
SPECIAL SECTION ON TRENDS AND ADVANCES FOR AMBIENT INTELLIGENCE WITH
INTERNET OF THINGS (IoT)SYSTEMS

Received July 7, 2016, accepted July 16, 2016, date of publication July 20, 2016, date of current version August 26, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2593605

Protocols and Mechanisms to Recover
Failed Packets in Wireless Networks:
History and Evolution
SHERAZ ALI KHAN1, MUHAMMAD MOOSA2, FARHAN NAEEM2,
MUHAMMAD HAMAD ALIZAI3, AND JONG-MYON KIM4 (Member, IEEE)
1Embedded Ubiquitous Computing Systems Laboratory, Department of Electrical, Electronics, and Computer Engineering,
University of Ulsan, Ulsan 44617, South Korea
2EmNets Laboratory, University of Engineering & Technology Peshawar, Peshawar 25120, Pakistan
3SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
4University of Ulsan, Ulsan 44617, South Korea

Corresponding author: J.-M. Kim (jmkim07@ulsan.ac.kr)

This work was supported in part by the Korea Institute of Energy Technology Evaluation and Planning within the Ministry of Trade,
Industry, and Energy, Republic of Korea, under Grant 20162220100050 and in part by the National Research Foundation of Korea within
the Ministry of Science, ICT and Future Planning through the Leading Human Resource Training Program of Regional Neo Industry under
Grant NRF-2016H1D5A1910564.

ABSTRACT The emergence of multihop wireless networks and the increase in low-latency demands of
error tolerant applications, such as voice over internet protocol, have triggered the development of new
protocols and mechanisms for recovering failed packets. For example, recovering partially corrupt packets
instead of retransmission has emerged as an effective way to improve key network performance metrics,
such as goodput, latency, and energy consumption. A number of similar and interesting solutions have been
proposed recently to either reconstruct or process corrupt packets on wireless networks. The proliferation
of multimedia services on 3G and long term evolution networks, and the stringent quality of service
requirements for these applications have given birth to robust codes and new error tolerant mechanisms for
packet delivery. Despite years of active research in the field, we lack a comprehensive survey that summarizes
recent developments in this area and highlights avenues with potential for future growth. This survey tries
to fill in this void by providing a comprehensive review of the evolution of this field and underscoring areas
for future research.

INDEX TERMS Wireless networks, packet recovery, error tolerant, 3G, LTE, internet of things.

LIST OF ACRONYMS

3G 3rd Generation
ACK Acknowledgment
ACR Adaptive Coding Rate
AIR Adaptive Incremental Redundancy
AL-FEC Application Level FEC
AMR-WB Adaptive Multi-Rate Wideband
AP Access Point
API Application Programming Interface
ARQ Automatic Repeat Request
ATSC Advance Television Systems Committee
BER Bit Error Rate
BSD Berkeley Software Distribution
CD Compact Disc
CN Corruption Notification

CPC Complimentary Punctured Convolutional
CPR Corrupt Packets Recycling
CPS Cyber Physical Systems
CRC Cyclic Redundancy Check
CRTP Compressed RTP
CSMA/CA Collision Sense Multiple Access with

Collision Avoidance
CTCP Compressed TCP
CTP Collection Tree Protocol
CTS Clear to Send
DMA Digital Media Adapter
DSL Digital Subscriber Loop/Line
DVB Digital Video Broadcasting
DVB-S2 Digital Video Broadcasting-Satellite 2
DVD Digital Video Disc
EARQ Extended ARQ

VOLUME 4, 2016
2169-3536
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4207

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

ECC Error Correction Code
EEC Error Estimation Codes
ESP Encapsulating Security Payload
FEC Forward Error Correction
HARQ Hybrid ARQ
HSDPA High Speed Downlink Packet Access
HSUPA High Speed Uplink Packet Access
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
IoT Internet of Things
IP Internet Protocol
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6
IR Incremental Redundancy
ITU-T G.hn International Telecommunication Union

Telecommunication Standardization Sector
Gigabit Home Networking

LAN Local Area Network
LDPC Low Density Parity Check Codes
LT Luby Transform
LTE Long-Term Evolution
MAC Media Access Control
MANET Mobile Adhoc Networks
MBMS Multimedia Broadcast and

Multicast Services
MDPC Multi Dimensional Parity Check Code
MMS Multimedia Messaging Service
MRD Multiple Radio Diversity
MRQ ARQ with Memory
NACK Negative Acknowlegment
NAK Negative Acknowledgment
NASA National Aeronautics and

Space Administration
PDU Protocol Data Unit
PHY Physical
PP-ARQ Partial Packet ARQ
PPR Partial Packet Recovery
QoS Quality of Service
RAM Random Access Memory
RBAR Receiver-Based AutoRate
RCPC Rate Compatible Punctured Convolutional
ROHC Robust Header Compression
RS Reed-Solomon
RTMA Real Time Multimedia Applications
RTP Real-time Transport Protocol
RTS Request to Send
SIP Session Initiation Protocol
SNR Signal-to-Noise Ratio
SPaC Simple Packet Combining
TCP Transmission Control Protocol
TTL Time to Live
TVA Transmit-Verify-Acknowledge
UART Universal Asynchronous Receiver

Transmitter
UDP User Datagram Protocol

VOIP Voice Over Internet Protocol
VOIP Voice Over Internet Protocol
WiMAX Worldwide Interoperability for

Microwave Access
WLAN Wireless LAN
WMN Wireless Mesh Networks
WSN Wireless Sensor Networks

I. INTRODUCTION
Wireless networks present challenging network conditions.
In comparison to wired links, wireless links are generally
more susceptible to packet failure. The problem is further
aggravated in multihop wireless networks such as wireless
sensor networks (WSN), wireless mesh networks (WMN)
andmobile ad hoc networks (MANETs) where a packet has to
traverse multiple wireless links before it reaches its intended
destination [1], [2].

There are two main facets of packet failure: (i) packet
corruption — packet is received albeit with bit-errors, and
(ii) packet loss — packet is not received at all and is lost
at PHY layer, e.g., due to strong interference. Traditionally,
both these aspects of packet failure have been treated synony-
mously, i.e. retransmit the packet whenever a failure1 event
occurs. However, over the past decade, research on multihop
wireless networks has shown that packet retransmission is
not the most attractive way to salvage failed packets either
due to corruption or loss [3], [4]. Depending upon network
conditions, which vary across different deployments, retrans-
mitting failed packets could degrade network performance
metrics such as throughput, delay and energy consumption.

To cope with this peculiar problem in wireless networks,
an assortment of packet recovery techniques have been devel-
oped over the past several years, which try to discern packet
corruption from packet loss. These techniques try to recover
corrupt packets locally at the receiver without requiring their
complete retransmission by the sender. The packet recov-
ery mechanisms include packet reconstruction using forward
error checksums (FEC) [5], combining multiple erroneous
copies of the same packet [6], or even completely disregard-
ing bit-errors [4] for error tolerant applications.

In this survey, we try to revisit the history and evolution
of this field: protocols and mechanisms to recover failed
packets. This evolution has been triggered mainly by the
growing number of error tolerant applications, such as voice
and video, which are more sensitive to network delays than to
packet failures. For this purpose we have broadly categorized
this evolution into three main stages.
• Retransmission - zero tolerance for errors: This is the
traditional mechanism for packet recovery in both wired
and wireless networks. At this stage of its evolution, the
protocol stack was treated as error sensitive assuming
that wireless protocols cannot handle errors in packets.
Hence, when failed, a packet must be retransmitted by

1Throughout the paper, packet failure refers to unsuccessful delivery either
due to packet loss or due to packet corruption.

4208 VOLUME 4, 2016

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

the sender. A failure is typically detected when the
packet is not acknowledged within a certain time period.
We discuss this phase of evolution and different tech-
niques employed for packet recovery in Section II.

• Error Correction - when retransmissions are too
expensive: In challenging network conditions, typically
observed inmultihopwireless networks, retransmissions
are very expensive in terms of energy and bandwidth. In
such networks, error correction techniques are employed
at different layers of the network stack. Hence, at this
stage, although the protocols are still considered error
sensitive, i.e., they cannot process erroneous packets as
is, but are rather enabled to recover partially corrupt
packets at the receiver before processing. We discuss
variants of these techniques employed at different layers
of the stack in Section III.

• Error tolerance: accepting erroneous packets while
disregarding errors: Finally, error tolerant protocols
have been developed that can process erroneous packets.
The need for such protocols is driven by the proliferation
ofmultimedia and real time applications that can tolerate
errors but require timely delivery of information. Hence,
protocols leading this stage of evolution primarily cater
to the needs of error tolerant applications. UDP-Lite is
the prime example of an error tolerant protocol that has
been standardized by the IETF. We discuss UDP-Lite
and other error tolerant approaches in Section IV.

We conclude our discussion in Section V by providing
a tabular categorization of the existing approaches before
highlighting possible directions for future research in this
field.

II. RETRANSMISSION: ZERO TOLERANCE FOR ERRORS
Packet retransmission [7] is the classical approach to recover
failed packets in a medium where packet errors are very
common due to interference and collisions. At this stage of
its evolution, the protocol stack is treated as an error-sensitive
entity, which cannot handle packet failures. Hence, the sender
must always retransmit a packet if it is not acknowledged
within a certain time period. This technique, more commonly
known as ARQ (Automatic Repeat reQuest) is a fundamental
method employed in many protocols with slight variations
in its behavior, depending upon the underlying network con-
ditions, to achieve reliable data transfer. Although different
flavors of ARQ exist, the fundamental idea remains the same:
sender retransmits a packet based on the acknowledgments
(positive or negative) from the receiver. Hence, the respon-
sibility of delivering a correct packet solely rests with the
sender based on the feedback from the receiver.

Packet retransmission relies on strong error detection tech-
niques at the receiver that provide necessary feedback to the
sender. These techniques employ algorithms called check-
sums to verify the integrity of a received packet. A cor-
rectly received packet is positively acknowledged (ACK)
whereas packet failure is either negatively acknowledged by
the receiver (NACK) or assumed by the sender upon the

expiry of a retransmission timer when no ACK/NACK is
received. This mechanismmandates the appropriate selection
of a re-transmission period to avoid contention on themedium
and efficiently utilize bandwidth.

In the ensuing text, we describe algorithms employed to
detect packet errors that are introduced during their transmis-
sion. In this section we revisit the traditional mechanisms for
error detection in order to formulate the background essential
for the remaining discussion in the paper. We conclude this
section by presenting ARQ and its kin.

A. CHECKSUMS: ERROR DETECTION
BEFORE RETRANSMISSION
Checksums are small datum computed over blocks of data
that are appended to the original data and used for detecting
errors introduced during transmission. The procedure through
which a checksum is calculated is called checksum func-
tion. Checksums usually provide for simple data integrity
checks, designed particularly for low cost computations yet
with some caveats, i.e., some errors may completely elude
the check. Simple examples of checksum functions include,
summation, 1’s complement, 2’s complement and other log-
ical operations such as XOR. To understand how checksums
operate, we discuss two of the basic checksums, i.e., parity
bit and parity word, followed by standard checksums that are
in vogue today.

Parity Bit (also known as check bit) is a very basic
checksum and can only detect single bit errors. It works
by appending a single bit to a block of data depending
upon the number of ‘‘1’’ bits in the data. The appended
bit is either a 0 or 1 and is so chosen to keep the total
number of ‘‘1’’ bits in the data and checksum even, in an
even parity system, or odd in an odd parity system. The
mechanism is simple to implement as it only requires the
XOR of all the bits in a block of data. However, it may
result in false-positives when multiple bits in the data are in
error.

