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Abstract. We consider the problem of sparse coding, where each sample consists of a sparse
linear combination of a set of dictionary atoms, and the task is to learn both the dictionary elements
and the mixing coefficients. Alternating minimization is a popular heuristic for sparse coding, where
the dictionary and the coefficients are estimated in alternate steps, keeping the other fixed. Typically,
the coefficients are estimated via £1 minimization, keeping the dictionary fixed, and the dictionary is
estimated through least squares, keeping the coefficients fixed. In this paper, we establish local linear
convergence for this variant of alternating minimization and establish that the basin of attraction for
the global optimum (corresponding to the true dictionary and the coefficients) is O(1/s2), where s is
the sparsity level in each sample and the dictionary satisfies restricted isometry property. Combined
with the recent results of approximate dictionary estimation, this yields provable guarantees for
exact recovery of both the dictionary elements and the coefficients, when the dictionary elements are
incoherent.
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1. Introduction. A sparse code encodes each sample with a sparse set of ele-
ments, termed dictionary atoms. Specifically, given a set of samples Y € R?*", the
generative model is

Y = A*X*7 A* e RdXT,X* e }RTXTL7

and additionally, each column of X* has at most s nonzero entries. The columns of A*
correspond to the dictionary atoms, and the columns of X* correspond to the mixing
coeflicients of each sample. Each sample is a combination of at most s dictionary
atoms. Sparse codes can thus succinctly represent high dimensional observed data.
The problem of sparse coding consists of unsupervised learning of the dictionary and
the coefficient matrices. Thus, given only unlabeled data, we aim to learn the set
of dictionary atoms or basis functions that provide a good fit to the observed data.
Sparse coding is applied in a variety of domains. Sparse coding of natural images has
yielded dictionary atoms which resemble the receptive fields of neurons in the visual
cortex [26, 27] and has also yielded localized dictionary elements on speech and video
data [19, 25].
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An important strength of sparse coding is that it can incorporate overcomplete
dictionaries, where the number of dictionary atoms r can exceed the observed
dimensionality d. It has been argued that having overcomplete representation provides
greater flexibility in modeling and more robustness to noise [19], which is crucial for
encoding complex signals present in images, speech, and video. It has been shown that
the performance of most machine learning methods employed downstream is critically
dependent on the choice of data representations, and overcomplete representations are
the key to obtaining state-of-the-art prediction results [6].

On the downside, the problem of learning sparse codes or the underlying dictio-
nary is computationally challenging and is, in general, NP-hard [9, 32]. In practice,
heuristics are employed based on alternating minimization. At a high level, this con-
sists of alternating steps, where the dictionary is kept fixed and the coefficients are
updated and vice versa. Such alternating minimization methods have enjoyed empir-
ical success in a number of settings [18, 10, 2, 20, 37]. In this paper, we carry out a
theoretical analysis of the alternating minimization procedure for sparse coding.

1.1. Summary of results. We consider the alternating minimization procedure
where we employ an initial estimate of the dictionary and then use ¢; based mini-
mization for estimating the coefficient matrix, given the dictionary estimate. The
dictionary is subsequently reestimated given the coefficient estimates. We establish
local convergence to the true dictionary A* and coefficient matrix X™* for this proce-
dure whenever A* satisfies restricted isometry property (RIP) for 2s-sparse vectors.
In other words, we characterize the “basin of attraction” for the true solution (A*, X*)
and establish that alternating minimization succeeds in its recovery when a dictionary
is initialized with an error of at most O(1/s?), where s is the sparsity level. More
precisely, the initial dictionary estimate A(0) is required to satisfy

N 1
€ = max min 1247 — A(0)ill, = O (52) )
where A} represents ith column of A*.

Further, when the sparsity level satisfies s = O(d'/®) and the number of samples
satisfies n = O(r?), we establish a linear rate of convergence for the alternating min-
imization procedure to the true dictionary even when the dictionary is overcomplete
(r>d).

Note that our results assume RIP as compared to most other results for this
problem, which assume incoherence. Though all incoherent matrices are s-RIP for
s < (9(\/&), there are many s-RIP matrices that are not incoherent. Consider, for
example, a dictionary where each row of the dictionary matrix is sampled from a
Gaussian distribution A(0,3), where X;; = 1Vi, Y15 = Y91 = §/4, and all other
elements of ¥ are zero. The resulting dictionary is not incoherent when ¢ is larger
than O(1//d), but it is always 2-RIP with RIP constant §. More generally, if we have
nonzero off-diagonal elements, the resulting dictionary will not be incoherent while
still satisfying RIP. The key difficulty is that a constant value suffices in RIP,; while
incoherence requires the inner products of dictionary elements to go down as 1/ V.
See Lemma 24 in Appendix A for more details.

For the case of incoherent dictionaries, by combining the above result with re-
cent results on approximate dictionary estimation by Agarwal, Anandkumar, and
Netrapalli [1] or Arora et al. [3], we guarantee exact recovery of the true solution
(A*, X*) when the alternating procedure is initialized with the output of [1] or [3].
If we employ the procedure of Agarwal, Anandkumar, and Netrapalli [1], the overall
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requirements are as follows: the sparsity level is required to be s = O(%, d/9 r1/8),

where pg is the incoherence parameter and the number of samples n = O(r?) to
guarantee exact recovery of the true solution. If we employ the procedure of Arora et
al. [3] (in particular their OVERLAPPINGAVERAGE procedure), we can establish exact
recovery assuming s = O(r/6,v/d/ o).

Our results are also stable to the presence of noise. Indeed a simple perturbation
argument shows that as long as the noise in each sample has f>-norm at most €, our
results apply and yield an error of at most € in the estimation of the dictionary. More
concretely, we can use noise robust results for compressed sensing, e.g., [11], and a
robust version of Lemma 6 and the lemmas within that to obtain such a guarantee.

1.2. Related work.

Analysis of local optima of nonconvex programs for sparse coding. Gribonval and
Schnass [14], Geng, Wang, and Wright [12] and Gribonval, Jenatton, and Bach [13]
carry out a theoretical analysis and study the conditions under which the true solution
turns out to be a local optimum of a nonconvex optimization problem for dictionary
recovery. Gribonval and Schnass [14] and Geng, Wang, and Wright [12] both consider
the noiseless setting and analyze the following nonconvex program:

(1) min | X|; st Y =AX, |42 =1, Vi€ [r].

Since A and X are both unknown, the constraint Y = AX is nonconvex. It is natural
to expect the true solution (A*, X*) to be a local optimum for (1) under fairly mild
conditions, but this turns out to be nontrivial to establish. The difficulties arise from
the nonconvexity of the problem and the presence of sign-permutation ambiguity
which leads to exponentially many equivalent solutions obtained via sign change and
permutation. Gribonval and Schnass [14] established that (A*, X*) is a local optimum
for (1) but limited to the case where the dictionary matrix A is square and, hence,
did not incorporate the overcomplete setting. Geng, Wang, and Wright [12] extend
the analysis to the overcomplete setting and establish that the true solution is a local
optimum of (1) with hight probability (w.h.p.) for incoherent dictionaries, when the
number of samples n and sparsity level s scale as

(2) n=Q(|Allzr%s), s =0(Vd/p).

