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Abstract 

 

 Bankruptcy prediction is a key part in corporate credit risk management. Traditional 

bankruptcy prediction models employ financial ratios or market prices to predict bankruptcy or 

financial distress prior to its occurrence. We investigate the predictive accuracy of corporate 

efficiency measures along with standard financial ratios in predicting corporate distress in 

Chinese companies. Data Envelopment Analysis (DEA) is used to measure corporate efficiency. 

In contrast to previous applications of DEA in credit risk modelling where it was used to 

generate a single efficiency - Technical Efficiency, we assume Variable Returns to Scale, and 

decompose Technical Efficiency into Pure Technical Efficiency and Scale Efficiency. These 

measures are introduced into Logistic Regression to predict the probability of distress, along 

with the levels of Returns to Scale. Effects of efficiency variables are allowed to vary across 

industries through the use of interaction terms, whilst the financial ratios are assumed to have 

the same effects across all sectors.  The results show that the predictive power is improved by 

this corporate efficiency information.  

 

Keywords: Data Envelopment Analysis; efficiency; corporate credit risk modelling; financial 

distress 
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Introduction 

The recent financial crisis indicates the importance of credit risk management and the necessity 

of recognising early warnings of corporate financial distress in order to prevent potential losses. 

Credit scoring models are such tools to generate early signals of corporate bankruptcy which 

have received academic attention since at least 1950s and are still widely used. 

One of the main problems in failure prediction models is variable selection. Financial ratios 

which are the quotient of two items in financial statements are the most popular variables that 

have been considered in the literature. Beaver (1966) was the first author to introduce financial 

ratios into bankruptcy prediction. In recent decades there have been a great number of 

bankruptcy prediction studies based on financial ratios using different statistical and 

machine-learning techniques, these are reviewed in Altman (1993), Balcaen and Ooghe (2006), 

Kumar and Ravi (2007), Bahrammirzaee (2010), Verikas et al (2010). Recent papers (e.g. 

Wang and Ma, 2011) also demonstrate that financial ratios are still dominating the variable 

selection. However, it is widely recognized that the main cause of the company’s financial 

failure is its poor management (Gestel et al, 2006). The quality of management can be 

measured by the company’s efficiency which compares outputs to inputs. 

One way to assess the efficiency of an organisation relative to the most efficient one is to use 

Data Envelopment Analysis (DEA). A number of papers have used DEA efficiencies in 

corporate bankruptcy modelling (see next section). In this paper we use DEA to compute 

various measures of company efficiency that we then input as a variable in a standard classifier 

to see how well this enables one to predict financial distress. The paper makes a number of 

contributions. First, unlike previous papers on corporate failure modelling that simply use a 

single efficiency measure, we decompose this measure – Technical Efficiency (TE) into Pure 

Technical Efficiency (PTE) which indicates the ability to improve efficiency by wisely 

allocating resources and applying new technology and Scale Efficiency (SE) which measures 

the ability to achieve better efficiency by adjusting to its optimal scale, and examine how each 

of these separately contributes to predicting financial distress. Second, in contrast to most 

applications of DEA in financial distress prediction we assume variable rather than constant 

Returns to Scale. Third, DEA can only meaningfully be carried out for a sample of firms that 

use the same or similar technology (Dyson, 2001) and our study is the first to meet this 

requirement in the context of mixed-industry bankruptcy prediction. Whilst this reduces our 

sample size, by modifying the second stage logistic regression we are able to determine the 

effects of variables that are common across industries. Fourth, we add corroboratory evidence 

to the very few studies that, regardless of country, have explored the corporate efficiency as a 

predictive variable in a financial distress model.  



3 

The paper is organized as follows. The next section provides a comprehensive review of the 

application of DEA in corporate distress prediction models. In the third section the 

methodology adopted in this research is presented. This is followed by the description of the 

data used in the empirical analysis and the subsequent section reports the results. The paper 

finishes with some discussion and conclusions. 

 

Literature Review 

Data Envelopment Analysis is an optimizing technique which measures the relative 

efficiencies of a group of companies or Decision Making Units (DMUs) that use multiple inputs 

and produce multiple outputs. An efficient company uses less inputs to produce more outputs. 

