived by defining a radial displacement |rc| to the
stereoscopic rig in configuration 1 (Fig. 6). The radial displacement addresses the physical limita-
tion that the cameras in a multiple-camera configuration cannot have spatially collocated projection
centers. Then, configurations 3 and 4 can be implemented with multiple cameras in a simultaneous
acquisition scheme. This configuration models the camera rig presented by Google [2] which uses
sixteen cameras synchronously controlled to produce eight, partially overlapped, stereoscopic video
streams; Samsung also proposed a camera that can be modeled by the same configuration [3].

4.3 Dense sampling
A narrow-width column at the center of each im j can be acquired and mosaicked to produce IS.
However, large number of samples must be acquired sequentially by rotating a stereoscopic rig in
small increments of θ . This acquisition method models a technique based on line cameras, which is
based on sequentially sampling CS, collecting stereoscopic pairs of image columns, sometimes, one
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(a) (b) (c) (d)

Figure 6: Variations of the acquisition model: configuration 1 (a), 2 (b), 3 (c), and 4 (d).

view (left or right-eye) at a time, by changing D in small increments of azimuth. For instance, the
acquisition model presented by Huang et al. [23] can be modeled by configuration 1, when a single
central column of im j is collected for a given vergence (camera toe-in) and baseline.

Alternatively, configuration 1 can model the acquisition approach presented by Peleg et al. [9]
where a pair of image columns is obtained from a single camera rotated off-center. These image
columns are back-projected according to two virtual projection centers defined on a viewing circle
centered in O and whose diameter is b. The narrow width of the extracted image columns implies
the acquisition of a dense set to be able to reconstruct IS. Additionally, the scene must be static.

In the previous two acquisition examples, the produced IS is a distorted approximation of the
stereoscopic image produced by acquiring imS, in any direction D , by means of wide-angle FOV
pair of cameras. This is particularly noticeable when IS is projected on curved displays where the
binocular depth cues in any gaze direction D would be correct, but the perceived depth when the
gaze eccentricity increases is distorted [25].

An example of dense acquisition that more closely approximates the acquisition model in con-
figuration 1 is the rotating stereoscopic rig used in the Mars Pathfinder probe [24]. This setup can
be used in an interactive scene exploration. However, the off-line stereoscopic navigation would
require the storage of an unnecessarily large set of stereoscopic images, each of which would be a
stereoscopic snapshot corresponding to a slightly different gaze directions in azimuth. Fortunately,
a sparser sampling of CS can also produce a pleasant and consistent depth illusion.

Any of the four configuration presented in Section 4.2 can be used for the acquisition of a dense
set of samples of the CS function.

4.4 Sparse sampling
A limited number of partially overlapped stereoscopic snapshots can be used to collect a sparse
set of samples of CS. The mosaicking of these stereoscopic samples can be used to produce a
satisfactory illusion of depth based on horizontal disparities around the reference viewpoint [16, 12].
The horizontal disparity between mosaicked images must be consistent and the vertical disparities
over the blending regions between mosaicked images must be corrected to avoid artifacts and visual
discomfort [5].

The sparse collection of stereoscopic samples of CS can be done with any of the acquisition
configurations presented before [10, 12]. In particular, configurations 3 [16] and 4 [13, 15, 14] en-
able the simultaneous acquisition of a sparse set of samples of the CS function. This set is sufficient
to reconstruct an approximation of the ideal IS. The number of stereoscopic samples necessary is
related to the distance between the reference viewpoint and the scene, which also affects the mag-
nitude and direction of vertical disparities to correct [5]. The simultaneous acquisition using sparse
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stereoscopic samples is attractive since it enables the acquisition of dynamic scenes which was not
possible by using sequential acquisition methods.

The acquisition of a reduced number N of stereoscopic images, which corresponds to incremen-
tal values of θ ∈ {θ0, ...,θN−1}, raises the question of how many stereoscopic images are really
necessary to correctly convey a consistent illusion of depth around a reference viewpoint. The pro-
duced IS, or more specifically, the stereoscopic images imS generated are faithful renditions of the
scene for a limited number of directions in azimuth, i.e., when θ = θi (i ∈ {0, ...,N−1}). In a mo-
saicking scenario, any intermediate view is a mosaic of two stereoscopic samples in the acquired set,
but it is not a sample of CS in that particular gaze direction. Fortunately, if the horizontal disparities
are kept continuous and consistent in mosaic boundaries, a satisfactory and compelling illusion of
depth can be delivered by this acquisition and rendering approach [5].

