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Abstract—We propose a new multiple input multiple out-
put (MIMO) transceiver architecture – Differential MIMO (D -
MIMO) – that enables linear interference suppression between
multiple spatially multiplexed and differentially encoded data
streams. The D-MIMO transceiver architecture is particularly at-
tractive in emerging high-frequency systems, such as millimeter-
wave systems, in which the requirement of a phase-coherent local
oscillator at the receiver can be challenging. A direct application
of conventional linear interference suppression techniques is not
possible with differential communication. Thus, we first develop
a general model for D-MIMO systems, with a corresponding D-
MIMO channel matrix, that forms the basis of the development
in this paper. A surprising result is that a quasi-coherent version
of the underlying channel matrix can also be estimated from the
D-MIMO matrix, making conventional linear interference sup-
pression possible as well. This leads to two D-MIMO transceiver
architectures that are developed. Numerical results illustrate the
promising and nearly identical performance of the proposed
transceivers and the communication breakdown that can occur
without interference suppression.

Index Terms—Spatial Multiplexing, Interference Suppression,
Differential Signaling, Millimeter-wave, Kronecker Prod uct

I. I NTRODUCTION

There is growing interest in exploring higher frequencies
(>5GHz) for meeting the Gigabit data rates and operational
requirements of emerging wireless technologies. In particu-
lar, millimeter-wave (mmW) communication systems, ranging
from 30GHz-300GHz, are emerging as a promising tech-
nology for 5G wireless [1]. In addition to the orders-of-
magnitude larger bandwidth available at such high frequencies
compared to existing systems, the small wavelengths make
high-dimensional MIMO operation very attractive as well.
Furthermore, the highly directional and quasi-optical nature
of propagation at such high frequencies makes beamspace
MIMO techniques and architectures naturally relevant [2]–
[4]. However, many technical challenges need to be addressed
before the full potential of mmW MIMO can be realized.

One challenging issue at mmW and high frequencies is
phase-coherence between the transmitter and the receiver and
the associated phase noise [5]. In single channel systems, an
attractive solution is differential communication [6]. However,
the use of differential communication is challenging in a
MIMO system due to the interference between different spatial
data streams. Differential space-time block coding schemes
(e.g. [7]–[10]) do not support multiple spatial data streams.
On the other hand, the differential spatial multiplexing scheme
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in [11] performs linear interference suppression based on the
receive correlation matrix of the coherent MIMO channel.
Finally, differential space-time coding schemes that support
multiple spatial data streams without knowledge of the coher-
ent MIMO channel (e.g. [12], [13]) require complex non-linear
detectors. Linear interference suppression techniques that have
been extensively studied for coherent MIMO systems, require
knowledge of a coherent estimate of the MIMO channel
matrix, and thus cannot be directly used.

In this paper, we propose new differential MIMO transceiver
architectures that enable linear MIMO interference suppres-
sion within the context of differential communication. We first
develop a general model for D-MIMO systems and identify a
fundamental system equation, with a corresponding D-MIMO
channel matrix, that forms the basis of the development in
this paper. A surprising result is that a quasi-coherent version
of the underlying channel matrix can also be estimated from
the D-MIMO matrix, making conventional linear interference
suppression feasible as well. This leads to the development
of two D-MIMO transceiver architectures. Numerical results
illustrate the promising and near-identical performance of the
proposed transceivers compared to idealized systems in which
there is no interference, and the communication breakdown
that can occur without interference suppression. The results in
this paper are based on a sub-system of the general model that
suggests new avenues for future research.