Such efficiency is evaluated by the distance of a particular DMU to the efficient frontier (ideal 

position) which is based on its peers (other DMUs in the sample). The main idea and notation 

will be introduced in the next section, for more comprehensive explanation of DEA see Cooper 

et al (2000). 

DEA has been incorporated into the prediction of corporate distress (or bankruptcy) in two 

different ways. Firstly, DEA has been used to derive a classification algorithm to separate 

distressed firms from non-distressed firms (Paradi et al, 2004; Cielen et al 2004; Emel et al, 

2003). Secondly, the relative efficiency of firms has been computed using DEA and this relative 

efficiency has been used as a feature of each firm in a subsequently developed classification 

rule (Xu and Wang, 2009; Yeh et al, 2010; Psillaki et al, 2010). We consider the former first. 

As a classifier DEA has a number of advantages compared with statistical methods. For 

example it is non-parametric and so does not require any distributional assumptions about error 

terms or about covariance matrices. But DEA also has some inherent disadvantages such as 

sensitivity to the selection of inputs and outputs, and issues when dealing with negative values. 

When the number of variables are close to or larger than the number of companies, efficiency 

scores tend to be 1 so discriminative power is lost.  

It is logical to assume that efficiency is associated with the probability of failure. Barr et al 

(1993) found there are significant differences of scores in a sample of banks between the 

surviving and failing and the difference increases as the date of failure approaches. Paradi et al 

(2004) used an additive DEA model to compute a worst performance boundary. Output 

variables are those that reflect poor financial performance such as bad debt, warranty claims etc 

and input variables represent the opposite, for example profits, sales etc. For each DMU, an 

inefficiency score is computed. Paradi et al (2004) then use the layer technique (or tiered DEA, 

Barr et al. 2000) of removing inefficient companies to find a new boundary, each lower 

boundary indicating a lower chance of bankruptcy. A similar method is followed by Cielen et al 
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(2004) who apply a cut-off to the estimated efficiency of each DMU (rather than the layer 

technique). They find, in a comparison of classification accuracy, that the DEA method 

outperformed decision trees and a linear programming method (Freed and Glover, 1981). 

However they used the ratio form of the DEA model which is problematic when negative 

financial ratios are incorporated. Min and Lee (2008) estimated a CCR model (defined in the 

next section) with constant Returns to Scale and applied a cut-off to the efficiency score for 

each firm. The DEA score method performed less well than a linear discriminant function. 

Premachandra et al (2009) estimated an additive DEA, which is invariant to data translation 

(and so can deal with negative data) with varying Returns to Scale. On the training sample DEA 

had an inferior predictive performance whereas out of sample it was superior. Unfortunately 

they could not compare the performance of both techniques using the same test dataset. More 

recently Premachandra et al (2011) estimate an additive DEA model to derive efficiency and a 

bankruptcy frontier and derive a prediction index for each firm from these two. They find the 

use of a two frontier method improves predictive performance compared to a single bankruptcy 

frontier. Sueyoshi (1999) proposed a two stage method labelled ‘DEA-DA’. In the first stage a 

linear program is used to predict class membership of each case and to identify cases where the 

predicted class is ambiguous (since two discriminating functions are computed). In the second 

stage a model that classifies cases that could fit into either group is estimated. Subsequent work 

has compared the performance of the two stage classifier with that of other standard methods 

(Sueyoshi 2001 and 2006; Sueyoshi and Goto, 2009; Tsai et al, 2009) with the conclusion that 

DEA-DA performs at least as well as other techniques for corporate bankruptcy prediction and 

better in the case of consumer loans.  

As the second way of incorporating DEA into distress prediction, many researchers have 

carried out experiments to incorporate a DEA efficiency score (or Technical Efficiency - TE) as 

a predictor into other classification models. Xu and Wang (2009) put efficiency score obtained 

by DEA into Support Vector Machines (SVMs), logistic regression and linear discriminant 

analysis (MDA). Yeh et al (2010) also use efficiency scores into SVMs and neural networks. 