5 Experimental acquisition and rendering
In this section, we illustrate the use of sparse sets of stereoscopic images to approximate the sampling
of CS to produce an omnistereoscopic image IS. The examples provided in this section have the sole
purpose of illustrating the sparse set concept (Section 1). The curious reader may find interesting
the navigable versions of these examples available in [7] as red-cyan anaglyphs.

In our experiments, we wanted to test the sparse acquisition and rendering approach using the
different configurations introduced in Section 4.2. Our experimental set-up consisted in a single
or dual DSLR camera (Canon Rebel XTi 400D), which was mounted in portrait orientation on a
panoramic head (Manfrotto 303SPH). We used a fish-eye lens Bower/Samyang model SLY-358C. As
the reader may notice, we did not attempt to create a functional camera for the real-time production
of omnistereoscopic imagery; hence, we do not report comparative results with other methods, which
is beyond the scope of this paper. Similarly, we do not make any claim in terms of computational
complexity of our rendering technique since it is simply illustrative of how we rendered each IS.

Each acquisition configuration determines a different spatial distribution of projective centers
(OL,i,OR,i). All acquisition configurations were emulated by manually positioning the nodal point
of the camera at predetermined locations defined by each variation of the acquisition model.

The omnistereoscopic viewing function CS was sparsely sampled by acquiring N = 6 stereo-
scopic images (imL,i, imR,i), with i = {1, ...,6}, used to emulate the four configurations illustrated in
Fig. 6. An example of this approach is depicted in Fig. 7 and the six stereoscopic snapshots acquired
are presented in Fig. 8.

5.1 The acquisition system parameters
The camera exposure and aperture were controlled manually based on the requirements of each
scenario. For instance, the f-stop, which indicates the size of the diaphragm aperture, was adjusted
to provide depth-of-field long enough to focus all the elements of the scene. Similarly, the exposure
was manually selected according to the chosen f-stop to provide a balanced illumination on the
stereoscopic image set. The challenge was to keep a balanced exposure between poorly illuminated
and over-exposed directions of the scene.

Both exposure and f-stop were adjusted for each new viewpoint and kept unchanged during
the acquisition of N stereoscopic samples, making the rendering by mosaicking easier since less
complex exposure and color equalization were needed. Note that, in a real multiple-camera imple-
mentation, the exposure and aperture are automatically adjusted for each individual camera, which
requires the implementation of blending algorithms to smooth the transitions between mosaicked
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Figure 7: Example of acquisition of two adjacent stereoscopic snapshots of the scene using configu-
ration 1: the acquisition of the stereoscopic pair of images im j,i for θi and im j,i+1 where the angular
increment between stereoscopic samples is ∆θ = θi+1−θi.

views. The exposure smoothing and color correction algorithms were implemented and tested in
later experiments.

The baseline used in these experiments was b = 32.5 mm or half the mean inter-ocular distance
within the adult human population. A reduced baseline is convenient for mosaicking the images
since less parallax between projective centers is introduced. A larger baseline implies more parallax
between projection centers and more complex rendering techniques are needed to reduce the visible
ghosting after stitching neighbor samples. The acquisition parameters used in all the experiments
presented in this section are detailed in Table 1.

For large baselines, the acquisition configurations 2 and 3 have advantage over other configu-
rations. For instance, in configuration 2 one camera is rotated around its nodal point, facilitating
a seamless mosaicking of a monoscopic panorama while a second camera exploits a large baseline
to improve a depth map estimation. In acquisition configuration 3, the same idea is implemented
maintaining an off-center configuration rc.

5.2 Rendering implementation
The sets of stereoscopic images were initially stored in the camera’s native raw file format in a
portable memory unit. A posteriori, these sets of images were manually transferred to a computer
hard drive along with additional information to help the necessary post-processing, such as addi-
tional images for the color correction.

The goal was to test the viability of the proposed acquisition configurations, so we used com-
mercially available tools when suitable to implements parts of the rendering process. For instance,
the lens distortion and color correction were both done using Adobe Lightroom 4.4 [31]. In the case
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Figure 8: Source images im j,i, where j = L (top row) and j = R (bottom row) and i ∈ {0, ...,5}
(from left to right).

Table 1: Acquisition parameters: Canon Rebel XTi 400D, Bower fish-eye lens (SLY-358C).