Parity Word is an improved adaptation of the parity bit
checksum and it extends the parity bit error detection mech-
anism to large blocks of data, which are broken down into
a fixed number of n-bit words. For each word the XOR of
its n-bits is calculated and the result is stored into a parity
word, which is appended and transmitted along with the data.
The receiver, upon receiving the data computes the XOR
of all the words including the parity word. An erroneous
transmission is detected if the result of the XOR operation is
not n zeros.

IP checksum is among the numerous error detection
mechanisms that the internet protocol suite has adopted at
its various layers to ensure reliable data transfer over com-
munication networks. These mechanisms range from CRC at
lower layers of the IP protocol stack to IP and TCP checksums
at its higher layers, each making up for the limitation of the
other. IP checksum [8] is used to ensure the integrity of IPv4
headers and is calculated by determining the 16-bit one’s

VOLUME 4, 2016 4209

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

complement of the one’s complement sum2 of all the 16-bit
words in an IPv4 header. This checksum does not cover TCP
data or header, hence there is a similar checksum in TCP
header that covers all the 16-bit words in the TCP header,
the IP addresses of source and destination, the protocol value
field and the length of the TCP segment.

IP and TCP checksums fare well in detecting multi-
bit errors, however they cannot detect common errors like
reordering of bytes,3 insertion of zeros, deletion of zeros or
multiple errors that can sum to zero. These weaknesses have
been addressed in Adler’s checksum [9], Fletcher’s check-
sum [9], [10] and CRC [11] by considering the positions of
bits in the sequence. However, this robustness comes at the
cost of increased computational complexity.

Fletcher’s checksum [10] is a position-dependent check-
sum and was proposed by John Fletcher in the late 1970s.
Its error-detection capabilities are comparable to CRC, and it
requires much less in computational effort, hence making it
a useful alternative to CRC. Fletcher’s checksum is sensitive
to the order of blocks (bytes) in the data word over which it
is calculated, and hence it can detect any error in the reorder-
ing of bytes. This is achieved by calculating two checksum
values, i.e. S1 and S2. The first checksum, S1, is the modular
sum of all the data blocks, i.e., D0 to DN , into which the data
word has been divided. The second checksum, S2, is the sum
of all the values taken by the first checksum, S1, as each block
of the data, Di for i = 1 . . .N , is added to it. Both sums,
S1 and S2 are initialized to zero and use the same modulus
i.e. modulo 255 for 8-bit blocks and modulo 65, 535 for
16-bit blocks. The Fletcher checksum is formed by concate-
nating S1 and S2. Fletcher checksum gets its sensitivity for
the order of data blocks due to the accumulation of S2.
The size of the Fletcher checksum is dependent upon the

size of the data block. An 8-bit data block results in two
8-bit checksums combined into a 16-bit Fletcher checksum.
Similarly, 16-bit and 32-bit data blocks result in 32-bit and
64-bit Fletcher checksums, respectively.

Adler’s Checksum employs the same algorithm as
Fletcher’s checksum but ostensibly improves its effectiveness
by selecting a prime number modulus for both the check-
sums [9]. The use of a prime number modulus is purported to
ensure that even the least detectable patterns, which dominate
the overall performance of an error detection technique, are
detected. However, studies have demonstrated [12] that con-
trary to popular belief Fletcher’s checksum is more effective
than Adler’s checksum in all cases except Adler-16 over short
data word lengths. This slight improvement in error detection
of Adler-16 comes at a relatively higher computation cost due
to its usage of a prime number modulus.

Cyclic Redundancy Check or simply CRC was initially
proposed in 1961 by Peterson and Brown [13]. It is a poly-
nomial based arithmetic block code, an entirely different

2A one’s complement sum is obtained by adding the carry to the
16-bit sum of all the 16-bit words.

3Since the checksum is basically a 16-bit sum, it doesn’t change with the
order of the bytes.

technique in comparison to simple checksums due to its com-
plexity and robustness. CRC has many variants and it usually
falls into a category of its own. Although computationally
expensive, CRCs are easy to implement and analyze, and can
successfully detect common transmission errors [11].

CRC is based on cyclic codes, which are linear blocks
of code wherein the cyclic shift of each codeword produces
another codeword [14]. Cyclic codes are usually generated
using shift registers. The cyclic shift of any codeword w(x)
by i positions is also a codeword:

w(i)(x) = x iw(x)mod(xn − 1) (1)

Likewise, as mentioned earlier these cyclic codes are lin-
ear, therefore the sum of their shifts are also codewords.
Hence for any polynomial p(x) = p0 + p1x + + pmxm,
the polynomial p(x)w(x) is a codeword:

p(x)w(x)mod(xn − 1) =
m∑
i=0

(pix iw(x)mod(xn − 1)) (2)

The CRC algorithm works by inserting redundant check-
bits into each data packet to be transmitted. These check-bits
are remainders of polynomial division, of base 2, performed
over blocks of data. A polynomial in CRC refers to the bits
representing the divisor. For example the divisor bits 1011
represent the polynomial x3+x+1. A polynomial uponwhich
both the sender and receiver agree is called the generator
polynomial, which is then used to generate the CRC check-
bits for the data to be transmitted. Many types of CRC are
standardized based on the generator polynomial. The most
common ones are summarized in table 1.

TABLE 1. Common CRC standards.

Whether wired or wireless, studies [15]–[17] have shown
that the error detection and correction capabilities of CRC
are unaffected by the medium of transmission. CRC, on
account of its exceptional reliability in error detection, is
the most widely used mechanism for verifying data integrity
in communication networks. Most of the protocols in the
TCP/IP stack such as IP, ICMP, IGMP, UDP, and TCP use
CRC algorithms to detect errors.

Mandel and Mache [15], [16] have shown that CRC gener-
ator polynomials can be used to detect not just simple single-
bit errors but also burst errors. They further show that the

4210 VOLUME 4, 2016

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

limitation of CRC, i.e., being only able to detect errors and
not correct them, lies in the improper selection of gener-
ator polynomial for a particular network environment. An
appropriate generator polynomial can be selected for a given
network environment by studying network properties like
channel condition and error patterns. They proposed a new
protocol, called TVA (Transmit-Verify-Acknowledge) [17],
to practically demonstrate the error correction capabilities
of CRC, which selects the generator polynomial based on
properties of the network.

Granted, CRC is capable of correcting single bit errors
or more, nevertheless error detection remains its primary
function. CRC, in conjunction with IP and TCP checksums,
forms the mainstay of the TCP/IP protocol suite when it
comes to the correct identification of corrupt packets. Higher
layer checksums (such as IP and TCP checksums) help
detect any data corruption introduced by intermediate devices
(e.g. routers as they work at the IP layer) or end hosts whereas
CRC is used to verify data integrity at lower layers during
local media transmission (e.g. ethernet switches employ CRC
as they work only at lower layers). It is quite obvious that
checksums are used as secondary checks on top of CRC but
they have their own utility and help catch software errors
introduced in buffer mismanagement or even hardware errors
introduced by network adapters and DMA, which are very
common.

Despite their limitations, experimental studies suggest
that IP and TCP checksums are adequate for IP header
integrity [18]. Notwithstanding these experimental findings
IP checksum is considered superfluous and its need debated
for long in the presence of other checksums, especially
when at times CRC and IP checksums do not agree [19]
thereby causing issues. The IP checksum was eventually
deemed unnecessary and abandoned in IPv6, arguing that
TCP checksums combined with link layer CRC are ade-
quate, and provide sufficient data integrity checks during
transmission.

B. ARQ: AND ITS KIN
ARQ is a timer based retransmission scheme and by far the
most widely used mechanism to recover failed packets. Its
simplest version is programmed at the link layer. In this
scheme the sender waits for feedback from the receiver for
a certain time duration before retransmitting a packet. This
feedback can either be an ACK or NACK to inform the
sender whether the packet was correctly received or other-
wise, respectively.

The most notable use of ARQ is in the sliding window
protocol in TCP [20] and in IEEE 802.11 and 802.15.4
based wireless data links for in-order and reliable delivery of
packets. In these schemes, packets (or frames) are assigned
sequence numbers allowing the receiver to ACK correctly
received packets and identify the missing ones. The receiver
is required to acknowledge all packets (or frames) that it
receives. The sender and receiver can both manage buffer
overrun by controlling the flow of data using the protocol’s

window function. Sliding window protocol in TCPmakes use
of three types of ARQ.
Stop-and-Wait ARQ is the simplest form of sliding window

protocol where the size of both transmission and receiving
windows is set to one. Sender sends one packet (or frame)
at a time and waits for its acknowledgement by the receiver.
The packet (or frame) is resent if its ACK is not received from
the receiver within a certain time duration. The stop-and-wait
ARQ scheme has two main problems.
First, duplicate frames cannot be recognized. An example

scenario can be when the sender doesn’t receive the ACK, it
times out, and sends the frame again. However, the receiver
cannot determine whether this new frame is the next frame
in the order or a duplicate. To resolve this problem, a one-
bit sequence number is added to each frame that indicates the
next expected frame.
Second, a sender can receive two ACKs for the same frame

whereas it should get only one as the stop-and-wait ARQ
allows for only one outstanding (un-ACKed) frame i.e. the
sender waits for an ACK before sending the next frame. This
might be the result of excessive latency in the transmission
medium causing the sender to resend a frame before its ACK
is received. This would result in the receiver having two
copies of the same frame and sending twoACKs to the sender,
who is expecting only a single ACK.
Go-Back-N ARQ allows the sender to send multiple frames

without waiting for an acknowledgement. The number of N
outstanding frames in Go-Back-N ARQ is determined by the
window size between the sender and the receiver. In other
words, when compared to stop-and-wait ARQ, Go-Back-N
ARQ uses a transmission window of size N and a receiving
window of size 1.

The Go-Back-N ARQ is inefficient on links that are more
susceptible to packet loss as the receiver won’t accept any out
of order frame and would cause the re-transmission of all the
frames even if a single frame is lost. Other than efficiency
issues on some links, this version of ARQ can result in a
predicament for the transmitter. An example scenario would
be when the transmitter sends all the frames in the transmit
window without waiting for any acknowledgement. Once the
frames have been transmitted, any acknowledgement after
that must contain enough information to determine which
frames have been received correctly and which haven’t.
Unfortunately for the transmitter, these acknowledgements
do not provide such information, hence the predicament.
Selective-Repeat ARQ is the most general and widely used

form of sliding window protocol where both transmission
and receiving windows are of size N . The transmitter sends
frames according to a pre-specified window size without
waiting for ACKs of individual frames. The receiver can
request the sender to resend selective frames from its window
and it should be capable enough to store frame that are deliv-
ered out of order. The receiver can reject individual frames
without requiring the transmitter to resend all the frames as
in Go-Back ARQ, thus making this form of ARQ well suited
for links with low reliability.

VOLUME 4, 2016 4211

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

The utility of ARQ stems further from the fact that it has
been used in combination with (or as a backup for) other error
detection and correction schemes such as EARQ, HARQ
and MRQ. We defer a more detailed discussion on HARQ
and its variants to Section III-D and EARQ and MRQ to
Section III-C.