Both studies found that the inclusion of efficiency scores increased predictive performance of 

failed companies.  

A limitation of many studies that have used DEA efficiency in bankruptcy prediction is that 

they have estimated TE across a range of industries that use heterogeneous technologies (Cielen 

et al, 2004; Premachandra et al, 2009; Premachandra et al, 2011). If the technology used by the 

DMUs in the sample is different then the weights on the inputs and outputs will be different and 

the concept of efficiency will be somewhat meaningless. Otherwise, the analysis has to use a 

single industry which obviously limits the sample size (e.g. Shetty et al, 2012). 
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The use of a DEA classifier or an efficiency score computes the relative efficiency of firms in 

a sample and can be used for in-sample prediction. However, if we wish to predict the failure 

probability for a case out of the sample, difficulties arise because the addition of a new case 

may alter the relative efficiencies of all of the firms currently included in the model possibly 

changing the optimal weights on the inputs and the outputs and so altering the efficient frontier. 

In principle the addition of a new case would necessitate the re-estimation of the DEA model. 

Both Emel et al (2003) and Min and Lee (2008) estimated a statistical model to predict DEA 

efficiency using the input and output financial ratios that could be used to classify out of sample 

cases. 

Whilst a large number of papers have estimated models to predict financial distress for 

Chinese listed companies using financial ratios (for example see Sun et al, 2011, Xiao et al, 

2011 and Ding et al, 2008),  as far as we are aware only one (Xu and Wang, 2009) has 

considered DEA efficiency as an explanatory variable. 

Stiglitz (1972) emphasized that Returns to Scale (RTS) impacts on the probability of 

bankruptcy. In practice RTS are typically increasing, or decreasing so it is surprising to see most 

of applications of DEA in corporate failure prediction have an assumption of constant Returns 

to Scale (CRS). Examples of papers that assume CRS are Xu and Wang (2009) and Yeh et al 

(2010). The paper of Psillaki et al (2010) is one of the few cases which assume VRS to evaluate 

credit risk. They use the BCC model named by Banker, Charnes and Cooper (1984) but with 

only one output and two inputs.  

The contributions of this research are first, to assume a variable Returns to Scale (VRS) 

technology rather than CRS which is not common in reality, and second, under the assumption 

of VRS, to include four additional variables in a model to predict financial distress.  

These variables are the Technical Efficiency (CRS efficiency), Pure Technical Efficiency 

(VRS efficiency), Scale Efficiency and a Returns to Scale parameter (defined in the next 

section). By incorporating these four variables, our prediction models include variables that are 

economically directly related to the probability of distress. Unlike most European companies 

which are relatively small in size, Chinese companies are often much larger and their largest 

number of employees exceeds 100 thousand and total revenue exceeds £20 billion. Therefore, 

cases of decreasing returns to scale are often observed and it is expected to have some causality 

for financial difficulty. 

 

Methodology 

DEA 

Consider a set of DMUs, each denoted as DMUj ( 1,....,j n ), each producing several outputs 
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),....,1( sryr   by using several inputs ),....,1( mixi  . For any DMU, DMU0, we wish to find 

the weight on each output and on each input that maximises efficiency defined as the ratio of 

weighted outputs to weighted inputs, subject to the ratio being not greater than 1 for any DMU. 

This fractional programming problem can be converted into a linear program (Cooper et al, 

2000) and for convenience the dual program is usually considered:  

0 0

0

0

max                                       (1)

. .      1                                           (2)

          0                   (3)

           0, 0

T

T

T T T

v u

s t

X Y u

 



   

 

u y

v x

v u e

v u

 

where u and v are column vectors of weights to be estimated. If ),( 00 yx is on the efficient 

frontier then at this point 0 and ,0,0 *

0

*

0

*

0  uuu implies and is implied by increasing, 

constant and decreasing returns to scale respectively (Banker and Thrall 1992). In a one input 

one output context the u0 term would be the intercept for the line referred to above. Furthermore, 

if **  and BC   denote CCR and BCC efficiency scores of a particular DMU then Scale Efficiency 

is defined as (Charnes et al, 1978)  
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Intuitively, the BCC model finds the optimal efficiency for a DMU when returns to scale are 

not necessarily constant. Dividing the efficiency of a DMU when estimated with constant 

returns to scale by the efficiency when VRS are assumed isolates the Scale Efficiency of the 