In our setting, where the spectral norm is assumed to be ||Allz < p1+/r/d, for some
constant g7 > 0, the sample complexity simplifies as n = (T5S/d2). Gribonval,
Jenatton, and Bach [13] consider the noisy setting and analyze the modified noncon-
vex program involving ¢; penalty for the coefficient matrix and ¢, penalty for the loss
in fitting the samples, and establish that the true solution is in the neighborhood of a
local optimum of the modified nonconvex program w.h.p. when the number of samples
scales as n = Q (||A[|3r3ds?). In our setting, this reduces to n = € (r*s*). A similar
local analysis is carried out by Schnass [29] for the K-SVD algorithm. There are signif-
icant differences between the above works and ours. While these works establish that
(A*, X*) is a local optimum of a nonconvex program, they do not provide a tractable
algorithm to reach this particular solution as opposed to another local optimum. In
contrast, we establish guarantees for a simple alternating minimization algorithm and
explicitly characterize the “basin of attraction” for the true solution (A*, X*). This
provides precise initialization conditions for the alternating minimization to succeed.
Moreover, our sample complexity requirements are much weaker and we require only
n = O(r?) samples for our guarantees to hold.
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Alternating minimization for sparse coding. Our analysis in this paper provides a
theoretical explanation for the empirical success of alternating minimization, observed
in a number of works [18, 10, 2, 20, 37]. These methods are all based on alternating
minimization but differ mostly in how they update the dictionary elements. For
instance, Lee et al. carry out least squares for updating the dictionary [18] similar
to the method of optimal directions [10], while the K-SVD procedure [2] updates the
dictionary estimate using a spectral procedure on the residual. However, none of
the previous works provide theoretical guarantees on the success of the alternating
minimization procedure for sparse coding.

Guaranteed dictionary estimation. Some of the recent works provide theoretical
guarantees on the estimation of the true dictionary. Spielman, Wang, and Wright [30]
establish exact recovery under ¢; based optimization when the true dictionary A*
is a basis, which rules out the overcomplete setting. Agarwal, Anandkumar, and
Netrapalli [1] and Arora et al. [3] propose methods for approximate dictionary esti-
mation in the overcomplete setting. At a high level, both their methods involve a
clustering-based approach for finding samples which share a dictionary element and
then using the subset of samples to estimate a dictionary element. Agarwal, Anand-
kumar, and Netrapalli [1] establish exact recovery of the true solution (A*, X*) under
a “one-shot” lasso procedure, when the nonzero coeflicients are Bernoulli {—1,+1}
(or more generally discrete). On the other hand, we assume only mild conditions
on the nonzero elements. Arora et al. [3] consider an alternating minimization pro-
cedure. However, a key distinction is that their analysis requires fresh samples in
each iteration, while we consider the same samples for all the iterations. We show
ezact recovery using n = Q(r?) samples, while [3] can only establish that the error is
bounded by exp[—O(n/r?)]. Furthermore, both the above papers [3, 1] assume that
the dictionary elements are mutually incoherent, allowing the use of simpler proce-
dures than ¢; minimization for dictionary estimation. Our local convergence result
in this paper assumes only that the dictionary matrix satisfies RIP (which is strictly
weaker than incoherence). For the case of incoherent dictionaries, we can employ the
procedures of [1] or [3] for initializing the alternating procedure and obtain overall
guarantees in such scenarios.

Other works on sparse coding. Some of the other recent works are only tangen-
tially related to this paper. For instance, the works [34, 22, 21, 31] provide generaliza-
tion bounds for predictive sparse coding, without computational considerations, which
differs from our generative setting here and algorithmic considerations. Parametric
dictionary learning is considered in [36], where the data is fitted to dictionaries with
small coherence. Note that we provide guarantees when the underlying dictionary
is incoherent but do not constrain our method to produce an incoherent dictionary.
The problem of sparse coding is also closely related to the problem of blind source
separation, and we refer the reader to [1] for an extended survey of these works.

Majorization-minimization algorithms for biconvex optimization. Beyond the spe-
cific problem of sparse coding, alternating optimization procedures more generally are
a natural fit for biconvex optimization problems, where the objective is individually
convex in two sets of variables but not jointly convex. Perhaps the most general study
of these problems has been carried out in the framework of majorization-minimization
schemes [17], or under the name of the EM algorithm in statistics literature. In this
generality, the strongest result one can typically provide is a convergence guarantee
to a local optimum of the problem. When the biconvex objective is defined over prob-
ability measures, Csiszar presents a fairly general set of conditions on the objective
function, under which linear convergence to the global optimum is guaranteed (see,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/20/17 to 131.215.70.231. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

DICTIONARY LEARNING VIA ALTERNATING MINIMIZATION 2779

Algorithm 1. AltMinDict(Y, A(0),€p): Alternating minimization for dictionary
learning.

Input: Samples Y, initial dictionary estimate A(0), accuracy sequence €;, and spar-
sity level s. Thresholding function T,(a) = a if |a] > p and 0 otherwise.
1: for iterations t =0,1,2,...,7 — 1 do
2:  for samplesi=1,2,...,n do
3 X(t+1), = argmingerr||z|; such that, [|[Y; — A(t)z[, < €&
4: end for
5. Threshold: X(t4+1) =Xt +1) - «(I[X(t+ 1) > 9se])
6:  Estimate A(t+1)=YX(t+1)"
A(t41),
7 ;
8:

NOI‘maliZe: A(t + 1)1 = m

end for
Output: A(T)

e.g., the recent tutorial [8] for an excellent overview). However, these conditions do
not seem to easily hold in the context of dictionary learning. Alternating optimization
in related contexts has also been studied in a variety of matrix factorization problems
such as low-rank matrix completion and nonnegative matrix factorization. Perhaps
the most related to our work are similar results for low-rank matrix completion prob-
lems by Jain, Netrapalli, and Sanghavi [15].

Notation. Let [n] := {1,2,...,n}. For a vector v or a matrix W, we will use
the shorthand Supp(v) and Supp(W) to denote the set of nonzero entries of v and
W, respectively. ||w]||, denotes the £, norm of vector w; by default, ||w|| denotes the
¢5 norm of w. [|[W]||y denotes the spectral norm (largest singular value) of matrix
W. |[W| s denotes the largest element (in magnitude) of W. For a matrix X, X°,
X; and X; denote the ith row, ith column, and (i, j)th element of X, respectively.

Using the above notation, for a square matrix M, Mi\i denotes the ith column of the
restriction of M to its off-diagonal entries. We will abuse notation to refer to it as
the off-diagonal elements of the ith column of M.

2. Algorithm. Given an initial estimate of the dictionary, we alternate between
two procedures, viz., a sparse recovery step for estimating the coefficients given a dic-
tionary, and a least squares step for a dictionary given the estimates of the coefficients.
The details of this approach are presented in Algorithm 1.

The sparse recovery step of Algorithm 1 is based on ¢;-regularization, followed by
thresholding. The thresholding is required for us to guarantee that the support set of
our coeflicient estimate X (¢) is a subset of the true support w.h.p. Once we have an
estimate of the coefficients, the dictionary is reestimated through least squares. The
overall algorithmic scheme is popular for dictionary learning, and there are a number
of variants of the basic method. For instance, the ¢;-regularized problem in step 3
can also be replaced by other robust sparse recovery procedures such as OMP [33] or
GraDeS [11]. More generally the exact lasso and least squares steps may be replaced
with other optimization methods for computational efficiency, e.g., [16].