III. ERROR CORRECTION: WHEN RETRANSMISSIONS
ARE TOO EXPENSIVE
Retransmission of a packet is a rudimentary yet reliable
technique for recovering from packet failure but it has several
disadvantages. Real-time services and applications requiring
low latency cannot use ARQ schemes because it becomes too
late for the data to be useful by the time the sender retransmits
it. In some cases, the original data is no longer available to be
transmitted if errors occur after transmission. Moreover, in
battery-driven wireless devices, retransmission can be very
expensive both in terms of energy and bandwidth. Thus it is
but a natural progression in the evolution of packet recovery
techniques that we recover the corrupt packets. The need for
error correction mechanisms is rooted in systems and appli-
cations where transmitter immediately forgets the data it sent
or where there is no back-channel (simplex communication:
TV or radio broadcasting) to send feedback to the transmitter
in order to use ARQ.
Error Correction Code (ECC) — also known as Forward

Error Correction (FEC) or Channel Coding — is a technique
used to add redundant data to a packet that can be used by
the receiver to correct errors introduced during transmission.
Hamming [21] pioneered this field by introducing hamming
codes to correct errors. Majority of error correction tech-
niques work in tandem with other basic forms of packet
recovery methods, such as ARQ, to ensure error-free delivery
of packets. For example, Hybrid-ARQ combines FEC and
ARQ, i.e., packet retransmission is requested only when FEC
fails to recover it.

In the last few years, besides error correction codes, several
other methods have emerged for recovery of corrupt pack-
ets ranging from the simple ones, which combine multiple
corrupted copies of a packet (Section III-C) to the more
complex ones, which use confidence values from physical
layer (Section III-B.2). In the following text, we discuss a
variety of these error correction mechanisms.

A. ERROR CORRECTION CODES
Claude Shannon’s paper ‘‘A Mathematical Theory of Com-
munication’’ [22], published in 1948, marked the inception
of the field of information theory (also called coding the-
ory or channel coding). Shannon’s work focused on finding
out ways to encode information to be sent over a noisy
channel that could corrupt it. He proved in his publication
that reliable communication is possible over such channels
only if the transmitted information is sent at a rate, which
is less than the channel’s capacity. Though Shannon estab-
lished the existence of such codes, which could reliably
transmit data over data corrupting communication channels,

he did not propose explicit guide on how to achieve such a
feat.

The purpose of channel coding stretches from finding
codes to transmit information quickly and reliably to ones,
which can detect and correct errors in the transmitted infor-
mation. In this section we focus on error correction codes [23]
also known as erasure codes, which have long been used in
wireless networks for both error detection and correction. The
central idea behind error correction codes is to add redundant
bits to the original data, using some algorithm, which can be
useful in reconstructing or recovering the original data.

Richard Hamming invented the hamming code [21], which
paved the way for the evolution of more efficient codes.
FEC [5], [24] is a good example of an error correction
code, which is extensively used in real-time wireless appli-
cations [25] and wireless networks [26].

A key measure of efficiently encoding blocks of data using
correction codes is information rate or code rate. In simple
words, code rate is the original data (non-redundant) divided
by total data (original data plus redundancy). For example, in
case of Hamming(3,1), the total number of transmitted bits
are 3, whereas original data is only 1 bit, which means that
the code rate for hamming(3,1) is 1/3 ≈ 0.333. This means
that only 33% of the total block is useful information, rest
is redundant data inserted for corrections lest the data gets
corrupted during transmission.

Correction codes can be generalized into two categories in
terms of their evolution over time;
• Simple codes, which have low computational overhead
but a higher communication overhead, which makes
them suitable only for wired communication with dedi-
cated channel between transmitter and receiver e.g. Uni-
versal Asynchronous Receiver Transmitter (UART).

• Efficient codes, which use complex algorithms that
entail a high computational cost but their low transmis-
sion overhead means higher data rates rendering them
more suitable for wireless communication.

1) SIMPLE CODES
The simplest error correction code is the repetition code.
As the name suggests, repetition code is a multiple repetition
of message (or bits) over a channel. The receiver can then
reconstruct the correct message either by using the majority-
vote over each bit or simply selecting a message that occurs
most often. Repetition codes are very simple to implement
but introduce a very high communication overhead, which is
highly undesirable in bandwidth restricted wireless commu-
nications. Moreover, the assumption that only a few copies of
a message will be corrupted is not entirely valid in wireless
networks.

A more logical and refined way of coding is the multi-
dimensional parity-check code (MDPC). It is more robust and
provides higher data rates at almost no extra computational
cost in comparison to repetition code. It operates by arranging
the message into a matrix; rows and columns, and calculates a
parity digit for each row and column. For example, using this

4212 VOLUME 4, 2016

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

scheme the original message 1234, is transmitted as follows:[
1 2
3 4

]
(3)

To the original message in Eq. 3 parity digits are added by
summing rows and columns as given below:1 2 3

3 4 7
4 6

 (4)

Thus for a 4 digit message ‘‘1234’’, an 8 digit encoded
message is sent as ‘‘12334746’’. The receiver rearranges the
message into a matrix and can detect and correct single digit
errors by adding up the rows and columns.
Hamming codes, a family of error correction codes, suc-

ceed the repetition code. Hamming(7,4) or just Hamming
refers to the first error correction code of this family, which
was invented by Richard W. Hamming in 1950 [21]. It can
correct single bit errors whereas detect 2 bit errors. (7,4)
implies that the codeword (or a block of message) is 7 bits
long of which 4 bits are original data and 3 bits are redundant.
This nomenclature for codes was also devised by Hamming
and it has become a standard for other error correction codes
as well. Redundant bits are used to create a minimal Ham-
ming distance4 of 3 bits. This means that each codeword has
a 3 bit Hamming distance from the other and the received
bits can be corrected successfully, if they are not altered by a
Hamming distance greater than 2.

The Hamming code works by creating a set of 3 parity
bits for 4 bits of data. These 3 redundant parity bits help
in detecting and correcting single bit errors in the data. The
addition of a further overall parity bit ensures the integrity
of the 3 redundant parity bits. Table 2 shows how parity bits
overlap each other and the check data bits. For example, p3
covers even parity for bits 4, 5, 6 and 7 of which bit no. 4 is p3
itself. Further more, from perspective of column, it is evident
that Bit no. 6 is covered by p2 and p3 but not by p1.

TABLE 2. Hamming code with (7,4) repetition.

Repetition codes, MDPC and Hamming codes are compu-
tationally very simple and highly desirable in digital trans-
missions where data is less prone to errors and bandwidth
is not a major constraint e.g. UART and Random Access
Memory (RAM). These codes typically offer single bit-error
correction and double-bit error detection. However, these
codes, because of very high redundancy, are not scalable and
thus not a feasible option in wireless communication.

4Hamming distance refers to the minimal number of bits that need to
be changed before reaching the next code word. The (3,1) repetition would
mean, 3 bits need to be flipped before we reach the next codeword.

2) EFFICIENT CODES
Wireless channels are more noisy in comparison to their
wired counterparts, hence they incur higher bit error rates and
necessitate the use of a more evolved set of error correction
codes for reliable data transfer. A number of efficient codes
with lower communication overhead have been developed
specifically for wireless communications. The algorithms
for these codes are however very complex and their com-
plete description is beyond the scope of discussion in this
paper. In the following text we only present their generalized
description for comparison.
Reed-Solomon Code: One of the first and most notable

among efficient codes is the Reed-Solomon (RS) [27]. Reed-
Solomon (RS) code, invented by S. Reed and Gustave
Solomon in the 1960s, quickly found its applications in com-
mercial consumer electronics such as CDs, DVDs, in data
transmission technologies such asDSL,WiMAXand in video
broadcast systems such as DVB (Digital Video Broadcasting)
and ATSC (Advance Television Systems Committee). The
commercial success and popularity of the RS code was a
result of its unique encoding scheme, which enabled it to
recover from both multiple random errors in symbols/blocks,
and burst errors, where a sequence of symbols/blocks is lost.

The Reed-Solomon code views the data to be encoded as a
polynomial. We know for a fact from elementary algebra that
a polynomial of degree k−1 is uniquely determined by k dis-
tinct points. The polynomial uniquely determined by the data
to be encoded (which form the coefficients of the polynomial)
is transmitted using its samples (evaluations) at various values
of x. The Reed-Solomon scheme ensures reliable data transfer
by encoding k input numbers (the polynomial coefficients)

a0, a1, a2,, ak−1

into n numbers (samples or evaluations of the polynomial
at n different values of x)

α0, α1, α2,, αn−1

for transmission, where n ≥ k . The redundancy introduced
by this scheme, for the reliable transmission of k numbers,
is n − k . The receiver would be able to recover the orig-
inal k input numbers (ai), if it receives at least k encoded
numbers (αi), no matter which k encoded numbers (αi) are
received. Redundancy and reliability come naturally to RS
codes i.e. to increase reliability we just need to send more
(redundant) samples of the polynomial [28]. Generally an RS
codeword is given as follows:

Data Parity
k 2t

A popular Reed-Solomon code is the RS(255,223) with
8-bit symbols (denoted by s). Each codeword contains 255
(denoted b n) code word bytes, of which 223 (denoted by k)
bytes are data and 32 bytes are parity. For this code, the
decoder can correct any 16 (denoted by t where 2t = n− k)
symbol errors in the code word i.e. errors in up to 16 bytes
anywhere in the codeword can be automatically corrected.

VOLUME 4, 2016 4213

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

In many applications especially those involving deep space
satellite communications such as NASA’s Voyager mission,
Reed Solomon codes have been used in concatenation with
convolutional codes [29]5 Convolutional codes do not divide
source data into blocks, instead read and transmit bits con-
tinuously. The transmitted bits are linear functions of past
source bits, hence convolutional encoders require memory
while encoding data for transmission. Convolutional codes
are extensively used as error correcting codes for radio satel-
lite communications [30].

The bit error rate improvement provided by RS code
is phenomenal but it still falls short of Shannon’s limit.
In 1993, Turbo codes [31] were proposed by Claude Berrou,
Alain Glavieux and Punya Thitimajshima with the poten-
tial of affording a bit error rate approaching Shannon’s
limit. Turbo codes are popularly used in deep space com-
munication and other telecommunications technologies such
as 3G mobile communication(cellular communication). The
essence of turbo codes is in the use of data blocks. It sends
three sub-blocks of bits: first sub-block being m−bits of
payload, second sub-block is n/2 parity bits of payload and
third sub-block is n/2 permutation of payload. The second
and third sub-blocks are computed using recursive systematic
convolution code (RSC code) [31]
LDPC (Low-Density Parity-Check codes) [32], [33] were

invented by Robert Gallager in 1962 long before turbo codes.
However, only recently LDPC codes are replacing turbo
codes in many areas of digital communication. This is mainly
because of the late implementation of LDPC codes for com-
mercial applications. It provides highly efficient information
transfer over noisy channels. LDPC codes are being used in
a wide variety of communication applications ranging from
the long distance satellite TV transmissions i.e. Digital Video
Broadcasting-Satellite 2 (DVB-S2), to the short range home
networking i.e. the ITU-T G.hn standard.6 Variants of LDPC
codes are also used in 10GBase-T Ethernet and in IEEE
802.11 protocol family as an optional part of 802.11n and
802.11ac standards.

Full explanation of LDPC is beyond the scope of this
paper. We give here a short description of LDPC and briefly
differentiate it from other codes. LDPC is a linear block
code that is based on sparse bipartite graphs. It has a parity
check matrix H, with sparse rows and columns. The parity
check matrix describes linear relations that components of
codewords must satisfy. An LDPC code, where each row has
the same weight j, which is the number of 1’s in each row,
and each column has the same weight k , which is the number
of 1’s in each column is called a regular Gallager code [30].
The LPDC parity check matrix must satisfy two conditions:
j � N and k � M , where N is the block length and M is
the number of constraints on a single bit. This condition is

5A type of error correction code in which m− bit symbols are encoded in
n− bit symbols, where m/n is code rate such that n ≥ m.