DMU. Thus we can write: 

 

Technical efficiency (TE) = Pure Technical Efficiency (PTE) × Scale Efficiency (SE) 

 

Selecting Inputs and Outputs 

Choosing the most appropriate inputs and outputs is of crucial importance when conducting all 

DEA studies, but so far, there is no generally agreed method for the selection. Different DEA 

studies have used different inputs and outputs, which is a shortcoming of DEA (Premachandra 

et al, 2009). First of all, inputs and outputs have to be meaningful within the framework of the 

competitive environment (Oral and Yolalan, 1990). One disadvantage of DEA is that it 

computes relative efficiency with more discrimination between DMUs when the number of 

variables is significantly smaller than the number of DMUs (Parkan, 1987). This is normally 

the case in recent research. It is desirable that the number of input variables is larger than or 
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equal to the number of output variables (Yeh, 1996).  

In the few studies that use DEA to model default risk, input variables are selected from 

Capital, Liability, Human Resources, Technology, Real Estate etc. and the output variables are 

profit and sales. For example, Psillaki et al (2010) used one output (Value Added) and two 

inputs, Capital Shares and Number of Fulltime Employees. One may argue about the scope of 

‘Value Added’ and how it should be calculated. Similarly, Yeh et al (2010) selected R&D 

Expenses, R&D Designers and the Number of Patents and Trademarks as input variables and 

the output variables included Gross Profit and Market Share.  

When empirically modelling bankruptcy, to eliminate scale or size and unit effects in the 

values, it is common to use financial ratios rather than physical or monetary items. Min and Lee 

(2008) include three input ratios which are Financial Expenses to Sales, Current Liabilities 

Ratio, Bond Payable to Total Assets, an ordinal variable  (Total Borrowings) and three output 

ratios: Capital Adequacy Ratio, Current Ratio and Interest Coverage Ratio. Cielen et al (2004) 

argue that financial ratios with a positive correlation can be used as inputs while those with a 

negative correlation are output. Premachandra et al (2009) propose that the smaller (inferior) 

values in the financial ratios, which could possibly cause financial distress, are considered to be 

inputs whereas the larger (superior) values in those ratios, which could cause financial distress, 

are considered as outputs. Xu and Wang (2009) in a Chinese case study go back to the original 

definition of efficiency for variable selection. They use Total Assets, Total Liabilities and Costs 

of Sales as the inputs, Income from Sales as the output.  

Our choice of variables has been influenced by the following considerations. Since financial 

ratios are going to be used in a second stage logistic regression we do not employ them in the 

first stage so as to reduce possible collinearity. We follow the original idea of DEA that inputs 

and outputs are measured as absolute amounts rather than as ratios. Thus we have chosen five 

inputs (Number of Employees, Share Capital, Total Cost, Total Assets and Total Liabilities) and 

three outputs (Total Sales, Total Profit and Cash Accrued) which are main items in all financial 

reports. 

A key issue regarding DEA is how to deal with negative values in inputs and outputs such as 

for growth or profits. There are three popular methods which have been used: the Range 

Directional Measure (RDM) proposed by Portela et al (2004), the Modified Slack-Based 

Measure (MSBM) proposed by Sharp et al (2006), and the Semi-Oriented Radial Measure 

(SORM) proposed by Emrouznejad et al (2010). Recently a fourth method, Variant of Radial 

Measure (VRM), has been introduced by Cheng et al (2011). 

Our data output matrix, Y, has negative values and we wish to assume VRS, which is both 

unit invariant and translation invariant and can handle positive and negative mixed data. A 
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suitable model is the slacks based efficiency model which in input orientation can be expressed 

as (from Cooper et al, 2000): 
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MaxDEA is used to solve the programs for each industry separately. 