3. Main results and their proofs. In this section, we provide our local con-
vergence result for alternating minimization and also clearly specify all the required
assumptions on A* and X*. We provide a brief sketch of our proof for each of the
steps in section 3.4.
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3.1. Assumptions. We start by formally describing the assumptions needed for
the main recovery result of this paper. Without loss of generality, assume that all
the elements are normalized: ||Af||z = 1 for ¢ € [r]. This is because we can always
rescale the dictionary elements and the corresponding coefficients and obtain the same
observations.

Assumptions.

(A1) Dictionary matrix satisfying RIP. The dictionary matrix A* has a 2s-RIP
constant of dos < 0.1.

(A2) Spectral condition on dictionary elements. The dictionary matrix has bounded
spectral norm for some constant 1 > 0, [[A*[|2 < p14/5.

(A3) Nonzero entries in coefficient matrix. We assume that the nonzero entries of
X* are drawn independent and identically distributed (i.i.d.) from a distribu-
tion such that E [(X*;)Q] = 1 and satisfy the following a.s.: |X*;| < MVi,j.

(A4) Sparse coefficient matrix. The columns of coefficient matrix have s nonzero
entries which are selected uniformly at random from the set of all s-sized
subsets of [r], i.e., | Supp(X[)| = s Vi € [n]. We require s to satisfy s < 62‘%6/3
for some universal constant cs. '

(A5) Sample complexity. For some universal constant ¢ > 0 and a given failure
parameter > 0, the number of samples n needs to satisfy

2r
n > c3r>M?log 5
where c3 > 0 is a universal constant.
(A6) Initial dictionary with guaranteed error bound. We assume that we have
access to an initial dictionary estimate A(0) such that

1
€ = max min 2A4;(0) — A%, < ——.
0 el sef—1 .41} I124:(0) ill> 259252
(AT) Choice of parameters for alternating minimization. Algorithm 1 uses a se-
quence of accuracy parameters ¢g = 1/ 259252 and

25050411 83
——¢y.
va

Assumption (Al) regarding the RIP assumption is crucial in establishing our
guarantees, since it is critical for analyzing the performance of the compressed sensing
subroutine in Algorithm 1 (steps 2-5). It is possible to further weaken this assumption
to a restricted eigenvalue (RE) condition which is often used in the sparse regression
literature as well [28, 23]. We will present a more detailed discussion of this condition
in the proof sketch. In order to keep the results with cleaner constants, we will
continue with the RIP assumption for the rest of the analysis, while mentioning how
the result can be extended easily under a more general RE assumption.

The assumption (A2) provides a bound on the spectral norm of A*. Note that
the RIP and spectral assumptions are satisfied w.h.p. when the dictionary elements
are randomly drawn from a mean-zero sub-Gaussian distribution.

Assumption (A3) imposes some natural constraints on the nonzero entries of X*.
Some distributional assumption like assumption (A4) on sparsity in the coefficient
matrix is crucial for identifiability of the dictionary learning problem. While we as-
sume completely random supports and i.i.d. coefficients in this analysis, qualitatively

(3) €41 —
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similar results continue to hold as long as the first and second moments of the coef-
ficient distribution have upper and lower bounds of the same order (that is, O(s/r)
and O(s?/r?), respectively). This is intuitive since without such assumptions, two
dictionary elements can be so correlated in their occurrence that they cannot be dis-
entangled, or one dictionary element might almost never occur. However, we will
continue to make the completely random support assumption here since it captures
most of the essential intuition and allows us to easily combine with the initialization
results in what follows.

Assumption (A5) provides a bound on sample complexity. Assumption (A6)
specifies the accuracy of the initial estimate required by Algorithm 1. Recent works
[4, 1] provide provable ways of obtaining such an estimate. See section 3.3 for more
details.

Assumption (A7) specifies the choice of accuracy parameters used by the alter-
nating method in algorithm 1. Due to assumption (A4) on sparsity level s, we have

that 25050ms® | /2 and the accuracy parameters in (3) form a decreasing sequence.

This implies that in Algorithm 1, the accuracy constraint becomes more stringent
with the iterations of the alternating method.

3.2. Guarantees for alternating minimization. We now prove a local con-
vergence result for alternating minimization. We assume that we have access to a
good initial estimate of the dictionary:

THEOREM 1 (local linear convergence).  Under assumptions (A1l)—(AT), with
probability at least 1 — 26 the iterate A(t) of Algorithm 1 satisfies the following¥V t > 1:

zer{n—i?,l}”ZAi(t) —Afl, <e&,1<i<r

Remarks. Note that we have a sign ambiguity in recovery of the dictionary ele-
ments, since we can exchange the signs of the dictionary elements and the coefficients
to obtain the same observations.

Theorem 1 guarantees that we can recover the dictionary A* to an arbitrary preci-
sion € (based on the number of iterations T of Algorithm 1), given n = O(r?) samples.
We contrast this with the results of [4], which also provides recovery guarantees to
an arbitrary accuracy €, but only if the number of samples is allowed to increase as
O(r?log 1/e).

The consequences of Theorem 1 are powerful combined with our assumption (A4)
and the recurrence (3) (since (A4) ensures that e; forms a decreasing sequence). In
particular, it is implied that w.h.p we obtain

min ||z4;(t) — A%, < &2
min [l24i(0) — A4, < &

Given the above bound, we need at most O(log, %) iterations in order to ensure
|zA;(T) — A%, < € V the dictionary elements ¢ = 1,2,...,7. In the convex opti-
mization parlance, the result demonstrates a local linear convergence of Algorithm 1
to the globally optimal solution under an initialization condition. Another way of
interpreting our result is that the global optimum has a basin of attraction of size
O(1/s?) for our alternating minimization procedure under these assumptions (since
we require &y < O(1/s?)).

We also recall that the lasso step in Algorithm 1 can be replaced with a different
robust sparse recovery procedure, with qualitatively similar theorems.
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3.3. Using local convergence for complete recovery. In the above section,
we showed a local convergence result for Algorithm 1. In particular, assumption (A6)
requires that the initial dictionary estimate be at most O(S%) away from A*. In
this section, we use the recent result of [1] to obtain an initialization which satisfies
assumption (A6), and thus we obtain a full recovery result for the sparsely used
dictionary problem with assumptions only on the model parameters. In order to
obtain the initialization from the method of [1], we require the following assumptions:

(B1) Incoherent dictionary Elements. Without loss of generality, assume that all
the elements are normalized: ||Af|2 = 1 for ¢ € [r]. We assume a pairwise
incoherence condition on the dictionary elements for some constant ug > 0,
(A7, A3)] < 4.

(B3) Nonzero entries in coefficient matrix. We assume that the nonzero entries
of X* are drawn i.i.d. from a zero-mean distribution such that
E [(X*;)2] = 1 and satisfy the following a.s.: m < |X*;| < MVi,j.

(B4) Sparse coefficient matrix. The columns of the coefficient matrix have a
bounded number of nonzero entries s which are selected randomly, i.e.,

(4) | Supp(zi)| =s Vi€ [n].

We require s to be

m d/t [ d m*\"° 178 (M4
in| —— ( =—— /8 (=
s<clmln<M M0’<M%M4) T (M)

for universal constants ¢; > 0. Constants m, M are as specified above.
(B5) Sample complexity. Given universal constant ca > 0, choose § > 0 and the
number of samples n such that

M2 2r
n:=n(d,rs,0) > cyr’— log —.
( )2 c21”— log —
We note that assumption (B3) also requires the entries in the coefficient matrix
to be lower bounded and mean-zero, in addition to (A3).