6G.hn is an ITU telecommunication standard to enable high speed net-
working in homes for audio, video and data transmission over existing
coaxial, telephone and power lines.

only met when the matrix is sufficiently large. LDPC codes
perform near Shannon’s limit, if large block lengths are used.
Raptor Codes are an extended form of the Luby Trans-

form codes or simply LT-codes, which were invented by
Michael Luby in 1998 [34]. They have been adopted into
different standards by the IETF [35], [36] and the Long Term
Evolution (LTE) for multimedia broadcast and multicast ser-
vices (MBMS) [37]. Raptor being a fountain code, has the
property that its encoder can generate as many encoding
symbols as are required from the given source symbols.
Moreover, the decoder for Raptor codes, can theoretically
recover all the original source symbols from any subset of
the encoding symbols, provided the number of encoding
symbols in the subset is either equal or slightly larger than
the number of source symbols. Fountain codes can work
in practice only if they have reasonably fast encoders and
decoders, e.g., the encoder and decoder for Raptor code work
in linear time.Moreover, the decoders for fountain codesmust
be able to recover the original symbols with reasonably high
probability [34].

B. PARTIAL PACKET RECOVERY
In wireless networks the receiver tests a received packet for
errors and usually discards it even if a small number of bits
are corrupt in the packet; whereas, in most cases intermedi-
ate level of data corruption occurs [38]. This leads to more
frequent retransmissions in wireless networks because the
link or channel condition is not as reliable as in wired net-
works, which causes the protocol to be very inefficient. This
inefficiency is avoided by exploiting partial packet recovery
(PPR) in which a corrupt packet is not discarded immediately
but rather used, for example, for correlating with the other
retransmissions of the same packet if retransmissions also fail
to provide a completely correct packet.

We divide partial packet recovery approaches into two
classes i.e. PHY layer and link layer approaches. While PHY
layer approaches require changes in the networking hard-
ware, most link layer approachesmainly update the driver and
relevant software.

1) PHY LAYER APPROACHES
After ECC, one of the most effective ways to detect and
correct errors is at the PHY layer of the protocol stack. PHY
layer provides a wealth of information and is the best place
to recover corrupt packets, being the first layer to handle a
packet at the receiver node. However, the majority of the
techniques at this layer understandably require changes in
the networking hardware, which is sometimes undesirable
(e.g. compatibility issues) or not even possible (e.g. existing
deployments).

Physical layer operates by grouping data bits into symbols
and then modulating those symbols into a signal for trans-
mission over the communication channel. These symbols at
physical layer can be very useful in detecting and correcting
corrupted bits. A number of techniques [39]–[42] have been
developed to utilize these symbols in correcting erroneous

4214 VOLUME 4, 2016

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

packets. Among these, PPR [39], SOFT [40] and ZigZag [41]
are the most widely recognized solutions that try to utilize
PHY layer information for correcting packets.
Partial Packet Recovery (PPR) [39] system identifies cor-

rupt bits in a packet and then requests the retransmission of
those corrupt bits only. This is contrary to other approaches,
such as FEC, which requires a complete packet retransmis-
sion upon failure, thus wasting network capacity. PPR does
so by introducing a Soft-PHY interface, which allows the
receiver to determine the bits in a packet that are likely to
be received correctly. Using this interface, the PHY layer
informs upper layers about how closely the received decoded
symbol matches the original symbol mapped by the PHY. The
higher layers can use these hints from PHY layer to decide
which bits are to be retransmitted. PPR further introduces
the concept of postamble decoding to correctly decode bits
from packets, whose preambles are corrupted due to noise
or packet collisions. The idea is to replicate the preamble
and header of a packet in a postamble and trailer of the
packet, respectively. This allows the the receiver to correctly
decode these portions of the packet. Finally PPR introduces
PP-ARQ: a modified ARQ, which only requests the retrans-
mission of those portions of a packet that are likely to be
received incorrectly. Overall, PPR modifies the PHY layer
(and the hardware) extensively to achieve the aforementioned
functionality.
SOFT [40] uses the confidence measure of PHY layer’s

decision on each bit to recover corrupt packets. Existing PHY
layers compute their confidence for each bit, however, this
information is not utilized because of the lack of relevant
interfaces between the PHY and link layers. The confidence
measure of PHY layer alone is not enough for the higher
layers to establish whether a particular bit is a ‘0’ or a ‘1’.
Hence, for uplink, SOFT exploits the deployment of over-
lapping access points to achieve these confidence measures
from multiple access points. In this scheme, all the access
points that overhear a packet transmission communicate their
confidence measures to the intended access point over wired
ethernet. Hence, the larger capacity of the wired ethernet is
utilized to reduce wireless retransmissions. For downlink, a
host can utilize the same confidence measures over multiple
corrupt copies of the same packet. SOFT is a very efficient
mechanism to overcome dead spots and significantly improve
delivery rates in noisy environments.
ZigZag [41], [42] combats the hidden terminal prob-

lem [43]–[45] that results in successive collisions at the
receiver in 802.11 networks. CSMA/CA7 is a reliable tech-
nique to avoid collisions in 802.11 networks but fails in one
particular scenario, where two nodes can communicate with
a third one (Access Point), but cannot sense each other, this
case is known as the hidden node or hidden terminal prob-
lem. The consequences of two nodes simultaneously sending
packets to an access point, because both nodes are hidden

7A sender first senses the medium before sending anything and abstains
from sending packets if the medium is busy.

from each other, are drastic; packets collide indefinitely,
choking bandwidth and performance of the network.

ZigZag exploits two important characteristics of IEEE
802.11. First, an unnoticed collision of packets, transmitted
by the hidden terminals tends to result in more collisions at
the receiver. Second, since the sender jitters every transmis-
sion with a short random interval, successive collisions at the
receiver start after a random number of interference-free bits.
This asynchronous nature of retransmission is exploited by
ZigZag and correct bits are collected, decoded and combined
piece by piece from repeated collisions of the same packets.
Consider, for example, an AP receiving collided packets from
two hidden terminals. Both the senders will retransmit the
packets resulting in a second collision. Due to IEEE 802.11
jitters, both these collisions will have a different starting off-
set. AP finds the chunk of bits that experienced interference
in one collision but were correctly received in the other due to
the random jitter. It uses this chunk (say chunk 1) to bootstrap
its decoder. After decoding the correctly received chunk 1
with the normal decoder, it moves on to subtract this chunk
from the second collision to compute chunk 2 and this process
continues until both the packets are correctly decoded.

ZigZag achieves the same throughput as if the collided
packets were received in separate time-slots. It only requires
modification at the receiver and is thus useful in typical
wireless LANs with multiple hosts connected to a single AP.
The benefits of ZigZag are not bound to hidden terminal
problem only, but extend to mesh networks, to avail more
concurrent transmissions. ZigZag is backwards compatible
because changes are only made in the AP and not in the
sending nodes. It does not modify the MAC protocol and
behaves as IEEE 802.11 in the absence of collisions, however
when packets collide, ZigZag wakes up out of the blue, and
decodes partially corrected packets. Hardware changes need
to bemade in theAccess Points, because ZigZagmakes heavy
use of physical symbols in decoding the partially corrupted
packets, which are not accessible in the hardware of conven-
tional Access Points.

2) LINK LAYER APPROACHES
The majority of software based approaches for partial packet
recovery operate at the link layer.
Maranello [3] proposes a block-checksum based retrans-

mission mechanism for partial packet recovery. If a corrupt
packet is received, the receiver computes checksums over
blocks of consecutive bytes in that packet. These check-
sums are appended with a NACK to the sender. The sender
recomputes checksums using the original copy of that packet.
It then re-sends only those blocks for which the checksums
do not match and repeats this partial retransmission until an
ACK is received. The prime advantage of Maranello is that
it does not introduce any additional overhead in the case
of correct transmissions. The only overhead is the check-
sums that are appended with the NACKs of corrupt pack-
ets [46]. These appended checksums can increase the size of a
Maranello-NACK upto 96 bytes as opposed to the standard

VOLUME 4, 2016 4215

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

14 bytes, hence resulting in larger airtime, which in turn may
lead to collisions with frames from hidden terminals at some
lower transmission rates [47]. Nevertheless, Maranello eval-
uation results [46] show significant improvement in through-
put as compared to the standard IEEE 802.11. Although
Maranello is compatible with current IEEE 802.11 based
devices, since it observes the timing and back-off standards,
its implementation on other platforms is impeded by the fact
that Maranello NACK generation is a time critical operation,
which requires firmware modification [47].
ZipTx [6] is another software based solution that modifies

the wireless LAN card driver. Hence, similar to Maranello, it
can also be deployed in existing IEEE 802.11 basedWLANs.
ZipTx disables the CRC functionality thus allowing the hard-
ware to pass-on even the corrupt packets. For corrupt packets
with low BER, ZipTx uses error correction codes to recover
corrupt bits. Since error correction codes require twice as
many symbols as the number of incorrect coding symbols,
ZipTx recovers packets with high BER through retransmis-
sion. It uses known pilot bits in each packet to identify packets
with high BER. This dual strategy allows ZipTx to gain sig-
nificant throughput improvements. In contrast to other partial
packet recover approaches, which use fixed modulation and
coding schemes, ZipTx operates on top of adaptive modu-
lation and coding employed by IEEE 802.11 based WLANs
to maximize their error correction capabilities. ZipTx is the
first approach that combines the gains of partial packet recov-
ery and adaptive modulation and coding. However, ZipTx
increases latency as it uses coding and aggregative feedback
schemes. It also incurs a relatively high computational cost
on channels with high BER [47].

C. CORRELATION BASED PARTIAL PACKET RECOVERY
Correlation based techniques recover a packet using its mul-
tiple corrupt copies that are received over multiple paths. The
underlying assumption is that most of the errors introduced
into these packets are either due to multipath fading (path-
dependent errors) or noise (location-based errors). These
techniques also employ partial packet recovery, but, it is only
based on multiple corrupt receptions of a packet without any
additional soft or coding information from the PHY layer.

The idea of combining two or more corrupt packets to
reconstruct the original onewas first proposed as an extension
to the ARQ scheme [48], i.e., Extended ARQ (EARQ). In this
scheme, the receiver stores the corrupt packet and requests
its retransmission. If the second copy is also corrupt, which
is most likely if errors are due to path loss, then both copies
(and more if available) are XOR-ed to locate bit errors. If the
errors in both packets are not in the same position, then the
packets are combined and the original packet is reconstructed
by removing the erroneous bits form both copies. Otherwise,
this process is repeated until the correct copy can be recon-
structed.

EARQ is very useful in adverse networking conditions,
where high noise and interference make it difficult for the
sender to deliver a completely correct packet. In contrast to

ARQ, where retransmissions are requested until a packet is
correctly received, EARQ can reconstruct a packet before
receiving its entirely correct copy. EARQ achieves better
transmission efficiency for small packet sizes as its complex-
ity increases exponentially with increasing packet size [48].
MRQ (ARQ with memory) [49] improves EARQ by using
block-by-block error correction and retransmission, thereby
avoiding the need for retransmission of an entire packet.
Multi Radio Diversity (MRD) [50] utilizes the spatial diver-

sity of multiple receivers, and packet combining to improve
loss resilience in WLANS. This is achieved by using mul-
tiple APs for uplink, and multiple antennas at the receiver
for downlink. The underlying idea is that packet losses on
different receiving antennas are statistically independent, and
hence, a correct packet can be constructed from its multi-
ple receptions on different receivers (mutiple APs or only
antennas). Even if all the received copies of packets are
corrupted, which could be the case for extremely noisy chan-
nels, MRD might still be able to reconstruct the original
packet by coordination. As a backup, MRD also utilizes a
light-weight retransmission scheme to ensure correct packet
delivery. Nonetheless, MRD algorithms require the clients to
simultaneously communicate with multiple APs deployed in
overlapping coverage area, a requirement, that is currently not
supported by widespread WLAN schemes.
Simple Packet Combining (SPaC) [51] is a light weight

technique for low-power WSN, where channel utilization is
typically low and packet corruption is mostly due to path
fading and attenuation. The main challenge is to attempt
packet recovery within the limited energy budget of WSN.
SPaC simply buffers corrupt packets and when two or more
corrupt copies are available, it attempts to combine them to
recover the original one. For at most two copies within a
certain time frame, it uses incremental CRC, while for more
than two copies, majority vote over packet bits is employed
to reconstruct a packet.