We deduce a score for each DMU for each type of efficiency and relate these to the 

probability of distress using logistic regression. However, DEA scores assume a common 

technology across the DMUs. When we include the four types of efficiency variables we ensure 

that only DMUs within the same industry sector are accorded the same parameters whilst the 

financial ratios are assumed to have the same parameters across all sectors. Therefore the 

specification of the logistic regression is amended to be 

1 1 2 2

1 1

logit( ) ..                       (8)
L P

q pl p plq q q K Kq

l p

p D e w w x    
 

       

where qp denotes the probability of suffering distress for company q; 

          pqle denotes efficiency score type l for sector p for company q; 

  qw1 denotes financial variable 1 for company q and so on; 

          pD =1 if company q is a member of industry p, 0 otherwise; 

  pl  denotes a parameter for industry p for efficiency score l to be estimated; 

  1  denotes a parameter for covariate 1 to be estimated. 

We compared alternative specifications of equation 8: with only efficiency variables, with 

only financial variables and with combinations of both. 

 

Data 

The data used in this research is from two Chinese security markets, the Shanghai Stock 

Exchange and the Shenzhen Stock exchange and sourced from the Wind database. The database 

provides information for those companies listed in both markets (note that no cross listing is 

allowed) and covers the historic records from 1991. The sample contains the annual data of 

2014 listed companies in China between 1998 and 2010. Since one of the important input 

variables in the DEA models is Number of Employees and it was not until 2001 that the 

companies started to report this information in their statements, the reports prior to 2001 are 



9 

excluded from the sample. A few companies with extreme outlying values of input or output 

variables (mainly caused by unusual or abnormal value changes and rare events) were also 

excluded because the efficient frontier is very sensitive to outlying values and so their inclusion 

may have resulted in inaccurate estimates of relative efficiencies. ‘Special Treatment’ (ST) is 

the status imposed by the government to give notice of a bad performance to investors and so it 

is an indicator of financial distress used in this research. A company is ascribed ST status if any 

of the following conditions holds (Shanghai Stock Exchange, 2008): 

o negative profit in the most recent two consecutive years or if the correction of errors 

yields this result; 

o failure to disclose its annual interim report; 

o likelihood of being dissolved; 

o reorganisation, settlement or bankruptcy liquidation; 

o other characteristics determined by the Stock Exchange. 

The majority of companies receive ST because of losses in two successive fiscal years.  

Since DEA models are estimated from homogeneous production processes (Dyson 2001), we 

solve DEA programs to compute efficiency scores for separate industry sectors and within the 

same year to ensure that the companies in the sample share the same productivity process and a 

similar business environment. To keep as many distressed companies as possible in the sample 

for modelling, all industries were examined and the second level industrial sectors Raw 

Materials (code 1510 in Wind), Industrial Equipment (2010) and Real Estate (4040) were found 

to have the highest frequency of ST cases. In 2002, 2003, 2006 and 2007, there are more ST 

cases than in other years. Therefore the STs in 2002 or 2003 are grouped together as the training 

sample and the STs in 2006 or 2007 are grouped into the hold-out sample to test the predictive 

performance of the logistic regression. Thus efficiency scores and financial covariate data for 

2001 with ST/non-ST status taken from 2002 and 2003 were used to train the model, which then 

was then applied to the data in 2005 to predict the probability of  becoming ST in 2006 and 2007. 

The numbers of ST and non-ST companies are displayed in the Table 1. Some companies were 

delisted and some new companies entered the sample during the study period. There are 429 

cases common in both samples. The predictive accuracy is tested by an out-of-time rather than 

an out of sample validation, which is in line with the literature (e.g. Shumway, 2001).  

Descriptive statistics for the financial variables used in the DEA analysis are shown in Table 

2. The occasional negative values for profits and cash flows are apparent. 

The financial ratios collected from the database contain 6 groups of measures relating to 

profitability, operation capacity, growth rates, capital composition, liquidity, cash flow. Those 

variables with too many missing values were deleted. Variables that were highly correlated 
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(VIF > 20) were also excluded. For those variables where only a few values were missing, the 

missing values were replaced by the means in that year. The final list of ratios selected for 

inclusion in the logistic regression and represented by 
qw in equation 8 is in Table 3.  