THEOREM 2 (specialization of Theorem 2.1 from [1]). Under assumptions (B1),
(A2), (B3)——(Bb), and (AT), there exists an algorithm which given' Y outputs A(0),
such that assumption (A6) holds with probability greater than 1 — 2n?s.

The restatement follows by setting o = s~%/ 2% in that result which ensures

that the error in the initialization is at most 1/s? as required by assumption (A6).
Combining the above theorem with Theorem 1 gives the following powerful corollary.

COROLLARY 3 (exact recovery). Suppose assumptions (B1), (A2)-(A5), (B3)-
(B5), and (A7) hold. If we start Algorithm 1 with the output of Algorithm 1 of [1],
then the following holds ¥ t > 1:

Zer{riiﬁl}||zAi(t) — A, <e,1<i<r.

The above result makes use of Lemma 21 in the appendix, which shows that as-
sumptions (B1) and (B4) imply (Al). Note that the above corollary gives an exact
recovery result with the only assumptions being those on the model parameters. We
also note that the conclusion of Corollary 3 does not crucially rely on initialization
specifically by the output of Algorithm 1 of [1] and admits any other initialization
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satisfying assumption (A6). As remarked earlier, the recent work of [4] provides an
alternative initialization strategy for our alternating minimization procedure. Indeed,
under our sample complexity assumption, their OVERLAPPINGAVERAGE method pro-
vides a solution with & = O(s/\/r) assuming s = O(max(r*/®,/d)). In particular,
if s = O(r'/%), we obtain the desired initial error of 1/s using that algorithm. The
sample complexity of the entire procedure remains identical to that in assumption

(A5).

3.4. Overview of proof. In this section we outline the key steps in proving
Theorem 1.

For ease of notation, let us consider just one iteration of Algorithm 1 and denote
X(t+1)as X, YXT as A, and A(t) as A. Note that A is A(t + 1) before column
normalization. Then we have the least squares update

A—A* =YX+t - A
— ATXPXT - ATXXt = ATAXXT,

where AX = X* — X. This means that we can understand the error in dictionary
recovery by the error in the least squares operator AXX*. In particular, we can
further expand the error in a column p as

Ap— A%y = A (AXXHP 4 A (AXXH)Y,

where the notation \p represents the collection of all indices apart from p, i.e., A%\,

denote all the columns of A except the pth column and (AXX ‘*‘);p denotes the off-
diagonal elements of the pth column of (AX X ™). The above equation indicates that
there are two sources of error in our dictionary estimate. The element (AXX +)§
causes the rescaling of A, relative to A*,. However, this is a minor issue and we will
show that renormalization will correct it.

More serious is the contribution from the off-diagonal terms (AXX+)! > Which
corrupt our estimate A, with other dictionary elements beyond A*,,. Indeed, a crucial
argument in our proof is controlling the contribution of these terms at an appropriately
small level. In order to do that, we start by controlling the magnitude of AX.

LEMMA 4 (error in sparse recovery). Let AX := X(t) — X*. Assume that
205/vVd < 0.1 and /56, < 0.1. Then, we have Supp(AX) C Supp(X*) and the
error bound ||AX || < 9se;.

In particular, our assumptions (A6) and (A7) ensure that 9se; < g
which will be used in what follows.

More general RE conditions. The above lemma is the only part of our proof where
we require the RIP assumption. This is in order to invoke the result of Candes [7]
regarding the error in compressed sensing with (bounded) deterministic noise. Such
results can also be typically established under weaker RE assumptions. Given a
vector v € R”, these RE conditions study the norms ||Av||3. A particular form of RE
condition for these approximately sparse vectors then posits (see, e.g., [28, 23])

for every t

(5) [Av]ly = llvlly = Tlol;-

Under such a condition, it can be readily shown that Lemma 4 continues to hold with
an error bound which is O(se;/(y — s7)). For many random matrix ensembles for A,
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it is known that 7 = O(y/(logr)/d), which means that v — s7 will be bounded away
from zero under our assumptions on the sparsity level s. These RE conditions are
the weakest known conditions under which compressed sensing using efficient proce-
dures is possible, and we employ this as a subroutine in our alternating minimization
procedure.

The next lemma is very useful in our error analysis, since we establish that any
matrix W satisfying Supp(W) C Supp(X™*) has a good bound on its spectral norm
(even if the entries depend on A*, X*).

LEMMA 5. With probability at least 1 — rexp (f%), for every r x n matrix W
s.t. Supp(W) C Supp(X™), we have

s2n
Wl < 2W ey =2

A particular consequence of this lemma is that it guarantees the invertibility of
the matrix XX ', so that the pseudoinverse X+ is well-defined for subsequent least
squares updates. Next, we present the most crucial step, which is controlling the
off-diagonal terms (AXX*)}\jp.

LEMMA 6 (off-diagonal error bound). With probability at least 1 — Cr?exp
(—-525), we have uniformly for every p € [r] and every AX such that |AX||, <
1
288s 7
< 196852 ||AX||OC.
27 N4z
The lemma uses the earlier two lemmas along with a few other auxiliary results.
Given these lemmas, the proof of the main theorem follows using basic linear algebra
arguments. Specifically, for any unit vector w such that w L A*,, we can bound

the normalized inner product (w, 4,)/||Ap||, which suffices to obtain the result of the
theorem.

H (AXXT)Y

_ v+ \P
2_H(XX )P

3.5. Detailed proof of Theorem 1. We now provide a proof of the theorem
using the above given lemmas. The proofs of the lemmas are deferred to the appendix.
Recall that we denote A(t) as A and A(t + 1) as A. Similarly we denote X (¢) and
X(t+1) as X and X, respectively. Then the goal is to show that A is closer to A*
than A. For the purposes of our analysis, we will find it more convenient to directly
work with dot products instead of ¢5-distances (and hence avoid sign ambiguities).
With this motivation, we define the following notion of distance between two vectors.

DEFINITION 7. For any two vectors z,w € R?, we define the distance between
them as follows:

(v, 2) (v, w)

dist(z,w) := sup = sup .
otw [l |2l orz ([0l [[wll;

This definition of distance suffices for our purposes due to the following simple
lemma.

LEMMA 8. For any two unit vectors u,v € R, we have

dist(u,v) < min | zu —vl, < V2dist(u,v).
ze{-1,1}
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Proof. The proof is rather straightforward. Suppose that (u,v) > 0 so that the
minimum happens at z = 1. The other case is identical. We can easily rewrite

lu = v]l3 = (2 = 2(u,v)) < 2(1 = (u,)?),

where the final inequality follows since 0 < (u,v) < 1. Writing u = (u,v)v + v,
where (v, ,v) =0, we see that

1= [lullz = (u,0)* + i = (u,v)? + dist(u, v)>.

Substituting this into our earlier bound, we obtain the upper bound. For the lower
bound, we note that

— o2\ 2
dist(u,v)? =1 — (1 - |U2UH>

< ||u—v||2. O

The distance is naturally extended to matrices for our purposes by applying it
columnwise.