D. HYBRID TECHNIQUES
Error correction codes are both inefficient and insufficient in
extremely poor channel conditions. A fall back mechanism
improves performance of transmission when error correction
schemes are not effective. Schemes, that apply error correc-
tions combined with retransmission as a fall back, are called
Hybrid-ARQ or simply H-ARQ.
Hybrid-ARQ (H-ARQ) [52] combines FEC [24], [53]

with ARQ (Section III-A and Section II-B, respectively).
In H-ARQ, FEC works as the primary mechanism to correct
errors, while ARQ is used as a fall back mechanism. In nor-
mal ARQ technique, parity bits (such as CRC) are added
to original data to detect errors, but HARQ can omit parity
bits (CRC) if error correction code used by FEC mechanism
can detect errors. One example of FEC code that can detect
and correct errors is the Reed-Solomon code.

There are three different versions of H-ARQ (Type I,
Type II and Type III), each with its own advantages and
pitfalls depending on channel conditions. All the H-ARQ

4216 VOLUME 4, 2016

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

techniques avail multiple techniques to reduce overhead or
redundant bits sent with the original data for error detection or
correction. For example, Type I H-ARQ [54] employs Adap-
tive Coding Rate8 (ACR) [55], which decides the number
of redundant bits (error correction codes and CRC) to be
added to the transmission frame based on channel conditions.
It reduces the transmission overheadwhenever it can. The aim
of ACR is varying the coding rate to correct errors. Coding
rate is changed as soon as channel conditions are changed.
However, Type II H-ARQ [56] uses Adaptive Incremental
Redundancy (AIR) [57] for variable rate retransmissions and,
Rate Compatible Punctured Convolutional Codes (RCPC
Codes) [58] for adaptively changing the code rate without
requiring the retransmission of entire blocks.

In principle, however Type I, Type II and Type III H-ARQ
have a very simple working mechanism. In Type I H-ARQ,
the receiver end decodes error correction codes and recovers
the data corrupted over transmission, when channel condi-
tions are good. In bad channel conditions, the receiver can-
not recover corrupted data with error correction codes. The
situation is detected using the error detection code and a
request for retransmission is sent. A single data unit in Type I,
always consists of original data, error correction code and
error detection code.

The Type II H-ARQ works more efficiently as it sends
the original data with error detection codes(CRC) only; Error
correction codes (FEC) are sent separately when required.
If the original data is received error free (detected using CRC)
then error correction codes are not sent at all. In good channel
conditions, data units (original data plus error detection code)
are received correctly, eliminating the need of error correction
codes. Thus TYPE II achieves high data throughput in good
channel conditions as compared to Type I (Type I always
sends both error correction and error detection codes without
any exceptions).

Type III H-ARQ [56] is a modification of TYPE II and
the only way it differs from Type II is due to its use of
Complementary Punctured Convolutional (CPC) [59] codes
for changing the coding rate. The CPC codes are self decod-
able, which relieves the decoder from relying on previous
transmissions of the same data unit for decoding. Type III, as
compared to type II, is more complex in implementation but
with advantage of not requiring larger buffers at the receiver
side. Nevertheless, the working mechanism of Type II and
Type III are exactly similar.

Different types of H-ARQ are used in widely adopted
technologies such as HSDPA [60], HSUPA [60], mobile
WiMAX [61] and LTE networks [62].

IV. ERROR TOLERANCE: ACCEPTING ERRONEOUS
PACKETS WHILE DISREGARDING ERRORS
Errors are bound to occur in data transmission and are
more likely to appear in wireless media. Several methods,

8Code rate is the ratio of data bits in transport frame to the redundant bits
inserted by channel coding

as discussed in the preceding sections, have been developed
and incorporated into protocols to detect and recover cor-
rupt packets. Error detection and correction mechanisms are
either bandwidth choking or computationally demanding, and
present a range of issues for battery driven devices. Protocols
and mechanisms for packet recovery have evolved to the
next stage, i.e., error tolerance. Error tolerant techniques take
an entirely different approach towards dealing with trans-
mission errors. Instead of recovering from errors in data,
using redundant information that is sent alongside data, these
methods tolerate errors. This is done either by preventing
errors from happening at all (if possible), as in Header Com-
pression techniques (Section IV-A), or by Error Estimation
(Section IV-B), or by enabling the protocols and applications
to function properly even in the presence of errors by attempt-
ing unconventional recovery mechanisms as discussed in
Section IV-C.

The fact that these techniques allow protocols and appli-
cations to function even in the presence of errors, gives them
an evolutionary advantage over other methods, which try to
recover from errors. In the following text, we discuss the
prominent approaches that represent this stage of evolution.

A. HEADER COMPRESSION TECHNIQUES
Header compression schemes, though originally aimed at
reducing overhead, enable error-tolerant communications,
i.e., by reducing the header size it decreases the chances
of bit errors in vital portions of the packet. The need for
compressing headers stemmed from the low speed serial
links that provided Internet connectivity to home users in
the late 80’s. Such terminal connections required interactive
responses from users.

The first header compression algorithm CTCP [63] was
proposed in 1991, which compressed IP and TCP headers for
better bandwidth utilization and line-efficiency9 over serial
links. Afterwards, many compression schemes [63]–[67]
have been standardized for various protocol streams, such as
for compressing TCP/IP header [63], for IP/UDP/RTP [64],
for IP header compression [65], and UDP lite [67], to com-
press control information by exploiting redundancy in head-
ers. For example, typical headers of UPD and TCP can be
compressed down to 4–7 octets, from the original size of
20 octets. This high level of compression serves many pur-
poses, such as:
• Improving line-efficiency for small data packets.
• Using small packets for delay sensitive low data rate
traffic, i.e., voice and video.

• Decreasing header overhead and utilize bandwidth more
efficiently.

• Reducing packet loss rate and bit errors rate (BER) over
lossy channels.

Transmitting lesser header information means lowering
the probability of errors that occur in headers. Header com-

9Line-efficiency of a protocol is the ratio of data to header+data in a
datagram.

VOLUME 4, 2016 4217

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

pression, by significantly decreasing overhead due to control
information is of phenomenal importance for battery driven,
low data rate devices, such as in IEEE 802.15.4 based net-
works. Apart from reducing the chances of errors in headers,
it also brings about energy efficiency, which is a major con-
straint in IEEE 802.15.4 based devices, as lesser number of
bits have to be transmitted.

One of the more advanced schemes, robust header com-
pression (ROHC) [68], can reduce the header size of UDP,
Real-time transport protocol (RTP) and IP datagrams down
to 3–4 bytes. In the case of both IPv4 and IPv6, it can reduce
the TCP and IP header size down to 8 bytes from their orig-
inal sizes of 40 and 60 bytes, respectively [62]. The ROHC
protocol is widely used in LTE networks [62] and exploits
the information redundancy in the headers of TCP/IP, UDP
and RTP protocols. It provide different profiles for header
compression, which specify how certain packet streams are
going to be compressed over certain links. Hence, first the
stream of packets is classified and then it is compressed
using an appropriately selected profile. Unlike CTCP, which
is protocol specific, the ROHC framework includes profiles
for many protocol streams such as IP/UDP, IP/ESP, IP-only,
IP/UDP-Lite/RTP, IP/UDP-Lite, IP/UDP/RTP, and IP/TCP,
for bandwidth limited links, such as in cellular telephony,
with high error rates and long round trip times.

On the downside, since header compression changes the
communication behaviour of all participating nodes, there-
fore it needs to be deployed at all the nodes. Moreover, all
the senders are required to maintain their current state of
connections with all their communication partners in order
to eliminate redundancies.

B. ERROR ESTIMATION
Error correction codes, discussed in section III-A, have the
ability to reconstruct erroneous packets at the receiver end.
Wireless networks are evolving into leveraging and tak-
ing benefit from partially correct packets. One such novel
scheme, i.e., the Error Estimation Codes (EEC) [69] enable
the receiving device (which may not be the destination of
a packet) to estimate the number of corrupted bits in the
partially correct packet without knowing the exact position
of the corrupt bits. It can be viewed as generalized CRC,
where CRC can only provide information, if BER exceeds
zero. On the contrast, EEC can estimate the exact number of
flipped bits or some predefined threshold.

Error Estimation Codes (EEC) add small redundancy over-
head as compared to Error Correction Codes (ECC). Soft-
ware implementation of EEC can support all data rates of
802.11a/g on typical hardware, while ECC typically require
hardware support to increase execution speed, yet they are
slower than EEC and can barely achieve data rates of WiFi
networks. The low overhead and support for high data rates,
and the ability of EEC to accurately estimate the number of
errors in a packet, make it better than ECC. WiFi routers
that implement EEC are known as BER-aware devices.
By enabling EEC, routers can decide wether or not to request

the retransmission of a corrupt packet, by looking at the
accepted threshold of errors. This results in fewer retransmis-
sions of corrupt packets, i.e., only those packets are retrans-
mitted, which can’t be dealt with on the higher layers. EEC
can assist in betterWiFi rate adaptation, by selecting data rate
that provides good throughput based on tradeoff between data
rates and packet BER.

Signal-to-noise ratio and symbol confidence on physical
interface can be also analyzed to estimate BER. RBAR [70]
estimates SNR (relation between SNR and BER is well-
known) to adapt to a rapidly changing communication chan-
nel in WiFi networks. It estimates SNR on exchange of
RTS/CTS at the beginning. However, it is not possible to
accurately compute BER using RTS/CTSmechanism as SNR
changes during packet transmission after the RTS/CTS is
computed. Most of the contemporary methods for rate adap-
tation are based on SNR, but EEC comfortably outperforms
the best SNR methods deployed.

SoftPHY interface information is used by SoftRate [71] to
compute BER and select the transmission bit rate accordingly.
It has advantage over SNR based rate adaptation schemes due
to its agility in adapting to bit rates in just a single packet
time duration. The quick response of this protocol due to
calculations made over each packet for BER, even on ones
that have no errors at all. Correct packets indicate the ideal bit
rates for transmission. Regular Wi-Fi devices do not expose
physical layer symbols/SoftPHY to upper layers, which ren-
ders it as an unlikely candidate for use in Wi-Fi networks.
Providing the same functionality in low cost networks, such
as wireless sensor networks, is undesirable due to the extra
cost for changes in the required hardware.

The most notable use of BER is to adapt to transmission or
receiving bit rate in response to channel variations in wireless
networks. For example, Wi-Fi networks usually have the
choice of selecting data rates, thus using BER information
it can adapt to different data rates to reduce BER. Lower
data rates mean less BER, and less BER is the only way to
avoid errors.Multihop networks can choose to select different
routes to optimize BER instead of optimizing delay, wherever
necessary.