II. D IFFERENTIAL SIGNALING AND RECEPTION

Differential communication is typically used when a phase-
coherent local oscillator is not available at the receiver,re-
sulting in an unknown phase offset between the transmitter
and receiver, and possibly even a sufficiently small frequency
offset [6]. This problem is even more acute at high frequencies,
such as mmW [5]. Consider a constant modulus constellation
in which the transmitted symbols are of the forms = Aejφ for
some given fixedA. Let A = 1 for simplicity. In a differential
communication system, information is typically encoded in
the phase difference∆φ between the current transmit symbol
s = s(t) and previous transmit symbolsτ = s(t − T ) where
T is the symbol period; that is,

s = Aejφ = ej∆φsτ ; sτ = Aejφτ . (1)

We assume that the differential symbols∆φ are chosen
randomly from a symmetric constellation, such as QPSK, and
are independent across time. It follows thatej∆φ is zero mean
and independent ofsτ . Under these assumptions, the following



can be readily shown:

E[sτ ] = 0 ; E[s] = E[ejφ]E[sτ ] = 0

|s|2 = |sτ |2 = A2 = 1

ss∗τ = ej∆φ|sτ |2 ; E[ss∗τ ] = 0 (2)

which also specifies the second-order statistics of the entire
sequence of symbols, under the assumption that the starting
symbol,s0, at time zero satisfiesE[s0] = 0 andE[|s0|2] =
A2 = 1, which can readily satisfied. The received signals and
the differential measurements are

r = ejφos+ v ; rτ = ejφosτ + vτ (3)

rr∗τ = ss∗τ + sv∗τ + vs∗τ + vv∗τ = ej∆φ + w , (4)

wherev, vτ , andw = sv∗τ + vs∗τ + vv∗τ represent noise. A key
assumption is that the unknown phase offsetφo remains con-
stant (or varies sufficiently slowly) over consecutive symbols,
thereby enabling the detection of the differentially encoded
symbols∆φ from rr∗τ in (4).

III. D IFFERENTIAL MIMO SYSTEM MODEL

In this section, we develop a complex baseband model
for the differential MIMO system. Consider a generaln × n
MIMO system withn transmit and receive antennas. Define
the two transmitted signal vectors for the current symbol and
the previous symbol corresponding ton differential symbols
∆φ = [∆φ1,∆φ2, · · · ,∆φn]

T :

s = [s1, s2, · · · , sn]T (5)

= s(t) = [s1(t), s2(t), · · · , sn(t)]T (6)

sτ = [s1τ , s2τ , · · · , snτ ]T (7)

= s(t− T ) (8)

= [s1(t− T ), s2(t− T ), · · · , sn(t− T )]T (9)

The corresponding received signalsr, rτ are defined similarly.
Finally, define the composite2n× 1 transmitted and received
signal vectors as

sc =

[

s
sτ

]

; rc =

[

r
rτ

]

. (10)

The overall MIMO system equation for the two symbol vectors
and the composite vector is

r = Hs , rτ = Hτsτ ; rc = Hcsc (11)

whereH = H(t) and Hτ = H(t − T ) and the2n × 2n
composite channel matrixHc is given by

Hc =

[

H 0

0 Hτ

]

(12)

A key assumption for differential communication is thatH =
Hτ ; that is, the channel does not change across two symbol
durations.

A. A Fundamental Equation

A key observation is that the following differential measure-
ments are possible at the receiver

Rc = rcr
H
c =

[

rrH rrHτ
rτr

H rτr
H
τ

]

(13)

Using (11) the system equation for these differential measure-
ments at the receiver (without noise) is

Rc = rcr
H
c = Hcscs

H
c HH

c = HcQcH
H
c (14)

whereQc = scs
H
c is of the same form as (13) forrcr

H
c and

represents the possibilities for differential transmission. Using
(12) and expanding out (14) we get

Rc =

[

rrH rrHτ
rτr

H rτr
H
τ

]

=

[

HssHHH HssHτ HH
τ

Hτsτs
HHH Hτsτs

H
τ HH

τ

]

. (15)

The matrix relation (15) represents a fundamental set of
equations for understanding MIMO communication and in-
terference suppression under differential signaling. Another
version is obtained by vectorizing (14)

zc = vec(Rc) = [H∗
c ⊗Hc]xc , xc = vec(Qc) (16)

where we have used the relation

vec(ADB) = [BT ⊗A]vec(D) (17)

where⊗ denotes the Kronecker product [14]. An important
special case of (17) for vectorsa andb is

vec(abH) = [b∗ ⊗ a]vec(I1) = b
∗ ⊗ a (18)

which will be used later in the paper.