DEFINITION 9. For any two d X r matrices Z and W, we define the distance
between them as follows:

dist(Z,W) := sup dist(Z,, W,).
peE[r]

Note that the normalization in the definition of dist(z, w) ensures that we can ap-
ply the distance directly to the result of the least squares step without worrying about

the effects of normalization. This allows us to work with a closed-form expression for
A

(6) A=YXT = A*X*XT.

Since dist(-, -) is invariant to scaling, any bound we obtain for A also applies to A(t+1)
after normalization. We are now in a position to prove Theorem 1.

Proof of Theorem 1. As an induction hypothesis, we have dist(g, A*) < %,
where we recall the definition (3). We will show that for every p € [r], we will
have

2361615
(7) dist(A, A*) < Z20H5 o Gl
Vd V2
This suffices to prove the theorem by appealing to Lemma 8.

Furthermore, under the inductive hypothesis, Lemma 4 guarantees that || AX]| <
9se;, which is at most g by assumption (A6). Consequently Lemma 6 can be ap-
plied under the inductive hypothesis. Fix any w L A*, such that ||w|, = 1. We first

provide a bound on (w, Ap). We have w.h.p.

(¢1)
(w, Ap) = wTA*X*X+p gl HwTA*

* \
o[y,

(2) V/r 1968s% |AX ]|
— /’[’1 d \/F
_ 17712u153

€t,
\/g t
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where (1) follows from the fact that w' A*, = 0 and ({2) follows from assump-
tion (A2) and Lemma 6.

In order to bound dist(A, A*), it remains to show a lower bound on ||4,]|,. This
again follows using basic algebra, given our main lemmas.

[Apll, = [[AX*X*, |, = A" (X — AX) XF

ol ol

Car, — arax x|,

> 4%, - |47 (axx), |

)

2

where ((1) follows from the fact that X X = I. We decompose the second term into
diagonal and off-diagonal terms of AX X ™, followed by the triangle inequality, and
obtain

l4plly > 1= A% (AXXH) + 4%, (X XF))||

> 1 A%l [(AX X)) | = [l |l | (axx%),)7,

> 1= 1 axxT o) -l (axxn)]
> 1 [[ax], XTI, || (exT) 7~ 4 ll, | (axx7),7) -
T T2

It remains to control 77 and 73 at an appropriate level. We start from 7;. Note that
|AX]|, is bounded by Lemmas 4 and 5, while HXTH2 is controlled by Lemma 17

(recall |AX||, < 1/(288s)). Invoking Lemma 17 to control ||(XXT)71||7 we obtain
the following bound on 77 with probability at least 1 — rexp (— o).

rM?2s
n 8r
T1 < 18¢;s \/7 354/ — - — = 4324%¢;.

The second term 75 is directly controlled by Lemma 6, yielding the following (with
probability at least 1 — Cr?exp(— = M2 )):

r 19685%¢,
d Vro

T2 <
Putting all the terms together, we get

1968 3
9 Al >1—9s2 (484 201 ) ¢ >
pli2

> it

- 47
where the inequality follows since 9s2(48 + 1968%)@ < 9s%(48 + 1968%)60 < 1/4
by our assumption (A6) on ¢y. Combining the bounds (8) and (9) yields the desired
recursion (7). Appealing to Lemma 8 along with our setting of ¢; (3) completes
the proof of the claim (7). Finally note that the error probability in the theorem
is obtained by using the fact that M > 1 and that the failure probability is purely
incurred from the structure of the nonzero entries of X™, so that it is incurred only
once and not at each round. This avoids the need of a union bound over all the
rounds, yielding the result. ]
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Fi1G. 1. (a) Average error after each alternating minimization step of Algorithm 1 on log-scale.
(b) Average error after the initialization procedure (Algorithm 1 of [1]) and after 5 alternating min-
imization steps of Algorithm 1. (c) Sample complexity requirement of the alternating minimization
algorithm. For ease of experiments, we initialize the dictionary using a random perturbation of the
true dictionary rather than using Algorithm 1 of [1] which should in fact give better initial point
with smaller error. (d) Sample complezity of alternating minimization for various values of M. In
order to understand the effect of M on local convergence, similar to the setting in (c), we initialize
the dictionary using a random perturbation of the true dictionary. We can see that the sample
complexity increases with M but sublinearly.

4. Experiments. Alternating minimization/descent approaches have been
widely used for dictionary learning and several existing works show effectiveness of
these methods on real-world/synthetic datasets [5, 31]. Hence, instead of replicating
those results, in this section we focus on illustrating the following three key properties
of our algorithms via experiments in a controlled setting: (a) advantage of alternat-
ing minimization over one-shot initialization, (b) linear convergence of alternating
minimization, (c) sample complexity of alternating minimization.

Data generation model. Each entry of the dictionary matrix A is chosen
iid. from N(0,1/v/d). Note that random Gaussian matrices are known to satisfy
incoherence and the spectral norm bound [35]. The support of each column of X was
chosen independently and uniformly from the set of all s-subsets of [r]. Similarly,
each nonzero element of X was chosen independently from the uniform distribution
on [—2,—1]U[L,2]. We use the GraDeS algorithm of [11] to solve the sparse recovery
step, as it is faster than lasso. We measure error in the recovery of dictionary by

error(A) = max; /1 — %. The first two plots are for a typical run and the
vl2 7 112

third plot averages over 10 runs. The implementation is in Matlab.

Linear convergence. In the first set of experiments, we fixed d = 100, r =
200 and measured error after each step of our algorithm for increasing values of n.
Figure 1(a) plots error observed after each iteration of alternating minimization; the
first data point refers to the error incurred by the initialization method (Algorithm 1
of [1]). As expected due to Theorem 1, we observe a geometric decay in the error.
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One-shot versus iterative algorithm. It is conceivable that a good initial-
ization procedure itself is sufficient to obtain an estimate of the dictionary up to
reasonable accuracy, without recourse to the alternating minimization procedure of
Algorithm 1. Figure 1(b) shows that this is not the case. The figure plots the er-
ror in recovery versus the number of samples used for both Algorithm 1 of [1] and
Algorithm 1. It is clear that the recovery error of the alternating minimization pro-
cedure is significantly smaller than that of the initialization procedure. For example,
for n = 2.5srlogr with s = 3,r = 200,d = 100, initialization incurs error of .56,
while alternating minimization incurs error of 107%. Note, however, that the recovery
accuracy of the initialization procedure is nontrivial and also crucial to the success of
alternating minimization—a random vector in R? would give an error of 1 — é =0.99

(since the inner product is concentrated around 1/v/d), whereas the error after the
initialization procedure is & 0.55.

Sample complexity versus r. We study the sample complexity requirement
of the alternating minimization algorithm which is n = O(r?logr) according to as-
sumption (A5), assuming good enough initialization. Figure 1(c) suggests that in fact
only O(r) samples are sufficient for success of alternating minimization. The figure
plots the probability of success with respect to I for various values of r. A trial is
said to succeed if at the end of 25 iterations, the error is smaller than 10~°. Since
we focus only on the sample complexity of alternating minimization, we use a faster
initialization procedure: we initialize the dictionary by randomly perturbing the true
dictionary as A(0) = A* + Z, where each element of Z is an N(0,0.5/v/d) random
variable. Figure 1(c) shows that the success probability transitions at nearly the same
value for various values of r, suggesting that the sample complexity of the alternating
minimization procedure in this regime of r = O(d) is just O(r).