C. ERROR RESILIENT PROTOCOLS
Real Time Multimedia Applications (RTMA), such as video
and voice over wireless IP networks, are proliferating at an
ever increasing rate. The interactive nature of these multime-
dia applications makes them less tolerant to delays and more
accepting towards corrupt data. Audio and video codes that
can cope with errors in payloads have been designed, and
they only require headers to be delivered free of errors. Such
applications can take advantage of protocols that allow the
delivery of damaged packets.
UDP-lite [72], [73] is probably the first protocol to ignore

the payload errors and ensure only the integrity of the protocol
header. It can deliver erroneous packets, i.e., packets with
correct headers but damaged payloads, to applications and
let them deal with the errors in the payload. In contrast to

4218 VOLUME 4, 2016

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

UDP, UDP-lite can provide the high data rates and flexibil-
ity required for RTMA, on error-prone networks, especially
wireless links. It divides its entire PDU length into sensitive
and insensitive parts, i.e., the header fields and payload,
respectively. Checksum is applied only to the sensitive part.
The ‘‘length’’ field in the typical UDP header is renamed as
‘‘coverage’’, and it shows the number of bytes that need to be
labeled as sensitive. UDP-lite was designed and proposed for
Multimedia applications that prefer damaged data over delays
and retransmissions. Studies [74], [75] have shown that
UDP-lite improves the quality and performance of RTMAs
by reducing packet delays, packet loss and the inter-arrival
time of packets.

To support UDP-lite, the lower layers, especially the link
layer must support partial error detection. This would enable
the lower layers to let the corrupt packets reach the upper
layer, where UDP-lite can receive them. Moreover the link
layer must be able to detect frames that carry UDP-lite PDUs,
so that they are not discarded if errors are detected in the
insensitive part of the UDP-lite PDUs. This is unlike the
the traditional link-layer behavior of the widely available
wireless devices. UDP-lite has two major drawbacks;
• It uses a different protocol identifier10 than UDP, which
implies that applications and network devices using
UDP-lite must have a UDP-lite stack installed at both
the sending and receiving. Thus making UDP-lite back-
wards incompatible with traditional UDP stacks in net-
work devices.

• It does not handle corrupt packets at the application
layer. All the packets received by the application layer
from UPD-lite are accepted as normal packets, i.e., the
application is not aware of any corruption in data. This
could be disastrous for protocols that use communica-
tion signalling, such as session initiation protocol(SIP).

UDP-liter [76] is a successor to UDP-lite and has been
named so because it leverages the concept of UDP-lite, and
is ‘‘lighter’’ than its predecessor. UDP-liter makes minor
changes in UDP-lite and elegantly solves its drawbacks.
UDP-liter does not change the ‘‘length’’ field in the UDP
header, and the checksum field provides checksum for the
entire packet. A conventional UDP receiver can process the
packets as it would without the need for a different protocol
identifier. UDP-liter works like UDP and uses checksums to
discard erroneous packets. It has a run-time option, which if
enabled, allows it to automatically start ignoring the check-
sum results and pass on the erroneous packets to the upper
layer. Shared protocol identifier and similar headers mean
that only the receiving node needs to be aware of UDP-liter.
However, a modification in the BSD socket API enables it to
activate the run-time option and receive a corruption notifi-
cation (CN). The CN allows the API to determine whether to
use the corrupt packet with a different algorithm or discard it.
It also makes the application aware of corrupt packets, thus

10A protocol identifier or protocol code is number assigned to each
transport layer protocol that identifies the protocol used for upper layers.

fixing the inability of UDP-Lite in handling corrupt packets
at the application layer.

UDP-liter is designed to let the applications choose, how
to deal with a packet. Applications make use of the options
through calls to the socket() function call. This way, they can
choose to use UDP-liter in the conventional UDP mode for
their transmissions or take advantage of the services offered
by UDP-liter. For conventional UDP behavior, UDP-liter
simply discards packets with failed checksums, and for UDP-
liter services, it passes the packets to the upper layer with a
corruption notification (CN), which is carried by the param-
eter, pCorrupted. With the pCorrupted parameter, an appli-
cation can determine whether a packet has been corrupted or
not, and therefore handle it accordingly.Refector [4] takes the
UDP-Liter approach to the next level by delivering damaged
packets with errors even in their headers. Refector is the
first protocol that is tolerant to header errors. Errors in head-
ers are intelligently investigated and heuristically corrected,
based on previous knowledge from protocol state. Just like
UDP-Lite, Refector is a higher layer protocol, however unlike
UDP-lite, which works on layer 4 only, Refector works on
both layer 3 and layer 4. Corrupted destination port num-
ber (layer 4) and corrupted destination address (layer 3) are
repaired by matching them to the protocol state and select-
ing the one closest, using Hamming code.11 Refector also
exploits the fact that the integrity of all the header fields is not
necessary for correctly delivering a packet to its destination,
e.g., TTL. Hence error correction is not applied to such fields.
CPR or corrupt packets recycling proposes a similar

approach of heuristically repairing corrupt packets [77], with
emphasis on forwarding partially corrupt packets over mul-
tiple hops in WSN. The protocol design does not require
to completely recover the header, and does not attempt to
recover the payload at all. This is due to the nature of
applications and network configurations of WSN nodes.
This approach works mainly because of the way the CTP,
i.e., collection tree protocol works [78]. CTP is the de-
facto routing protocol for WSN applications. It implements
addressing techniques to traverse different paths to gateways.
Since all the packets are destined to a single destination
(gateway or sink), even corrupt headers with wrong addresses
can be routed to the gateway. This is the focal point of CPR,
i.e., to forward partially corrupt packets over multiple hops.

CPR can heuristically correct or ignore other CTP fields
(Pull bit, origin bit, etc) that are required by CTP for efficient
routing. However, CPR can take decisions without consider-
ing these fields at the expanse of a fractional loss in perfor-
mance. Interestingly, CPR has no proposition for correcting
damaged payloads in packets. The packet payload fields are
marked as ‘‘don’t care’’, and concealed during the entire
process of recycling and forwarding packets. Correcting the
payload errors is left to methods implemented on the gate-
ways. In most WSN applications, the data collected by a

11Protocol state includes information like addresses and ports open from
previous communication.

VOLUME 4, 2016 4219

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

sensor is not 100% correct, and the receiving devices don’t
rely on a single reading from a single device. Therefore, data,
which is received from multiple devices over time, is aggre-
gated and manipulated at the gateway to gather meaningful
information. This level of sophistication and redundancy, in
WSN data, makes it resilient to payload errors. The goal of
CPR is to recycle packets to avoid retransmission, improve
data delivery rate and eventually improve latency, bandwidth
usage, and battery life of WSNs. Preliminary results of CPR
implementation show staggering improvements in data deliv-
ery rates, up to 4 times without any transmission overheads.
Though, the concealed payload part of the CPR is a bit
skeptical but there are some applications that can directly
benefit from this method especially, where the data delivery
rate and battery life take priority over the reception of 100%
correct data. Passive Collection Streams like [79] and [80],
which are WSNs that focus on maximizing network lifetime,
can directly benefit from CPR.

A probabilistic approach [81] of repairing entirely corrupt
packets, exploits patterns in such packets. This approach
targets outdoor wireless sensor networks, where radio link
performance deteriorates significantly, thereby incurring
retransmissions and energy burden on the nodes. While sym-
bols and code words at the physical layer are used by other
protocols to construct data, this approach finds a notice-
able pattern in packet corruption, over specific time chunks,
and across specific links to the finest level of data trans-
missions, i.e symbols, code words and pseudo-noise chip
sequence (physical layer). The distribution of errors and
the amount of corruption are also taken into consideration
before applying probability to symbols received at the low-
est level, to infer the likelihood of the originally sent sym-
bols. Since data generated by sensors is not accurate per se,
probabilistically recovered packets are acceptable in sensor
networks.

D. APPLICATION LAYER
The primary objective of the packet recovery meth-
ods discussed so far, with the exception of UDP-Lite,
UDP-Liter and Refector, is to ensure the delivery
of correct and reliable data to the application layer.
The corrupt packets are not allowed to reach the application
layer. The lower layers of the protocol stack provide reliable
transmission and end to end connectivity for the upper most
layer, which only generates user data. However, effective
packet recovery and error resilience by the lower layers,
requires fundamental changes in the protocol standards. Spe-
cific applications such as audio video calls and multimedia
streaming, require real time data processing and quality of
service. The use of error-correction techniques, on the entire
network stack, to achieve reliable packet delivery; or the
introduction of mechanisms to ensure quality of service for
audio and video services, can introduce enormous overhead
and complications over the entire network. Instead recovery
mechanisms at the application layer can be more transparent
and independent from the lower layers.

The authors in [82] propose forward error correction for
the headers of video streams at the application layer. They
propose to encode only the header of the video stream using
Hamming code and embed this redundant data into the orig-
inal bitstream. The original header is left untouched, which
enables the standard video codecs that do not support appli-
cation layer error correction, to decode the video stream.
The redundancy introduced by the proposedmethod increases
the video bit-rate by 1 kbps. The use of error correction
techniques at the application layer relaxes the entire network
stack from adjusting parameters such as FEC coding mode,
transmission power and the rate of ARQ to adjust the Quality
of Service.

In [83], an application level incremental redundancy or
IR scheme is proposed for streaming multimedia to a wire-
less client over a lossy packet network. This scheme uses a
type III H-ARQ scheme (Section III-D) at the application
layer that works end-to-end to ensure QoS support for mul-
timedia, without any QoS support from the network. In this
scheme unequal redundancy is inserted into the data at the
source, which can be varied depending upon the network
conditions that are determined using the NAK (Negative
acknowledgement) feedback from the destination. The client
at the destination must be able to receive corrupt packets at
the application layer, i.e., use the UDP-Lite protocol stack,
and it must also be able to sense data corruption at the
application level to send back the appropriate feedback. The
source, which is a streaming media server, ensures QoS for
the client by: 1) Determining the network conditions using
NAK feedback from the destination, 2) Using its knowledge
of the importance, dependencies and different deadlines of
different media packets, it sets up a transmission policy that is
optimum in a rate-distortion sense, i.e., different media pack-
ets are afforded different error protection so as to minimize
the end-to-end distortion while maintaining the expected rate
of transmission. The performance and effectiveness of this
scheme can however be limited by header corruption. Thus,
for very high BER, it requires header protection support at
the transport, network or link layers.

In [37], a discussion of similar application level forward
error correction (AL-FEC) used in LTE networks for mul-
timedia broadcast and multicast services (MBMS), is pro-
vided. The AL-FEC in LTE networks uses Raptor codes
(Section III-A) to address the limitations of FEC, when it
is used by other layers of the network protocol stack, i.e.
it ensures reliable and scalable operation in the backdrop
of different packet loss rates. The use of Raptor codes for
AL-FEC makes up for the data loss due to packets that are
lost or rejected at the lower layers of the protocol. The overall
scheme tries to ensure that every packet is sent at most once
by introducing sufficient redundancy, in the form of FEC
overhead, to deal with different packet loss rates at the mobile
receiver.

Audio codecs use error concealment approach to lever-
age the benefits of application layer. The AMR-WB+ [84]
codec, which is designed for use by MBMS and multimedia

4220 VOLUME 4, 2016

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

FIGURE 1. A taxonomy of network protocols and techniques for error detection, correction and packet recovery.

messaging services (MMS) in 3G and LTE networks, uses
both frame interleaving and forward error correction (FEC) to
achieve robustness against packet loss. The AMR-WB+ can
use either the generic FEC as defined in [85] or audio redun-
dancy coding defined in [86] to make the RTP packets more
resilient to losses. However, both these approaches increase
the bit rate of the audio stream. In audio redundancy cod-
ing, new payloads are constructed by combining previously
transmitted audio frames with new frames, using a sliding
window before transmission. This mechanism increases the
buffer requirements at the receiver and can also lead to more
delays, as the receiver would require more memory to store
the redundant frames and would wait longer for their arrival.
Moreover, a packet loss can result in the loss of several
consecutive frames, which adversely affects the efficiency
of error concealment and leads to audible distortions in the
reconstructed audio. In order to improve the quality of audio
over lossy wireless links, interleaving of audio frames is
used. The idea is simple, consecutive frames are not bundled
into a single packet, rather they are distributed over multiple
packets, so that a single packet loss would not result in the
loss of consecutive audio frames. Interleaving increases the
quality of audio, but adversely affects the end to end delay
and buffering requirements. Therefore in AMR-WB+, frame
interleaving is optional and is negotiated by the communicat-
ing nodes during session setup.