B. An Important Sub-System

We consider an important sub-system of (15) and (16) that
forms the basis of the investigation in this paper:

rrH
τ = HssτH

H
τ = HssτH

H , (19)

where we have used the assumption thatH = Hτ . Vectoriz-
ing (19) we get

z = Hdx ; Hd = [H∗
τ ⊗H]

z = vec(rrHτ ) , x = vec(ssHτ ) (20)

andHd is the D-MIMO channel matrix. We now specialize
to then = 2 case to get a concrete feel for the problem and
which also forms the basis of the numerical results in this
paper. We have

rrHτ =

[

r1r
∗
1τ r1r

∗
2τ

r2r
∗
1τ r2r

∗
2τ

]

(21)

ssHτ =

[

s1s
∗
1τ s1s

∗
2τ

s2s
∗
1τ s2s

∗
2τ

]

(22)

z = vec(rrH
τ ) =







r1r
∗
1τ

r2r
∗
1τ

r1r
∗
2τ

r2r
∗
2τ






(23)

x = vec(ssHτ ) =







s1s
∗
1τ

s2s
∗
1τ

s1s
∗
2τ

s2s
∗
2τ






(24)

Hd = H∗
τ ⊗H = H∗ ⊗H (25)

=

[

h∗
11 h∗

12

h∗
21 h∗

22

]

⊗
[

h11 h12

h21 h22

]

(26)



=

[

h∗
11H h∗

12H

h∗
21H h∗

22H

]

(27)

=







|h11|2 h∗
11h12 h∗

12h11 |h12|2
h∗
11h21 h∗

11h22 h∗
12h21 h∗

12h22

h∗
21h11 h∗

21h12 h∗
22h11 h∗

22h12

|h21|2 h∗
21h22 h∗

22h21 |h22|2






.(28)

Remark 1 (System Rank)Hd is full-rank if H is full-rank,
which follows from the properties of the Kronecker product:
rank(A⊗B) = rank(A)rank(B) [14].

Remark 2 (Encoding/Decoding)The first and last elements
of z carry the information about the desired differential sym-
bols,∆φ1 and ∆φ2, contained in the first and last elements
of x. The remaining elements ofz represent cross-terms that
carry information about interference.

Remark 3 (Interference) If there is no inter-channel infer-
ence –H is diagonal – then there is no interference in the
differential system (20) –Hd is diagonal. The off-diagonal en-
tries ofHd represent the interference between the transmitted
signals inx (see (24)) that corrupt the receiver measurements
in z (see (23)).

IV. I NTERFERENCESUPPRESSION WITHDIFFERENTIAL

RECEPTION

In this section, we develop an approach for linear inter-
ference suppression in MIMO systems that use differential
encoding and decoding for the different spatial data streams.
We explicitly describe our approach for the D-MIMO sub-
system in (20); however, our results can be readily extended
to the full D-MIMO system in (16). We start with the noisy
underlying system equations (11)

r =
√
ρHs+ v ; rτ =

√
ρHτsτ + vτ (29)

rrH
τ = ρHssHτ HH

τ

+
√
ρHsvH

τ +
√
ρvsHτ HH

τ + vvH
τ (30)

wherev ∼ CN (0, σ2In) and vτ ∼ CN (0, σ2In) represent
complex Gaussian noise vectors that are independent of each
other and the signalss andsτ , andρ represents theSNR for
each data stream. Vectorizing (30) yields the noisy versionof
the D-MIMO system equation (20)

z = ρHdx+w (31)

w = w1 +w2 +w3

= vec(
√
ρHsvH

τ +
√
ρvsHτ HH

τ + vvH
τ ) . (32)

wherex = vec(ssHτ ) is the vector of transmitted differential
symbols,z = vec(rrH

τ ) is a vector of received differential
signals, andw is the effective noise vector that consists of
three terms identified in (32). Signal and noise statistics are
described in more detail in the next section.