Parameters Value
Sensor width (Wh) 22.2 mm
Aspect ratio (ar) 1.5
focal length ( f ) 9.3 mm
pixel width (s) 5.6 µm (3888×2592 pixels)

Horizontal FOV ∆a 100◦

Baseline (b) 32.5 mm
Radial off-set (rc) 32.5 mm

Vergence (ω) 0◦

of testing the 2D-to-3D image synthesis, part of the image warping based on the depth-map was
implemented using the toolbox for image warping effects of GIMP [32]. The rest of the mosaicking
blocks and additional processing were implemented using Matlab [33], with the Computer Vision
System and Image processing toolboxes. Finally, the anaglyph version of the stereoscopic images
presented in this paper were done using the StereoPhotoMaker authoring tool [34].

The omnistereoscopic acquisition and rendering can be summarized in the following sequential
blocks:

1. Lens distortion and white balance correction is applied to each im j,i, independently.

2. Stereoscopic registration is applied to each im j,i to reduce or eliminate undesired vertical
disparities.

3. Cylindrical projection and image alignment between im j,i and im j,i+1 is applied to the left
and right image sets.
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4. The optimal cut between consecutive image samples is calculated.

5. The stitching and blending of is applied to im j,i obtain cylindrical panoramas for the left (IL)
and the right (IR) views.

Each of this rendering blocks from our implementation are detailed next.

5.3 Lens distortion correction
The acquired images, denoted as im j,i, were radially distorted as a result of using aspherical lenses
in the acquisition. The correction was implemented using Adobe Lightroom 4.4’s lens correction
tool. The calibration information for Samyang SLY-358C is available on-line. An example showing
the acquired raw image and the image after correction is shown in Fig. 9.

Acquired image After correction After cropping

Figure 9: Lens correction.

5.4 White balance correction
The next step is to correct white balance of the planar set of images imp

j,i. This processing was
done manually using Adobe Lightroom 4.4 [31] and the Color Checker Passport [35]. The latter
provides a color calibration pattern to be used as color reference. In a multiple camera system, white
balancing is set at the beginning of each acquisition for all the cameras to ensure the a posteriori
correct color of the omnidirectional scene.

5.5 Stereo rectification
The stereo rectification of the pair of undistorted images imp

j,i is necessary to correct any deviation
from the ideal camera model with parallel optical axes. The uncalibrated stereo rectification used is
based on the estimation of a set of corresponding points Ki on imp

j,i to define an affine transforma-
tion that, after being applied to the stereoscopic pair, eliminates the vertical disparities and make the

18



conjugate epipolar lines parallel to the horizontal image axis. This uncalibrated stereoscopic reg-
istration method was implemented on Matlab using the routines from the Computer Vision System
toolbox [36].

The implementation uses the speeded up robust features (SURF) algorithm [37, 38] to identify
a set of corresponding point features for each stereoscopic pair. The recursive process eliminates
feature points from the set whose sum of absolute distances are above the chosen distance threshold.
On each recursion of the algorithm, the feature points Ki must satisfy the epipolar constraints. We
used the Matlab’s implementation of the random sample consensus (RANSAC) algorithm [39, 40] to
eliminate outlier candidate points using the epipolar constraint. On each iteration, a new projective
matrix is estimated. After all outliers have been eliminated from the set Ki, and if enough corre-
sponding points have been identified, the affine transformation that minimize the vertical component
of the disparity between corresponding points is calculated. The example presented in Fig. 10 shows
the result of the stereoscopic rectification in the alignment before and after stitching and blending a
pair of contiguously acquired images.

(a) (b)

Figure 10: Stereoscopic registration: (a) before alignment and (b)after alignment.

In a few stereoscopic images of a given set, the automatic rectification could not be applied since
not enough samples could be detected. The reasons for this is the insufficient illuminated or the
lack and contrast in the images prevent the automatic detection of enough corresponding features.
In these few cases, the manual selection of a limited set of corresponding points was enough to
implement a satisfactory rectification.

5.6 Color and luminance blending
A homogenization of the color and luminance of the im j,i set needs to be done before blending
to prevent visible transitions between mosaicked images. This is particularly necessary when each
camera adjusts automatically the exposure time and aperture to optimize each shot. The method
proposed by Xiong and Pulli [41] was used in these tests. Their method is based on calculating local
compensation coefficients over the overlapped areas between imp

j,i and imp
j,i+1. Local coefficients
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are estimated using the average luminance value for each color channel in RGB color space after
removing the gamma correction. The method also estimates a global compensation coefficient to
reduce accumulative errors. This algorithm can be used when the luminance between neighbor
images are close.