 

Results 

DEA 

There are four types of efficiency scores of importance to this paper: Technical Efficiency, Pure 

Technical Efficiency, Scale Efficiency and Returns to Scale levels. The first three are all 

continuous scores whereas Returns to Scale is a categorical ordinal variable with three levels: 

decreasing, constant and increasing.  

First, we consider aggregate results. One of the objectives of this paper is to test whether the 

probability of distress is associated with low efficiency. We consider various efficiency 

measures where following previous literature (Xu and Wang, 2009) we do not treat each sector 

separately and then secondly when we do treat each sector separately. Descriptive statistics of 

efficiency scores are shown in Table 4. As a preliminary analysis we computed two-way 

ANOVA and found that for each of the three types of efficiency score, there is a significant 

difference between the mean score for the ST group and the mean score for the non-ST group. 

But there is a significant difference between the mean efficiency scores between the industry 

sectors in 2001 only in terms of Technical Efficiency (CCR) and Scale Efficiency and for 2005 

only for Scale Efficiency.  

From Table 5 we can see that both in 2001 and 2005 there are relatively low numbers of 

companies with decreasing or constant RTS.   We therefore classified the RTS values into two 

values: decreasing or constant on the one hand and increasing (IRS) on the other and included a 

dummy variable to represent the existence of IRS in the logistic regressions. 

 

Logistic Regression 

We have two objectives. First, to investigate the statistical significance of efficiency measures 

in explaining the probability of suffering financial distress and second, to evaluate the 

predictive performance of including efficiency variables in such posterior probability models. 

Pre-analysis showed that if efficiency variables and financial ratios are entered together into 

a stepwise logistic regression, nearly all of the efficiency variables are excluded. However, we 

are interested in the role specifically of efficiency variables and so we adopted the following 

procedure. Since values of the efficiency variables were derived from a DEA model where the 

objective function consisted of financial variables, collinearity is possible between some 
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financial ratios and some efficiency scores. Conscious of this potential collinearity we 

considered three model specifications. First we have models with only efficiency variables 

(Models 1-6). Models 1-4 contain only industry specific efficiency variables to try to reduce the 

heterogeneity in technologies that would otherwise be present. Models 5 and 6 are included 

simply to show the parameter estimates if, as in previous literature, in the DEA analysis all 

industrial sectors were assumed to be homogeneous.  

Second, we estimated models that included combinations of the industry specific efficiency 

variables and subsequently uncorrelated financial ratios were entered using a stepwise routine 

(Models 7-9). Third, we estimated models that included significant financial variables selected 

from all those available using a forward stepwise routine together with combinations of 

efficiency scores.  Thus the efficiency score was ‘force’ entered in each model, except Model 10. 

All of the models were parameterised across all industries with industry specific dummies 

interacted with each efficiency variable to yield industry specific parameters and the efficiency 

scores. We therefore assume the marginal effects of the efficiency variables are specific to each 

industry sector but the marginal effects are the same for each financial variable for all industries. 

The models are specified in Table 6.  

DEA allows one to compute the efficiency of an organisation relative to the most efficient 

organisations in the dataset. To compute the relative efficiency scores for a new case requires us 

to solve the program for a different set of DMUs and so could alter the efficiency boundary and 

thus the efficiencies of the original cases relative to the new efficiency boundary. To assess the 

discriminatory power of including efficiency variables we computed the relative efficiency for 

each member of the holdout sample in 2005. We assumed that the marginal effects of relative 

TE, PTE and SE, and so the logistic regression parameters that were estimated for 2001-3, 

remained constant over time. We argue that in competitive markets it is relative efficiency 

rather than absolute efficiency that determines the chance of financial success or, as in our case, 

financial distress. This is consistent with the approach used in the literature (see Xu and Wang 

2009). We then predicted the probability of a new case becoming distressed in 2006-7 using the 

2005 efficiencies and 2001-3 parameters. 