Our goal is to design an2×n2 (4×4 for the concrete case)
matrix F o that operates on the vectorz to yield estimates of
x in which the interference has been suppressed:

xest = F oz . (33)

We design F o using the minimum mean squared error
(MMSE) criterion, assuming knowledge of the D-MIMO chan-
nel matrixHd:

F o = argmin
F

E[‖xest − x‖2]

= HH
d

(

ρ2HdH
H
d +Σw

)−1

(34)

whereΣw = E[wwH ] is the covariance matrix ofw, and
HdH

H
d = (H∗

τH
T
τ ⊗ HHH). The differentially encoded

transmitted symbols inx can then be estimated at the receiver
by simply applying differential detectors, correspondingto
the differential transmission scheme used, to the appropriate
elements ofxest; see Remark 2 for then = 2 case.

A. Signal and Noise Statistics

We now characterize the second-order statistics ofx and
w in (31). We consider zero-mean signal constellations for
the differential symbols, with different differential symbols
independent across time and data streams. This results in the
following second-order statistics fors:

E[s] = E[sτ ] = 0 , E[ssHτ ] = 0 (35)

E[ssH ] = E[sτs
H
τ ] = In (36)

which in turn results in the following second-order statistics
for x = vec(ssHτ )

E[x] = E[vec(ssHτ )] = vec(E[ssHτ ]) = 0

E[xxH ] = E[vec(ssHτ )vec(ssHτ )H ]

= E[(s∗τ ⊗ s)(sTτ ⊗ sH)] = E[s∗sTτ ⊗ ssH ]

= E[s∗sTτ ]⊗ E[ssH ] = In ⊗ In = In2 . (37)

Proposition 1 Assuming that the signal and noise are inde-
pendent, and using the assumptions on the statistics ofv and
vτ , it can be shown that

E[w] = 0 (38)

Σw = E[wwH ]

= ρσ2(In ⊗HHH) + ρσ2(H∗
τH

T
τ ⊗ In)

+σ4In2 (39)

where the three terms inΣw in (39) represent the covariance
matrices of the corresponding terms in (32).

The noise statistics follow from the following calculations on
the joint statistics ofw1, w2, andw3 in (32). Using (18), we
first note that

w1 =
√
ρvec(HsvH

τ ) =
√
ρ(v∗

τ ⊗Hs) (40)

w2 =
√
ρvec(vsHτ HH

τ ) =
√
ρ(H∗

τs
∗
τ ⊗ v) (41)

w3 = vec(vvH
τ ) = (v∗

τ ⊗ v) . (42)

Now, the second-order statistics of{wi} are

E[w1] =
√
ρ(E[v∗

τ ]⊗ E[Hs]) = 0 (43)

E[w1w
H
1 ] = ρE[(v∗

τ ⊗Hs)(v∗
τ ⊗Hs)H ]

= ρE[(v∗
τv

T
τ ⊗HssHH)]

= ρσ2E[v∗
τv

T
τ ]⊗HE[ssH ]HH

= ρσ2In ⊗HHH (44)



Similarly, we have

E[w2] = E[w3] = 0 (45)

E[w2w
H
2 ] = ρσ2(H∗

τH
H
τ ⊗ In) (46)

E[w3w
H
3 ] = σ2In ⊗ σ2In = σ4In2 (47)

Finally, it can be similarly shown that

E[w1w
H
2 ] = E[w1w

H
3 ] = E[w2w

H
3 ] = 0 (48)

Combining the above calculations leads to the second-order
statistics ofw given in Prop. 1.

Proposition 2 If HHH has the eigenvalue decomposition
HHH = UΛUH andHτH

H
τ has the eigenvalue decompo-

sitionHτH
H
τ = U τΛτU

H
τ , then the noise covariance matrix

Σw admits the eigenvalue decomposition

Σw = (U ∗
τ ⊗U)Λ̃(U∗

τ ⊗U)H (49)

Λ̃ = ρσ2(Λ⊕Λτ ) + σ4In2 (50)

whereA ⊕ B = (I ⊗ A) + (B ⊗ I) is the Kronecker sum
[15].

This follows from Theorem 13.16 in [15] and the fact thatU
andU τ are unitary, and thusU∗

τ ⊗ U is also unitary. This
result may be useful in analyzing the structure ofF o in (34).