Sample complexity versus M. Finally, we look at the dependence of sam-
ple complexity on M. Since our focus is on alternating minimization, we initialize
the dictionary by randomly perturbing the true dictionary just like in the setting of
Figure 1(c). The figure plots the probability of success with respect to % for various
values of M.

5. Conclusions. In this paper we provide the first analysis for the local linear
convergence of the popular alternating minimization heuristic commonly used for
solving dictionary learning problems in practice. Combined with some recent results,
this also provides an efficient method for global and exact recovery of the unknown
overcomplete dictionary under favorable assumptions. The results are of interest
from both theoretical and practical standpoints. From a theoretical standpoint, this
is one of the very few results that provides guarantees on a dictionary learned using
an efficient algorithm, and one of the first for the overcomplete setting. From a
practical standpoint, there is a tremendous interest in the problem, and we believe
that an understanding of the theoretical properties of existing methods is critical in
designing better methods. Indeed, our work provides some such hints toward designing
a better algorithm. For instance, the sparse recovery step in our method decodes the
coefficients individually for each sample. We believe that a better method can be
designed by jointly decoding all the samples, which allows one to force consistency
across samples (for instance, in our random coefficient model, the number of samples
per dictionary element is also controlled in addition to the number of dictionary
elements per sample).

More interestingly, our work extends a growing body of recent literature on anal-
ysis of alternating minimization methods for a variety of nonconvex factorization
problems [15, 24], where global in addition to local results are being established with
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appropriate initialization strategies. Of course, results on alternating minimization go
much further back, even in nonconvex optimization to Csiszar’s seminal works (see,
e.g., the recent tutorial [8] for an overview), as well as in convex minimization and
projection problems. However, the recent work has been largely motivated by appli-
cations of nonconvex optimization arising in machine learning. We believe that the
emergence of these newer results indicates the possibility of a more general theory of
alternating optimization procedures for a broad class of factorization-style nonconvex
problems and should be an exciting question for future research

Appendix A. Proofs for alternating minimization. In this section, we will
present our proof for the results on alternating minimization. We present the proofs
for Theorem 1 and the other main lemmas in section A.1. In section A.2, we present
the auxiliary lemmas and their proofs.

A.1. Proofs of main lemmas. For the reader’s convenience, we recall Lem-
mas 4, 5, and 6 from section 3.4 along with their proofs. The more technical lemmas
are deferred to the next section.

We first recall some notation and define additional abbreviations before proving
the lemmas. Recall the modeling assumption Y = A*X* and that we denote X (t+1)
as X, YX1 as A, A(t) as A, and X (t) as X. Denote X*¥ = x\* M V1 <p<r, V1<
i < n, where x¥ = 1 if p € Supp(X}) and 0 otherwise and M? are i.i.d. random
variables with E [M?] = p and E [(MF)?] = 02 + p%. Assumption (A3) gives us

1. p2 +0?=1, and
2. IMP| <M as.

LEMMA 10 (restatement of 4). Let AX := X — X*. Assume that 2405/v/d < 0.1

and \/se; < 0.1 Then, we have
1. Supp(AX) C Supp(X™),
2. [|AX|, < 9s-dist(A, A*) < 9se;.

Proof. In order to establish the lemma, we use a result of Candes regarding the
lasso estimator with deterministic noise for the recovery procedure:

(10) T; = arg m]iRn |z|l, such that [|Y; — Az[, <e.
rxeR"

THEOREM 11 (Theorem 1.2 from [7]). Suppose Y; = Ax;+z;, where x; is s-sparse
and ||z, < e. Assume further that 6o5 < /2 — 1. Then the solution to (10) obeys
the following, for a universal constant C:

1Zi — zill, < Che.

In particular, Cy = 8.5 suffices for dos < 0.2.

In order to apply the theorem, we need to demonstrate that the RIP condition
holds on A. Consider any 2s-sparse subset S of [r]. We have

~ ~ (¢1) ~
Omin(As) 2 owin(45) — |45 = Aglly = 16, — || A5 - ASHF and
~ N . ~ (¢2) . ~
UmaX(AS) ngax(AS>+ HAS_ASH2 S 1+625+ HAS_ASHF7
where ¢; and (s follow from assumption (A1). Recalling the assumption ,/se; < 0.1,

and that dos < 0.1, we see that the maximum and minimum singular values of ES
are at least 4/5 and at most 6/5, respectively. Appealing to Theorem 11, we see that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/20/17 to 131.215.70.231. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2790 A. AGARWAL, A. ANANDKUMAR, P. JAIN, AND P. NETRAPALLI

this guarantees |AX;||, < 9se;. Since this is also an infinity norm error bound, we
obtain the second part of the lemma. The proof of the first part is further implied by
the choice of our threshold at a level of 9se;, which ensures that any nonzero element
in X has ‘X*l| > 0 (since we would have ’Xl‘ < 9s¢; by our infinity norm bound
otherwise). 0

We now move on to the proof of Lemma 5. We point out that the lemma applies
uniformly to all matrices W satisfying Supp(W) C Supp(X*), irrespective of the
values of these entries. This might be surprising at first but is a rather straightforward
consequence of random matrix concentration theory.

LEMMA 12 (restatement of lem:W-spectralnorm). With probability at least
1—rexp ( C”) for every r x n matrix W s.t. Supp(W) C Supp(X™*), we have

52n
Wy < 2Wlee\/ ==

Proof. Since the support of W is a subset of the support of X*, WP = x"W}.
Now,

uv\lﬂl\z 1 Hvl\ =1

< [Wllee - Zx w,

uv\lqu 1 H vfl;=1

W2 = max E WrPu'P = g WPy vP
u,v|lull2=1,|v][,=1 -

where the inequality holds since the maximum inner product over all pairs (u,v) from
the unit sphere is larger than that over pairs with u'v? > 0 V i,p. Note that the
last expression is equal to ||W||OOuTxv, where we use y to denote the matrix with
the nonzero pattern of the matrix X*. In order to bound ||W||, uniformly V W
satisfying the sparsity pattern, it suffices to control the operator norm of x. This can
indeed be done by applying Lemma 16 with 4 = M = 1 and ¢ = 0. Doing so yields
with probability at least 1 — rexp (—<2)

52n
Wy < 2W ooy ==

which completes the proof. 0

We now finally prove Lemma 6, which is our main lemma on the structure of
X*X™T. Specifically, the lemma will show how to control the off-diagonal elements of
this matrix carefully.

LEMMA 13 (restatement of 6).  With probability at least 1 — Cr? exp(
we have uniformly for every p € [r] and every AX such that | AX]|
< 1968s% |AX |
2~ NG '
Proof. For simplicity, we will prove the statement for p = 1. We first relate X* X
to AXXT.