V. CONCLUSION
In this survey, we looked at the evolution of protocols
and mechanisms for packet recovery in wireless networks.
We believe that during its evolution the protocol stack passed
through three distinct phases, i.e., from an error intolerant
entity in the beginning, into one that has accepted the reality
of errors and is more tolerant towards them. In our opinion,
the current evolution of these protocols and mechanisms
(Fig. 1) was driven in large part by multimedia applications
such as voice and video services over wireless IP networks,
which are more tolerant to errors and less tolerant to delays
thus forcing the protocol stack to take measures that would
reduce retransmissions and ensure timely delivery of packets,
even if they are corrupt. This has resulted in a growing role for
the application layer to recover packets that would otherwise
be lost at the lower protocol layers. Future evolution of these
mechanisms would be driven in large part by potential future
applications and uses of the internet. The internet of things
or cyber physical systems (CPS) is the next big thing, which
is going to result in a greater integration of the physical
world and services with the internet. The IoT and cloud
computing technologies, which predominantly use wireless
networks to collect and process data and affect behavior of
the physical environment, would require ever more robust,
secure, scalable and reliable protocols for data delivery. The
availability of cheap, energy efficient computing platforms

VOLUME 4, 2016 4221

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

for wireless nodes and the ever increasing volume of traffic
over wireless networks is going to encourage the proliferation
of protocols that are more tolerant to errors at the lower layers
of the protocol stack and instead rely more on innovative
coding techniques to reconstruct failed packets at the applica-
tion layer. Application layer error correction works best with
header protection at the lower layers of the network. Hence,
mechanisms for header protection at the lower layers of the
protocol stack is another potential area for future investiga-
tion.

REFERENCES
[1] S. Alfredsson, ‘‘TCP in wireless networks: Challenges, optimizations and

evaluations,’’ Faculty Econ. Sci., Commun. IT, Karlstad Univ., Karlstad,
Sweden, Tech. Rep. ISSN 1403-8099; 2005:13, 2003.

[2] M. H. Alizai, Exploiting Wireless Link Dynamics. Aachen, Germany:
Shaker Verlag GmbH, 2013.

[3] B. Han et al., ‘‘Maranello: Practical partial packet recovery for 802.11,’’
in Proc. 7th USENIX Conf. Netw. Syst. Design Implement. (NSDI), 2010,
p. 14.

[4] F. Schmidt, M. H. Alizai, I. Aktaş, and K. Wehrle, ‘‘Refector: Heuristic
header error recovery for error-tolerant transmissions,’’ in Proc. 7th Conf.
Emerg. Netw. Experim. Technol. (CoNEXT), New York, NY, USA, 2011,
pp. 22:1–22:12.

[5] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J. Crowcroft,
Forward Error Correction (FEC) Building Block, document RFC 3452,
2002.

[6] K. C.-J. Lin, N. Kushman, and D. Katabi, ‘‘ZipTx: Harnessing partial
packets in 802.11 networks,’’ inProc. 14th ACM Int. Conf. Mobile Comput.
Netw. (MOBICOM), 2008, pp. 351–362.

[7] E. Rozner, A. P. Iyer, Y. Mehta, L. Qiu, and M. Jafry, ‘‘ER: Efficient
retransmission scheme for wireless LANs,’’ in Proc. ACM CoNEXT
Conf. (CoNEXT), 2007, pp. 8:1–8:12.

[8] Internet Protocol—DARPA Inernet Programm, Protocol Specification,
document RFC 791, Internet Engineering Task Force, Sep. 1981.

[9] P. Deutsch and J.-L. Gailly, Zlib Compressed Data Format Specification
Version 3.3, document RFC 1950, 1996.

[10] J. Fletcher, ‘‘An arithmetic checksum for serial transmissions,’’ IEEE
Trans. Commun., vol. COM-30, no. 1, pp. 247–252, Jan. 1982.

[11] C. Partridge, J. Hughes, and J. Stone, ‘‘Performance of checksums and
CRCs over real data,’’ in Proc. SIGCOMM Comput. Commun. Rev.,
Oct. 1995, pp. 68–76.

[12] T. C. Maxino and P. J. Koopman, ‘‘The effectiveness of checksums for
embedded control networks,’’ IEEE Trans. Dependable Secure Comput.,
vol. 6, no. 1, pp. 59–72, Jan./Mar. 2009.

[13] W.W. Peterson and D. T. Brown, ‘‘Cyclic codes for error detection,’’ Proc.
IRE, vol. 49, no. 1, pp. 228–235, Jan. 1961.

[14] J. S. Sobolewski, ‘‘Cyclic redundancy check,’’ in Encyclopedia of Com-
puter Science. Chichester, U.K.: Wiley, 2003, pp. 476–479.

[15] T. Mandel and J. Mache, ‘‘Investigating CRC polynomials that correct
burst errors,’’ in Proc. ICWN, 2009, pp. 632–637.

[16] T. Mandel and J. Mache, ‘‘Selected CRC polynomials can correct errors
and thus reduce retransmission,’’ in Proc. WITS (DCOSS), Jun. 2009,
pp. 1–6.

[17] T. Mandel and J. Mache, ‘‘Practical error correction for resource-
constrained wireless networks: Unlocking the full power of the CRC,’’ in
Proc. 11th ACM Conf. Embedded Netw. Sensor Syst. (SenSys), New York,
NY, USA, 2013, pp. 3:1–3:14.

[18] J. Stone, M. Greenwald, C. Partridge, and J. Hughes, ‘‘Performance of
checksums and CRCs over real data,’’ IEEE/ACM Trans. Netw., vol. 6,
no. 5, pp. 529–543, Oct. 1998.

[19] J. Stone and C. Partridge, ‘‘When the CRC and TCP checksum disagree,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 30, no. 4, pp. 309–319,
Oct. 2000.

[20] J. Postel, Transmission Control Protocol, document RFC 793, Internet
Engineering Task Force, Sep. 1981.

[21] R. W. Hamming, ‘‘Error detecting and error correcting codes,’’ Bell Syst.
Tech. J., vol. 29, no. 2, pp. 147–160, Apr. 1950.

[22] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Oct. 1948.

[23] S. Lin and D. J. Costello, Error Control Coding. Englewood Cliffs, NJ,
USA: Prentice-Hall, 2004.

[24] P. K. McKinley, C. Tang, and A. P. Mani, ‘‘A study of adaptive for-
ward error correction for wireless collaborative computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 9, pp. 936–947, Sep. 2002.

[25] Y. Wang and Q.-F. Zhu, ‘‘Error control and concealment for video commu-
nication: A review,’’ Proc. IEEE, vol. 86, no. 5, pp. 974–997, May 1998.

[26] M. Elaoud and P. Ramanathan, ‘‘Adaptive use of error-correcting codes for
real-time communication in wireless networks,’’ in Proc. 17th Annu. Joint
Conf. IEEE Comput. Commun. Soc. (INFOCOM), vol. 2. Mar./Apr. 1998,
pp. 548–555.

[27] I. S. Reed and G. Solomon, ‘‘Polynomial codes over certain finite fields,’’
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[28] J. Gao. (Feb. 2007). Reed-Solomon Code. [Online]. Available:
http://www3.cs.stonybrook.edu/~jgao/CSE590-fall09/reed-solomon.pdf

[29] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional
Coding. New York, NY, USA: Wiley, 1999.

[30] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms.
Cambridge, U.K.: Cambridge Univ. Press, 2003.

[31] C. Berrou, A. Glavieux, and P. Thitimajshima, ‘‘Near Shannon limit error-
correcting coding and decoding: Turbo-codes. 1,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), vol. 2. May 1993, pp. 1064–1070.

[32] R. G. Gallager, ‘‘Low-density parity-check codes,’’ IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[33] S. J. Johnson and S. R. Weller, Low-Density Parity-Check Codes: Design
and Decoding. New York, NY, USA: Wiley, Jan. 2003, pp. 1–18.

[34] A. Shokrollahi, ‘‘Raptor codes,’’ IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[35] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer, ‘‘Raptor for-
ward error correction scheme for object delivery,’’ IETF (Internet Engi-
neering Task Force), Fremont, CA, USA, Tech. Rep. RFC 5053, 2007.

[36] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer,
RaptorQ Forward Error Correction Scheme for Object Delivery,
document RFC 6330, Internet Engineering Task Force, 2007.

[37] C. Bouras, N. Kanakis, V. Kokkinos, and A. Papazois, ‘‘Application layer
forward error correction for multicast streaming over LTE networks,’’
Int. J. Commun. Syst., vol. 26, no. 11, pp. 1459–1474, 2013.

[38] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, ‘‘Link-level mea-
surements from an 802.11b mesh network,’’ in Proc. Conf. Appl., Technol.,
Archit., Protocols Comput. Commun. (SIGCOMM), 2004, pp. 121–132.

[39] K. Jamieson and H. Balakrishnan, ‘‘PPR: Partial packet recovery for wire-
less networks,’’ in Proc. Conf. Appl., Technol., Archit., Protocols Comput.
Commun. (SIGCOMM), 2007, pp. 409–420.

[40] G. R. Woo, P. Kheradpour, D. Shen, and D. Katabi, ‘‘Beyond the bits:
Cooperative packet recovery using physical layer information,’’ in Proc.
MOBICOM, 2007, pp. 147–158.

[41] S. Gollakota and D. Katabi, ‘‘Zigzag decoding: Combating hidden termi-
nals in wireless networks,’’ in Proc. ACM SIGCOMM Conf. Data Com-
mun. (SIGCOMM), 2008, pp. 159–170.

[42] S. Khurana, A. Kahol, and A. Jayasumana, ‘‘Effect of hidden terminals
on the performance of IEEE 802.11 MAC protocol,’’ in Proc. 23rd Annu.
Conf. Local Comput. Netw. (LCN), Oct. 1998, pp. 12–20.

[43] Y.-C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren, G. M. Voelker,
and S. Savage, ‘‘Jigsaw: Solving the puzzle of enterprise 802.11
analysis,’’ in Proc. Conf. Appl., Technol., Archit., Protocols Comput.
Commun. (SIGCOMM), New York, NY, USA, 2006, pp. 39–50.

[44] P. C. Ng, S. C. Liew, K. C. Sha, and W. T. To, ‘‘Experimental study
of hidden-node problem in IEEE802.11 wireless networks,’’ in Proc.
Sigcomm Poster, 2005, pp. 1–2.

[45] S. Khurana, A. Kahol, and A. P. Jayasumana, ‘‘Effect of hidden termi-
nals on the performance of IEEE 802.11 MAC protocol,’’ in Proc. 23rd
Annu. IEEE Conf. Local Comput. Netw. (LCN), Washington, DC, USA,
Oct. 1998, pp. 12–20.

[46] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis, ‘‘Surviving
Wi-Fi interference in low power ZigBee networks,’’ in Proc. 8th ACM
Conf. Embedded Netw. Sensor Syst., 2010, pp. 309–322.

[47] J. Xie, ‘‘Design, implementation, and evaluation of an efficient soft-
ware partial packet recovery system in 802.11 wireless LANS,’’
Ph.D. dissertation, Dept. Comput. Sci., Florida State Univ., Tallahassee,
FL, USA, 2012.

[48] S. S. Chakraborty, E. Yli-Juuti, and M. Liinaharja, ‘‘An ARQ scheme
with packet combining,’’ IEEE Commun. Lett., vol. 2, no. 7, pp. 200–202,
Jul. 1998.