B. Channel Estimation

In practice,Hd has to be estimated using training symbols
and then an estimated version ofHd is plugged into (34) to
determineF o. The training signals can be designed in a variety
of ways. The simplest approach is to design the transmitted
signals so that only one entry ofx (see (24)) is non-zero in
each differential training symbol; the corresponding column
of Hd can then be estimated from the corresponding received
differential measurementsz (see (23) [16]. We present numer-
ical results forF o based on perfectly knownHd as well as
estimatedHd.

Note from (39) that we also need estimates ofHHH and
H∗

τH
T
τ to estimateΣw for F o in (34). For the special case

of interestHτ = H we have

vec(HHH) = [H∗ ⊗H ]vec(I) = Hdvec(I) (51)

and thus the two matrices can be extracted fromHd.

V. QUASI-COHERENT INTERFERENCESUPPRESSION

In this section, we show that a quasi-coherent estimate of
H can be obtained fromHd which can then be used for
linear interference suppression on direct measurementsr and
rτ (rather than onz = vec(rrH

τ )) followed by differential
detection from appropriate elements ofz.

A. Linear Interference Suppression at the Receiver

We have the following channel decomposition ofH

H = HoΛφ (52)

whereH is the actual channel matrix

H =

[

|h11|ej 6 h11 |h12|ej 6 h12

|h21|ej 6 h21 |h22|ej 6 h22

]

(53)

andHo is what we can estimate fromHd

Ho =

[

|h11| |h12|ej( 6 h12−6 h22)

|h21|ej( 6 h21−6 h11) |h22|

]

(54)

andΛφ is a diagonal matrix (that is unknown)

Λφ = diag(ej
6 h11 , ej

6 h22) . (55)

To see howHo can be estimated fromHd, refer to (27).
The first column ofh∗

11H/|h11| yields the first column of
Ho. Similarly, the second column ofh∗

22H/|h22| yields the
second column ofHo.

The MMSE filter matrix in this case is given by

F = HH(ρHHH + σ2In)
−1

= Λ
H
φ HH

o (ρHoH
H
o + σ2In)

−1 = Λ
H
φ F o (56)

which operates on the baseband signal vectorr. We note that
F o in (56) is what can be computed at the receiver and used for
interference suppression. Thus, processed signal vector from
which the differentially encoded symbols are detected is given
by

y = F or = F oHs+ F ov . (57)

We note the use ofF o (rather thanF ) does not impact
the ability to detect differential symbols since thei-th dif-
ferentially encoded transmitted symbol insis∗iτ is detected
from the productyiy∗iτ . This corresponds to detecting the
differentially encoded symbol vector viay ◦ y∗

τ where ◦
denotes the Hadamard (element-wise) product.

B. Linear Interference Suppression at the Transmitter

Interference suppression using precoding at the transmitter
is another attractive possibility. It turns out thatHo estimated
at the receiver and fed back to the transmitter cannot be
exploited due to the phase ambiguity. However, in reciprocal
channels, if the transmitter first acts a receiver and estimates
the channel matrix from differential measurements (based on
training symbols from the receiver), it turns out that it results
in the following decomposition ofH

H = ΛφHo (58)

In this case the transmitted signal is precoded ass → Gs

where [4], [17]

G = αF , α =

√

ρ/tr(FΛsF
H)

F = (HHH + ζI)−1HH , ζ = σ2/ρ , (59)

ands is the transmitted symbol vector,ρ represents transmit
power (SNR if σ2 = 1) per data stream, andΛs = E[ssH ] is
the diagonal covariance of transmitted symbols, which in our
case isΛs = I. The composite system matrix with precoding
is given by

r = HGs+ v (60)

and the composite matrixHG controls the interference. Note
that in terms ofHo, F is given by

F = (HH
o Ho + ζI)−1HH

o Λ
∗
φ = F oΛ

∗
φ (61)

where F o is what we can actually compute based on the
estimatedHo in (58). From (61) we note that the unknown
phases inΛ∗

φ are inconsequential from the viewpoint of



differential signaling, and the receiver can directly detect the
symbols differentially fromz = vec(rrH

τ ) since interference
suppression is done at the transmitter.