Once the individual images to mosaic have been processed to compensate for exposure dis-
crepancies, a global histogram equalization was implemented and tested to minimize the exposure
difference between the final IL and IR. This final equalization was applied at the end of the mo-
saicking process in cases where the left and right image sets were purposely acquired with different
photographic parameters.

5.7 Cylindrical projection
In order to facilitate the alignment by applying a horizontal translation, the images were first pro-
jected onto a cylindrical canvas. The central symmetry of all the acquisition configurations suggests
to project imp

j,i onto a warped surface with central symmetry centered at O. Since CS is sampled
at different θi and for a limited FOV in elevation, a cylindrical canvas or any topologically equiva-
lent surface is adequate to map the acquired samples of the omnistereoscopic viewing function [42].
Therefore, we implemented a mapping algorithm to project points from different imp

j,i onto a cylin-
drical surface.

The cylindrical canvas, which is illustrated in Fig. 11, has parameters ∆θ for the panning azimuth
and h for the gaze height. The 2D mapping of a pixel with coordinates p j,i = (x j,i,y j,i) in imp

j,i onto
cylindrical coordinates pc

j,i = (xc
j,i,y

c
j,i) is given by

xc
j,i = f ∆θ = f arctan

x j,i

f
, (26)

yc
j,i = f h = f

y j,i√
x2

j,i + f 2
, (27)

where the cylindrical surface radius was chosen to be f [43].

Figure 11: Mapping from a planar to a cylindrical surface.
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Note that the cylindrical coordinates pc
j,i = (xc

j,i,y
c
j,i) are defined for the projection of a planar

image imp
j,i for θi. The angle in azimuth ∆θ is defined as an angular deviation in azimuth from θi.

For example, the cylindrical coordinate pc
j,i = (0,0), which corresponds to cylindrical coordinate

θ = θi and h = 0.

5.8 Mosaic alignment
The rendering by mosaicking relies on mapping of a point coordinate p j,i from imp

j,i onto I j, for j ∈
{L,R}. In order to map samples of CS obtained from different viewpoints into an omnistereoscopic
image pair (IL,IR), it is necessary to define the transformation between corresponding points.

The corresponding point set detected on the overlapped regions between neighbor images were
estimated using SURF and RANSAC algorithms. This set of points was used to define an affine
transformation to align the points in the defined stitching coordinates. The criterion used to define
this transformation was the sum of absolute differences [36] between disparities. For the ideal case
where the projection centers are collocated and the panning is limited to the XZ-plane, this aligning
transformation is reduced to a horizontal translation [44].

5.9 Optimal cut
The optimal cut method relies on estimate A j,(i,i+1) and obtaining the best stitching coordinate
(xb,y j,i) over the region that would minimize the luminance difference between images. This strat-
egy minimizes visual artifacts such as ghosting. This processing is applied independently to left and
right images.

In order to do this, we implemented the algorithm proposed by Ha et al. [45] which relies on
obtaining the locations of minimum intensity gradient between two images to blend. A scoring
system enables to find the optimal cut line by line. This algorithm is attractive for its simplicity
and can be easily parallelized for real-time applications such as video mosaics. An example of the
image blending is presented in Fig. 12 to illustrate the effect of pyramidal blending using a fixed
stitching coordinate xb versus the optimal-cut plus linear blending method where the optimal xb is
dynamically selected line by line. This example in particular shows the effect of mosaicking when
the scene changes between the consecutive snapshots.

5.10 Stitching
A point with the stitching coordinate pp

j,i = (xb,y j,i) from imp
j,i is mapped into p j,i+1 = (x′b,y j,i)

in imp
j,i+1. The alignment enables to continue the rendering by mapping imp

j,i+1 into the cylinder
following the same cylindrical projection, but for an angular deviation ∆θ defined with respect to
neighbor image, which corresponds to the sampling angle θi+1.

The projection onto a cylindrical canvas and stitching on neighbor images continues until the last
image in the sequence (imp

j,N−1) is stitched with the first image (imp
j,0) and projected onto a cylinder.