21VI2)
2889’

[(axx®)y

— * 3\ \P
27H(XX )P

(X)) = (=) X))
~(axxh)!
\1

~(axxT(xxT))
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where the first step follows from the fact that X X+ = I. This proves the first part of
the lemma. We now expand the above as follows:
\1

(AXXT(XXT)_1>11 = (axxT)) (xxT)! )1 (axxT)((xx) ™)

Using the triangle inequality, we have

o) <l Jlement,
T1
(11) +H (AXXT), H H(XXT >112

T4

We now bound each of the above four quantities. We can easily bound 7; via

a spectral norm bound on (XX T)71. Doing so, we obtain with probability at least
Cn
1 —rexp(——73)

(€ )87"
2 ns’

—1\1! -1
12 _ ( xxT < H xxT H
12 7= |(ex) ™) < e
where ((;) follows from Lemma 16. To bound 7z, we use Lemma 20 and obtain with

probability at least 1 — Cr? exp (— TQCA}LZ)

(13) o= (axxT))| < B1AX] o 5™

rz

where we recall the assumption [|AX]| < 1/(64s). We now bound 73 as follows:

) 7= exxny], < fexn], oo,

(¢1)
221X 5220+ 18X sy

6] AX], s*n
< [ S—
T
where (1) follows from Lemmas 5 and 17 (since Supp(AX) C Supp(X)USupp(X*) =

Supp(X™)). Finally, to bound T4, we start by noting the following block decomposition
of the matrix X X ':

)

[ et o xan!
XX T T
X\le X\1<X\1)

Given this block-structure, we can now invoke Lemma 22 (Schur complement lemma)
to obtain

—1\ \L 1 171N T
(xD7), =X e
where
T\
(15) Bi=((xX7) )\1.
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Here we recall that B~! is the Schur complement of XX, . Using Lemma 20 and
equation (21) we have with probability at least 1 — Cr?exp (frzcﬁ)

(16)

-1\ M 1 H iyl TH 8r 5s%n
(x| < ol v )T, <3 g,

S
=2 B),.
’Xl(Xl)T’ SV

Using the expression (15) and the lower bound on oy (X) from Lemma 17, we
also have the following bound for || B||, with probability at least 1 — rexp (—-$%-):

< Jxxn ), < 2

11, = (Cexmy )

Plugging the above into (16) gives us

\1
1

_ 05 s _ 32007
5 /T ns n
Combining (12), (13), (5), and (17), we obtain with probability at least 1 — Cr?

eXP(— TzC]\Zz )7

(17) H ((xx1)™)

< 48| AX]| s n 1920 | AX]||, s*
2 VT VT
< 1968s% |AX ]|
< —\/77 .
A.2. Main technical lemmas. In this section, we state and prove the main
technical lemmas used in our results.

o)

LEMMA 14. Under assumptions (A3) and (A4), we have
—1)p? —1)p?
SR [X*iX*iT} _ (s _s(s—1p I+ s(s—1)p 1
r r(r—1) r(r—1)

Proof. Note that x¥,1 < p < r, all have the same distribution. Hence, by sym-
metry and linearity of expectation, E [x}] = %[22:1 x?] = 2. Similarly, E [(x})?] =

oo (X1 = £, Also, since Y7, xj = s, we have

' =E <Z(X?)> =E

q=1

szle =rE [(x])?] + (r* = n)E XPx{].

p,q

Hence, E [x}x{] = igs 1% for p # q.

Now, recall that X*? = x? M”. Now, we first consider diagonal terms of X:

(18) 5= (X)) =B [0 E (M) = 2(s° +0%) =
Similarly, using independence of MY and M/, off-diagonal terms of ¥ are given by

(19) =g =B (M E (37 = =

Lemma 14 now follows by using (18) and (19). d
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In particular, two consequences of the lemma which will be particularly useful
are about the extreme singular values of Y. Recalling that 2s < r and u? < 1 by
assumption, we obtain
252

r

(20) Umin(z) > 2iv and Jmax(z)
T

We next establish some results on the spectrum of the empirical covariance matrix,
using a standard result from random matrix theory. For the convenience of the reader,
we recall the following theorem from [35].

THEOREM 15 (restatement of Theorem 5.44 from [35]). Consider an r xn matriz
W' where each column w; of W is an independent random vector with covariance
matriz X.  Suppose further that ||will, < /u a.s. V i. Then for any t > 0, the
following inequality holds with probability at least 1 — r exp (—ctQ) :

< max (21322077 where 7 = 1y /2.
2

Here ¢ > 0 is an absolute numerical constant. In particular, this inequality yields

;
Wlly < 213 vn+ tVu.

Using the theorem, we can establish the following results on concentration of
empirical covariance matrices. Hereafter, C' will be a universal constant that can
change from line to line.

1
WWT—E‘
n

LEMMA 16. There exists a universal constant C' such that with probability at least

1-— rexp(—(’;‘i\,}’;s), we have
1 *yx | 2 5
SxrxT oy gmax(\@a,a )—.
n 9 r

In particular, with probability at least 1 — rexp(f%), we have the bounds

2
X, <20/ 25 and  opm(XFX*T) > 22
T 3r
<

Proof. Note that || X}]l2 < v/sM. Also, by (20), [|Z|l2
Using Theorem 15 with ¢ = 6,/-37z, we obtain

s(s—1)u? 252
ta =5

s
I

1 2
HX*X*T — 3| < max (\@5, 52> S
n 5 r
w.p. with probability greater than 1 — r exp (f (’3\2425). In order to obtain the second

part, we apply the first part of the lemma with ¢ = 1/61/2s as well as Lemma 14
to bound the largest and smallest singular values of XX ' /n. Taking square roots
completes the proof. 0

The next lemma we state is a specialization of Lemma 5 to obtain bounds on the
spectral norm of our iterates X.

LEMMA 17. With probability at least 1 — r exp (—@) —rexp (—%), for every

r x n matriz X s.t. Supp(X) C Supp(X™*), we have

« n
Xl <2 (01X = X%,
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Proof. Let X = X* 4+ Ex-, where Supp(Ex-~) C Supp(X*). Hence, [ X[, <
[IX*], + [| X — X*||,. Lemma 17 follows directly using Lemmas 16 and 5.

The above lemma can be used to obtain a singular value perturbation bound for
matrices of the form XX . We will need control over the upper and lower singular
values of such matrices for our proofs, which we next provide.

LEmMMA 18. With probability at least 1 — rexp (—@) — rexp (— r%’és), for every

r x n matriz X s.t. Supp(X) C Supp(X*), we have

2
HXXT - X*X*TH <4 (2 X — X"+ 1X — X*Hio) Ry
2 T
Further assuming || X — X*|| < 1/(64s), we have with the same probability

ns
=8
Proof. Let X = X* + Ex-. Note that Supp(Fx~) C Supp(X*). Now,

Omin(XXT) >

IXXT = X*X* ||y < || Ex-|l2(|| Ex-

2 + 2/ X7 [|2).

By Lemma 5, ||Ex- ||, < 2s,/%| Ex-||,, with probability at least > 1 — rexp (—<z).

Combining this with the bound on ||X |l from Lemma 16 completes the proof. The
second statement now follows by combining the result with our earlier lower bound
on the minimum singular value of X* in Lemma 16. ]

A particular consequence of this lemma which will be useful is a lower bound on
the diagonal entries of the matrix XX 7. Indeed, we see that under the assumption
[|X — X", <1/(64s), with probability at least 1 —rexp (——) —rexp (—-5%-) we
have the lower bound uniformly Vp=1,2,...,r,

(21) xrxrT > 2%
8r
We finally have the following concentration lemma, which is a simple consequence

of the Bernstein concentration bound (Lemma 23).
LEMMA 19. Let x¥ be as defined in section A.1. Then,
1. with probability at least 1 — 2rexp ( — L 2E5): (1=0)2 <Y < (1+
8)*rVpelr], and
2. with probability at least 1 — 2r exp (— i £5): (1—6)=2 < ||X*p|\g =y
(MP)* < (1+40)22 Vpelr).
Proof. We start with the proof of the second part, noting that the first part
then immediately follows by setting (M?)? = 1. The second part will follow from a

straightforward use of Bernstein’s inequality (Lemma 23). Note that |[M?P| < M and
E[(M?P)?] =1. As aresult, Vi=1,2,...,n we have |[x?(MF)?| < M? and

Varlx? (M?)?) < EDG (M) < MPE[ (M])?) = M?2.