 

Parameters and Significance Levels 

Table 7 shows that when included alone each of the efficiency variables had the expected sign: 

an increase in efficiency is associated with a decrease in the probability of distress. This is true 

when we consider TE alone or PTE and SE together. The effect of a marginal change in relative 

TE score for Real Estate has a smaller effect on the probability of distress than in the Industrial 

Equipment industry. Generally an increase in relative PTE has a smaller marginal effect on 
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distress likelihood that does an increase in relative SE. RTS (either constant-decreasing or 

increasing) have no detectable effect of the probability of distress. A failure to compute relative 

efficiency for each industry sector separately and so to assume homogeneity of technology 

across all three sectors not only yields incorrect efficiency scores but if such scores are used 

masks considerable differences in the effects of each type of efficiency between the industry 

sectors. 

Table 8 shows that when we force the efficiency scores into each logistic regression, and then 

select financial variables in a stepwise fashion the scale efficiency variables remain significant 

with the expected signs whilst the RTS variables are never significant. In all sectors improving 

relative PTE has a smaller effect of the chance of distress than an improvement in relative scale.  

The parameters of most of the financial ratios have the expected signs. For example, higher 

net cash flow per share or higher return on equity or return on assets is associated with a lower 

chance of distress. In Table 9 we see that if we include the efficiency variables and the financial 

ratios that would be included if the efficiency variables were not, then only the scale efficiency 

scores remain significant. Again their parameters have the expected signs. 

 

Predictive Performance 

The statistical significance of a covariate does not necessarily imply that predictive 

performance is increased if the variable is included in a model. We now examine the predictive 

performance of all of our models. First we compare the predictive performance of using overall 

efficiency (TE) versus decomposed efficiency (PTE and SE), second we compare models with 

RTS levels versus models without RTS levels and third we compare models with and without 

financial ratios. The Area Under ROC curve (AUROC), the Gini coefficient and Error Rates are 

reported (Table 10 and Figure 1). For Error Rate calculation the proportion of STs that are 

predicted to be STs is the proportion of the observed STs in the training sample.  

In the first comparison (Model 1 v 2 and Model 5 v 6) both pairs show that decomposition of 

efficiency scores reduces the classification accuracy in the test samples by a noticeable amount. 

The Gini decreases from 0.841 to 0.797 and from 0.833 to 0.781 if TE is decomposed into PTE 

and SE. In the second comparison (Models 1 v 3 and Model 2 v 4) we see that inclusion of 

Returns to Scale decreases predictive performance slightly. For example, without RTS Model 1 

has a Gini of 0.841 whilst with RTS this is 0.829 in the test set and the corresponding figures for 

Models 2 and 4 are 0.797 and 0.791 respectively.  

One might notice that for Models 1-6 (with only efficiency variables) the Gini for the test set 

exceeds that for the training set. We explain this unusual observation with reference to a 

particular model. Consider Table 4 and industry 4040 (Real Estate). Model 1 consists only of 
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the TE variable. Notice that the difference between the mean TE between the ST and not-ST 

groups in the training set (0.632 - 0.368 = 0.264) is less than that in the test set (0.578 - 

0.207=0.371). In a Kolmogorov-Smirnov diagram (Figure 2) the increase in the difference in 

the mean TE between the two groups will move the Pnon-ST (s) line further from the PST(s) line in 

the test set than in the training set, where Pnon-ST(s) and PST(s) denote the cumulative proportions  

at and below each score, s,  of non-STs and STs  respectively. Therefore plotting Pnon-ST(s) 

against PST(s) in a ROC curve graph will result in a more accentuated curve and so the greater 

difference in means will result in a larger Gini (see Thomas et al, 2002). 

Turning to the inclusion of financial ratios, we see that they outperform the first six models 

that contain only efficiency variables. For each performance measure we highlight the model 

with the greatest predictive power. Generally, in the training sample the models of efficiency 

variables assisted by ratios are better in predictive accuracy than the models of ratios assisted by 

efficiency variables. But in the test sample, it is the other way around. In the test sample the 

highest classification accuracy and the highest discriminatory power is gained by Model 11 that 

includes industry specific TE together with the most significant of all financial ratios. However 

the difference between the performance of this model and models 12 and 13 that have the same 

financial ratios but decompose TE and include RTS (Model 13), is inconsequential. 