This process is done independently for the left and right images in the acquired sequence. The result
of this process is a pair of cylindrical panoramas I j, for j ∈ {L,R}. This stitching method maps of
all im j,i into a single cylindrical canvas using the aligning process to match neighbor images.

5.11 Blending
The correct blending between image pairs is necessary to eliminate visible ghosting in the final mo-
saicked panorama. The simplest approach and the one used in these experiments is linear blending
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in which each color component is multiplied by a coefficient that weights its luminance contribution
to the blend depending on its Euclidean distance to the stitching coordinate point xb in the horizontal
dimension [46]. Another possible approach is Gaussian pyramidal decomposition [47]. The latter
method improves the blending by adding more processing, but it does not reduce ghosting if the
stitching coordinate point xb is not properly matched, e.g., the images may not be exactly aligned or
the scene may have changed from sample to sample.

(a) (b)

Figure 12: Image stitching and blending: (a) multi-band (pyramidal) blending with fixed xb and
(b) linear blending plus optimal-cut selection of xb for each vertical coordinate.

6 Results
A sample of the IS produced by mosaicking the acquired six stereoscopic images is presented in
Fig. 13 for configurations 1-4. In order to appreciate the effect of interactively exploring the scene
changing the gaze direction around the acquisition point, we prepared a companion website [7] with
interactive stereoscopic version of these four examples of IS using sparse sample sets.

7 Discussion
By examining closer the presented IS and their interactive versions [7], the reader will find that
the horizontal disparity continuity is maintained for all gaze directions in azimuth. Furthermore,
vertical disparities can also be controlled avoiding visual strain. Both advantages can be derived
from the geometrical constraints of the acquisition model in its various configurations [5]. However,
by using a limited number of wide-angle snapshots to approximate CS, we are introducing horizontal
disparity distortions on the edge between mosaicked images; the wider the individual sensor’s FOV,
the larger the distortion [26]. This effect can also be derived by the acquisition model presented
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in Section 4 by noticing that the effective stereoscopic baseline b is reduced with the ∆θ angular
shift from each sampling angle θi. But, in most cases this is not apparent since our perception of
depth relies on other depth cues beyond binocular disparity; i.e., geometry of the scene, color and
shadows. A more accurate sampling CS, as derived from our acquisition model, is to acquire narrow
image columns where ∆θ is minimized; this sampling method models other techniques based on
line cameras [9, 23]. The number of snapshots necessary to evoke a satisfactory 3D experience for
any gaze direction requires the study of viewers’ response to stimuli presented in IS; we left the
subjective evaluations open for future contributions. However, we presented an objective analysis
of this problem in [5], which was based on cues of stereoscopic quality such as vertical disparities,
horizontal disparity continuity between image seams and minimum distance to the camera.

8 Conclusions
In this paper, we presented a novel contribution to the omnidirectional acquisition of stereoscopic
imagery for immersive interactive media. Our model describes the visual function to be acquired
by any omnistereoscopic sensor or a panoramic technique designed to produce direction-dependent
stereoscopic imagery capable to stimulate binocular cues of depth in the viewer. Firstly, we modeled
the viewing function that represents the signal to be acquired by a panoramic (monoscopic) sensor.
This ray-tracing model of the omnidirectional light enables us to propose a more general model
for the omnistereoscopic function, which we denote CS. Our omnistereoscopic model is based on
the geometric constraints imposed by the human binocular system and represents the stereoscopic
signal to be captured in any gaze direction around a reference viewpoint in space. In addition, we
introduced an acquisition model versatile enough to describe a wide range of omnistereoscopic cam-
eras and techniques to produce stereoscopic panoramas for human viewing. Using this acquisition
model, we discuss the pros and cons of acquiring dense versus sparse samples of the omnistereo-
scopic function. We argue that acquisition of a few partially-overlapped stereoscopic samples of CS
can produce satisfactory approximations of the ideal omnistereoscopic image defined by our model.
Then, we presented examples with the sole purpose of illustrating that omnidirectional stereoscopic
imagery can produce a continuous depth illusion in all gaze directions. Additionally, we described a
representative rendering method based on mosaicking six stereoscopic samples. We belive that our
models and rendering algorithm open the possibility to new practical strategies for omnidirectional
3D content creation needed in immersive visual media.
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Configuration 1

Configuration 2

Configuration 3

Configuration 4

Figure 13: Cylindrical projections of IS (Red-Cyan anaglyphs) for the different acquisition configu-
rations. Interactive versions are available in the companion website [7]
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