The last step follows since E[x¥(M?F)?] = E[x¥] = s/r. Consequently, we obtain
that with probability at least 1 — 2 exp(—nsd?/(2rM?(1 + 6/3))) we have

(5ns
< -
r

MP
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To complete the proof, note that 1 > /3, which yields the stated error probability
after a union bound over p € [r]. Finally, as stated before, we can recover the first
part by setting (M?F)? = 1. 0

LEMMA 20. With probability at least 1 — Cr? exp ( 2MQ) for every r xn matrix
X s.t. Supp(X) C Supp(X*), and [| X — X*|| < 6, we have the following bounds
uniformly ¥V p=1,2,.

|\(AXXT)\pH (1 +v/2s6) 2L qnd
2. X (XP) Tl < (1+v/56)" 2,

where ANX = X — X*.

Proof. We start by proving the first part of the lemma.

Proof of part 1. Let D denote the n x n diagonal matrix with D! = x¥.  Using
this notation, we have (AXXT)\p (AXDXT)\p So, we have

[@xxm),7], = Jaxpxm,|
P g P g

< faxm¥, o)

Pll2

), (x|

R <\/ﬁ+ AX]., f)

with probability at least 1 — Crexp (—Cn/rs) uniformly for every p € [r]. Note that
the first term in ({;) follows from the second part of Lemma 19 and the second is a
consequence of Lemma 5. For the rest of the proof, we choose p = 1 and then apply
a union bound to obtain the result for every p € [r]. In order to control || (AXD)\1 Il2,
we observe that it is a matrix with a random number of columns selected by the matrix

< H(AXD)\”

(€1)
<

‘(AXD)\Z’

D. In particular, conditioned on {z : Dl = 1}, the support of X *1\1 is uniform over
all subsets of {2, ...,d} of size s—1 (and the support of AX is a subset of the support
of X*). Hence we can easily see that

P [H(AXD)\lHQ > t} <P {{H(AXD)“HQ > t} N { <|{i:Di=1}| < 2" H
. ; sn 2sn
(22) —HP{{HZ:DE:l}]g?r} {\{Z Dz_1}y>}].
In order to control the first probability, note that

P {{H(AXD)\le > 1N { <|[{i:Di=1} < QS"H

[2sn /7]

< > p[{|expM| >fn{{i D=1} =k}
k=[sn/27]
2sn/r
= szj IP’[H(AXD)\1H2>15| [{i: Di=1}| = k| P[[{i: D} =1} = K] .
k=[sn/27]
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Setting ¢t = 29\/ 29\/ 2s7n we obtain as a consequence of Lemma 5
i 2sn
IP’[{H(AXD)\lH2>t}ﬂ{<Hz Di=1}| < H
[2sn/r] A Cn
(23) < k_(s;/gﬂ rexp(—C[sn/2r]/rs)P[|{i: D} =1}| = k] < rexp <27“2) .

For the second probability in (22), note that |{i: D! =1}| = >", x!, and use part
1 of Lemma 19 with § = 1/2. In particular, this gives us

(24) P{{Hz‘:D;:l}]gZ:} {|{z DZ_1}|>M}]§2reXp<—C:5>.

Plugging (23) and (24) into (22) and using union bound over p € [r], we obtain with
probability at least 1 — Cr? exp ( C"),

2s3n,
r2

H(AXD)\P(L <29 Vpelr.

Proof of Part 2. The proof of this is similar to that of part 1. We have

e, = [xpee)|
2
<o, flam, |
2 Pli2
\p sn
< x| 2+ vElIaxL) /2

For the first term above, we have

H(XD)\p

<[

L+ |(axD)¥

2

The second term in this decomposition was controlled above and the first one can
be similarly bounded. We briefly describe how this is accomplished. As noted in the
proof of part 1, conditioned on {z : D = 1} the support of X *\p is uniform over all

subsets of [d]\ {p} of size s—1. Letting t = 2 - 252 we use Lemma 16 to conclude
that

P {{H(X*D)\l‘t > t} n {ZZ <|{i: D; = 1}] < Q?LH <rexp (—C|ns/2r|/rsM?)
<rexp (—Cn/r’M?).

Using a decomposition similar to that in (22) with the above bound, and finally apply
a union bound over all p € [r], we conclude that

2sn
2§25(1+\/%9)\/T—2Vp6[r]

with probability greater than 1 — Cr? exp(—Cn/r2M?). This proves the lemma. O

H(XD)\p

We begin with an auxiliary result on the RIP constant of an incoherent matrix.
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LEMMA 21. Suppose A* satisfies assumption (B1). Then, the 2s-RIP constant of

. 2
A*, a4 satisfies dag < \’;%3.

Proof. Consider a 2s-sparse unit vector w € R™ with Supp(w) = S. We have

2

JAw|® = { Y w;a% | =S w?|A%51P+ Y wjw(AT;, AY)

JES j JleS,j#l
>1- 3wy (A7, A7)
JLES,j#l
>1- Z ‘ijllf
J,lES,j#l
> 1~ 22,2
f
2
>1- Pos w2 =1 - 228

Vd e

Similarly, we have

2008
Vd -

This proves the lemma. ]

1A w3 < 1+

LEMMA 22 (Schur complement formula). We have the following formula for
matrix inversion:

A B] ' [A'4+A'BMCA™' —A"'BM
Cc D a —MCA™! M ’
where M ™! := (D — CA_lB) is the Schur complement of A in the above matrix.

LEMMA 23 (Bernstein’s concentration inequality). Let Wy, Wa, ..., W, be inde-
pendent zero-mean random variables. Suppose that |W;| < R, almost surelyV i. Then,
for all positive t, we have

g —t2/2
: [Z e t] <oo (e rm)

i=1

LEMMA 24. Let A be a dxd dictionary matriz such that each row A* ~ ﬁ (0,%)
where 3 = 1V i, 19 = Xo1 = /4 and Yi; = 0 otherwise. Then, with probability
greater than 1 — d? exp(—cd?d), we have

e A is not incoherent, and
e A is 2-RIP with RIP constant §.
Here ¢ is a universal constant.

Proof. We first note that by definition, E [(A4;, A;)] = X;;. Using the Chernoff
bound for the sum of product of two Guassian random variables, we know that with
probability greater than 1 — exp(—cd2d), we have
0
5
Using the union bound, we have that the above statement holds uniformly V i, j € [d]
with probability greater than 1 — d? exp(—céd). The first claim now follows easily

[(Ai, Aj) — E4j <
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since (A1, Ag) > Xqg — g = %. When § is not O(l/\/&), the dictionary A clearly
violates the incoherence condition.

For the second claim, note that we are interested in bounding eigenvalues of the
A3 (AsAy)

matrices
(Aj,A:) (14113

Under the high probability event we established above,

these matrices in the worst case look like [1g;52/4 1%2/ 4

matrices are at least 1 — §. This proves the lemma. ]

], and eigenvalues of all such
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