VI. N UMERICAL RESULTS

In this section, we present numerical results to illustratethe
performance of the proposed D-MIMO transceiver architec-
tures for ann× n MIMO system withn = 2 antennas.

Fig. 1 shows a diagram of the D-MIMO MMSE receiver
(34), discussed in Sec. IV, that operates on the4×1 differential
measurementsz = vec(rrHτ ) = r∗

τ ⊗ r to detect the differ-
ential symbols. Results based on uncoded QPSK differential
transmission for this receiver are presented in Fig. 2. The
figures plot the probability of errorPe versusSNR for two
D-MIMO MMSE receivers: one based on perfect channel state
information (CSI) - perfect knowledge ofHd, and one based
on estimatedHd where the estimation is done via training
symbols at the sameSNR as that for data communication. The
performance of a third D-MIMO receiver without interference
suppression (F o = In2) is also shown for comparison. Finally,
the performance of two ideal systems is shown for baseline
comparison in which there is no interference:H is diagonal
- see Remark 3. One is a coherent system corresponding to
two non-interfering QPSK data streams, and the other is a
corresponding differential system. The coherent system has the
best performance and differential system has a 3dB loss com-
pared to coherent system. The D-MIMO system with perfect
CSI is next in line, followed by the D-MIMO with estimated
channel. The worst performance is that of D-MIMO without
interference suppression. Fig. 2(a)-(c) show the performance
of the five systems for 3 different levels of interference. In
Fig. 2(a), the interference is strongest:|h12|2 and |h21|2 are
3dB below|h11|2 = |h22|2, whereas in (b) the interference is
6dB below signal, and in (c) 10dB below signal. ThePe is
computed numerically from 1000,000 symbols, and the phases
of the entries ofH change randomly every 1000 symbols. As
evident, the D-MIMO receivers can deliver very competitive
performance, whereas ignoring interference (D-MIMO w/o
interference suppression) can result in unacceptably highPe.

Symbol

Detector

Fig. 1: D-MIMO MMSE receiver diagram

Fig. 3 shows a diagram of the of the quasi-coherent linear
MMSE receiver discussed in Sec. V-A that performs linear
MMSE interference suppression at the receiver before making
the differential measurements to detect the differential sym-
bols, whereA ◦ B denotes the Hadamard product. Results
parallel to Fig. 2 for this receiver are shown in Fig. 4. The
two baseline ideal receivers, coherent and differential without
interference, are the same and so is the D-MIMO receiver
without interference suppression. The only difference is in the
D-MIMO receivers with interference suppression: in this case,
they are quasi-coherent linear MMSE receivers with perfect
CSI (H) and with estimatedH. The general trend is the same
as in Fig. 2 and the performance of the two D-MIMO MMSE
receivers is very comparable. The main difference seems to be
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(c)
Fig. 2: Pe versusSNR for various receivers for different levels of interferencepower
using interference suppression on differential measurements: (a) 3dB below signal, (b)
6dB below signal, (c) 10dB below signal.

that the D-MIMO receivers based on estimatedHd perform
slightly worse than those based on estimatedHo.

VII. C ONCLUSION

We have presented two promising D-MIMO transceiver
architectures that enable interference suppression in conjunc-
tion with spatially multiplexed differential signaling. While



Symbol

Detector

Fig. 3: Quasi-coherent linear MMSE receiver diagram

we have not explicitly discussed it, the proposed transceivers
can deal with small frequency offsets as well. The results
presented in this paper are based on a sub-system (19) of
the general D-MIMO model in (15) and (16) that offers a
rich structure and array of possibilities for further research.
Extensions to multiuser transceivers and wideband scenarios
that explicitly account for multipath propagation is another
fruitful direction. The sampled approach to wideband MIMO
channel modeling in [18] could be particularly relevant in this
context. Development of the D-MIMO concept in beamspace
for high-dimensional MIMO systems [2]–[4], such as those en-
countered at mmW frequencies, is also a promising direction.
Finally, we note that at high frequencies such as mmW, the
differential measurements at the receiver can also be realized
in an analog fashion using interferometers thereby obviating
the need for a local oscillator at the receiver [19].
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