4222 VOLUME 4, 2016

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

[49] P. Sindhu, ‘‘Retransmission error control with memory,’’ IEEE Trans.
Commun., vol. 25, no. 5, pp. 473–479, May 1977.

[50] A. Miu, H. Balakrishnan, and C. E. Koksal, ‘‘Improving loss resilience
with multi-radio diversity in wireless networks,’’ in Proc. 11th Annu. Int.
Conf. Mobile Comput. Netw., 2005, pp. 16–30.

[51] H. Dubois-Ferrière, D. Estrin, and M. Vetterli, ‘‘Packet combining in
sensor networks,’’ in Proc. 3rd Int. Conf. Embedded Netw. Sensor
Syst. (SenSys), New York, NY, USA, 2005, pp. 102–115.

[52] H. T. Nguyen, H. H. Nguyen, and T. Le-Ngoc, ‘‘Power-efficient coopera-
tive coding with hybrid-ARQ soft combining for wireless sensor networks
in block-fading environment,’’ Int. J. Sensor Netw., vol. 4, nos. 1–2,
pp. 3–12, 2008.

[53] L. Rizzo and L. Vicisano, ‘‘RMDP: An FEC-based reliable multicast pro-
tocol for wireless environments,’’ SIGMOBILE Mobile Comput. Commun.
Rev., vol. 2, no. 2, pp. 23–31, Apr. 1998.

[54] J. Roman, F. Berens, M. Kirsch, and S. Tanrikulu, ‘‘Hybrid ARQ schemes
for future wireless systems based on MC-CDMA,’’ in Proc. IST, 2009,
pp. 1–5.

[55] S. Kallel, ‘‘Efficient hybrid ARQ protocols with adaptive forward error
correction,’’ IEEE Trans. Commun., vol. 42, no. 234, pp. 281–289,
Feb./Mar./Apr. 1994.

[56] Y. J. Guo, Advances in Mobile Radio Access Networks. Norwood, MA,
USA: Artech House, 2004.

[57] S. Lin, D. J. Costello, and M. J. Miller, ‘‘Automatic-repeat-request error-
control schemes,’’ IEEE Commun. Mag., vol. 22, no. 12, pp. 5–17,
Dec. 1984.

[58] J. Hagenauer, ‘‘Rate-compatible punctured convolutional codes (RCPC
codes) and their applications,’’ IEEE Trans. Commun., vol. 36, no. 4,
pp. 389–400, Apr. 1988.

[59] S. Kallel, ‘‘Complementary punctured convolutional (CPC) codes and
their applications,’’ IEEE Trans. Commun., vol. 43, no. 6, pp. 2005–2009,
Jun. 1995.

[60] H. Holma and A. Toskala, Eds., HSDPA/HSUPA for UMTS: High Speed
Radio Access for Mobile Communications. New York, NY, USA: Wiley,
2007.

[61] F. Wang, A. Ghosh, C. Sankaran, P. J. Fleming, F. Hsieh, and S. J. Benes,
‘‘Mobile WiMAX systems: Performance and evolution,’’ IEEE Commun.
Mag., vol. 46, no. 10, pp. 41–49, Oct. 2008.

[62] A. Larmo, M. Lindström, M. Meyer, G. Pelletier, J. Torsner, and
H. Wiemann, ‘‘The LTE link-layer design,’’ IEEE Commun. Mag., vol. 47,
no. 4, pp. 52–59, Apr. 2009.

[63] V. Jacobson, Compressing TCP/IP Headers for Low-Speed Serial Links,
document RFC 1144, Internet Engineering Task Force, Feb. 1990.

[64] S. Casner and V. Jacobson, Compressing IP/UDP/RTP Headers for Low-
Speed Serial Links, document RFC 2508, Internet Engineering Task Force,
Feb. 1999.

[65] M. Degermark, B. Nordgren, and S. Pink, IP Header Compression,
document RFC 2507, Internet Engineering Task Force, Feb. 1999.

[66] L.-E. Jonsson and G. Pelletier, RObust Header Compression (ROHC):
A Compression Profile for IP, document RFC 3843, Internet Engineering
Task Force, Jun. 2004.

[67] G. Pelletier,RObust Header Compression (ROHC): Profiles for User Data-
gram Protocol (UDP) Lite, document RFC 4019, Internet Engineering
Task Force, Apr. 2005.

[68] C. Bormann et al., RObust Header Compression (ROHC): Framework and
Four Profiles: RTP, UDP, ESP, and Uncompressed, document RFC 3095,
Internet Engineering Task Force, Jul. 2001.

[69] B. Chen, Z. Zhou, Y. Zhao, and H. Yu, ‘‘Efficient error estimating coding:
Feasibility and applications,’’ SIGCOMMComput. Commun. Rev., vol. 40,
no. 4, pp. 3–14, Oct. 2010.

[70] G. Holland, N. Vaidya, and P. Bahl, ‘‘A rate-adaptive MAC protocol
for multi-hop wireless networks,’’ in Proc. 7th Annu. Int. Conf. Mobile
Comput. Netw., 2001, pp. 236–251.

[71] M. Vutukuru, H. Balakrishnan, and K. Jamieson, ‘‘Cross-layer wireless
bit rate adaptation,’’ SIGCOMM Comput. Commun. Rev., vol. 39, no. 4,
pp. 3–14, Oct. 2009.

[72] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson, and G. Fairhurst, The
Lightweight User Datagram Protocol (UDP-Lite), document RFC 3828,
Internet Engineering Task Force, Jul. 2004.

[73] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson, and
G. Fairhurst, The Lightweight User Datagram Protocol (UDP-Lite),
document Internet RFC 3828, Jul. 2004.

[74] A. Singh, A. Konrad, and A. D. Joseph, ‘‘Performance evaluation of UDP
lite for cellular video,’’ in Proc. NOSSDAV, 2001, pp. 117–124.

[75] L.-A. Larzon, M. Degermark, and S. Pink, ‘‘Efficient use of wireless
bandwidth for multimedia applications,’’ in Proc. IEEE Int. Workshop
Mobile Multimedia Commun. (MoMuC), Nov. 1999, pp. 187–193.

[76] P. P.-K. Lam and S. C. Liew, ‘‘UDP-Liter: An improved UDP protocol
for real-time multimedia applications over wireless links,’’ in Proc. IEEE
ISWCS, Sep. 2004, pp. 314–318.

[77] M. H. Alizai, M. Moosa, D. Han, O. Gnawali, and A. A. Syed, ‘‘Recycling
corrupt packets over multiple hops,’’ in Proc. 12th Eur. Conf. Wireless
Sensor Netw. (EWSN), Feb. 2015, pp. 242–249.

[78] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva, D. Moss, and
P. Levis, ‘‘CTP: An efficient, robust, and reliable collection tree protocol
for wireless sensor networks,’’ ACM Trans. Sensor Netw., vol. 10, no. 3,
2013, Art. no. 16.

[79] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
‘‘Wireless sensor networks for habitat monitoring,’’ in Proc. 1st ACM Int.
Workshop Wireless Sensor Netw. Appl. (WSNA), New York, NY, USA,
2002, pp. 88–97.

[80] G. Werner-Allen et al., ‘‘Deploying a wireless sensor network on an
active volcano,’’ IEEE Internet Comput., vol. 10, no. 2, pp. 18–25,
Mar./Apr. 2006.

[81] F. Hermans, H. Wennerström, L. McNamara, C. Rohner, and
P. Gunningberg, ‘‘All is not lost: Understanding and exploiting packet
corruption in outdoor sensor networks,’’ in Wireless Sensor Networks
(Lecture Notes in Computer Science), vol. 8354, B. Krishnamachari,
A. L. Murphy, and N. Trigoni, Eds. Switzerland: Springer, 2014,
pp. 116–132.

[82] C.-H. Pan, I.-H. Lee, S.-C. Huang, C.-C. Cheng, C.-J. Lian, and
L.-G. Chen, ‘‘Application layer error correction scheme for video header
protection on wireless network,’’ in Proc. 7th IEEE Int. Symp. Multime-
dia (ISM), Dec. 2005, pp. 499–505.

[83] J. Chakareski and P. A. Chou, ‘‘Application layer error-correction coding
for rate-distortion optimized streaming to wireless clients,’’ IEEE Trans.
Commun., vol. 52, no. 10, pp. 1675–1687, Oct. 2004.

[84] J. Sjoberg, M. Westerlund, A. Lakaniemi, and S. Wenger, RTP Payload
Format for the Extended Adaptive Multi-Rate Wideband (AMR-WB+)
Audio Codec, document RFC 4352, Internet Engineering Task Force,
Jan. 2006.

[85] J. Rosenberg and H. Schulzrinne, An RTP Payload Format for Generic
Forward Error Correction, document RFC 2733, 1999.

[86] C. Perkins et al., ‘‘RTP payload for redundant audio data,’’ IETF (Internet
Engineering Task Force), Fremont, CA, USA, Tech. Rep. RFC 2198, 1997.

SHERAZ ALI KHAN received the B.Sc. degree in
computer information systems engineering from
the University of Engineering & Technology
Peshawar, Pakistan, in 2004, and the M.S. degree
in nuclear engineering from the Pakistan Insti-
tute of Engineering & Applied Sciences, in 2007.
He is currently pursuing the Ph.D. degree with the
Embedded Ubiquitous Computing System Labo-
ratory, University of Ulsan, South Korea. He is an
Assistant Professor with the Institute of Mecha-

tronics Engineering, University of Engineering & Technology Peshawar.
His research interests include development of efficient techniques, architec-
tures, and embedded platforms for fault diagnosis and prognosis in rotary
machines that operate in a networked environment.

MUHAMMAD MOOSA received the B.S. and
M.S. degrees in computer systems engineering
from the University of Engineering & Technology
Peshawar. He is a Graduate Research Assistant
with the EmNets Laboratory, University of Engi-
neering & Technology Peshawar. He is currently
involved in research projects in the area of wireless
sensor networks and error tolerant communica-
tions with particular interest in WSN applications,
protocols, and architecture and evaluation tools.

VOLUME 4, 2016 4223

S. A. Khan et al.: Protocols and Mechanisms to Recover Failed Packets in Wireless Networks

FARHAN NAEEM received the B.S. and
M.S. degrees (Hons.) in computer systems engi-
neering from the University of Engineering &
Technology Peshawar. He is a Research Assistant
with the EmNets Laboratory, University of Engi-
neering & Technology Peshawar. He is currently
involved inmultiple research projects in the area of
wireless sensor networks, delay tolerant networks,
and error tolerant communications.

MUHAMMAD HAMAD ALIZAI received the
Ph.D. and M.Sc. degrees from RWTH Aachen
University, in 2012 and 2007, respectively. He was
a Research Assistant with the ComSys Group,
RWTH Aachen University, Germany. He is an
Assistant Professor with the Department of Com-
puter Science, Lahore University of Management
Sciences. He is particularly interested in applica-
tions, protocols, architectures, and evaluation tools
for future networks. His research interests are in

mobile applications, Internet of Things, sensornets, and delay tolerant
networking.

JONG-MYON KIM (M’05) received the
B.S. degree in electrical engineering fromMyongji
University, Yongin, South Korea, in 1995, the
M.S. degree in electrical and computer engineer-
ing from the University of Florida, Gainesville,
in 2000, and the Ph.D. degree in electrical and
computer engineering from the Georgia Institute
of Technology, Atlanta, in 2005. He is a Professor
of IT Convergence with the University of Ulsan,
South Korea. His research interests include mul-

timedia processing, digital watermarking, multimedia specific processor
architecture, parallel processing, and embedded systems. He is a member
of the IEEE Computer Society.

4224 VOLUME 4, 2016