 

Discussion and Conclusion 

Data Envelopment Analysis is a useful method to measure relative corporate efficiency and 

corporate efficiency is found to be helpful in credit scoring in previous literature and this paper 

as well. Rather than assuming Constant Returns to scale, this paper adopts a more realistic 

assumption, Variable Returns to Scale. It allows the model to decompose overall technical 

efficiency into Pure Technical Efficiency and Scale Efficiency which actually provides more 

information for analysis. Practically, these measures indicate that an inefficient company 

should improve its efficiency of use of inputs or adjust its operating scale to the optimum level 

to achieve better performance. Our results show not only those less technically efficient firms 

are at greater risk of becoming financially distressed than more technically efficient firms but 

that improvements in both pure technical and scale efficiency would reduce the risk. Of these 

two what really matters is how relatively scale efficient, rather than how pure technically 

efficient, firms are. This indicates that a firm which wants to perform better, in practice, should 

pay more attention to optimising its scale of business rather than optimising resources or 

applying new technology. Increasing scale of operation is likely to have a great effect on 

reducing risk of distress than moving on an efficiency frontier.  
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 These results are consistent with those of Psillaki et al (2010) who found that technical 

efficiency was significantly negatively related to the probability of business failure for a sample 

of French firms in each of three industries. But because no study that models financial distress 

has decomposed technical efficiency no further comparison can be made. 

However, in the prediction of financial distress, decomposition of efficiency variables 

reduces prediction accuracy. A simpler model is more effective, using Technical Efficiency 

only to assist financial ratios in logistic regression and that give best results in both model 

training and out-of-time validation. We also found that the variable level of Returns to Scale 

had no detectable effect on the probability of being in distress.  

In terms of using efficiency as the only predictor, our results show that a group of financial 

ratios does outperform efficiency scores as they can cover many aspects of business while a 

DEA score is only based on a limited number on inputs and outputs. That is also the reason why 

financial ratios have dominated the corporate credit prediction for decades. However, to gain 

greatest predictive accuracy, financial ratio and efficiency variables should be included. This is 

consistent with the findings of Yeh et al (2010) and Xu and Wang (2009). Furthermore, in order 

to test the robustness of the results, in the beginning of modelling, we have also tried another list 

of financial ratios with less collinearity (VIF < 5). The results do not vary too much, except the 

selected ratios are different. There is only a little difference on the third decimal places in GINI. 

The same conclusion remains. 

Nevertheless, although predictive accuracy is the main concern in credit risk management, 

there is also the necessity to understand risk drivers that may give early indications of potential 

problems. In this respect decomposed efficiency measures, in particular scale efficiency, can 

provide useful information to a credit analyst interested in relative performance of companies is 

a credit portfolio.   

This paper has also introduced a modified logistic regression model, particularly for DEA 

variables. This is the first application of DEA in credit scoring to use the dummy variables for 

different industries to overcome the dilemma that a large sample size and homogeneity of 

DMUs cannot be achieved at the same time. Industry specification slightly improves prediction 

accuracy and remarkably increases discriminative power. More importantly, the proposed 

logistic regression properly handles the assumption of DEA methodology which should be kept 

all the time when apply it.  Such methodology allows employing a large dataset with a mixture 

of industries, but it needs to be noted that the more industries are involved, the more dummy 

variables are needed, and the number of companies in each category should still be large 

enough.   

Finally, it has to be mentioned that the data analysed in this paper covers two time periods. It 
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would be beneficial if more years of data are found to be supportive with the above conclusion 

in cross sectional analysis. Moreover, the recent development of DEA actually can give 

estimation of time serial efficiency scores which allow panel analysis across a period of time. 

The panel models and Malmquist DEA scores are the next step in future work. 
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Table 2   Statistics of DEA variables 

      2001 2005 

    Sector N Mean SD Min Max N Mean SD Min Max 

Inputs 

employees 

1510 198 3925 5388.8 104 45943 236 4240.6 5622.1 140 44421 

2010 158 2498.2 2353 102 15000 205 2281.4 2312.9 129 19676 

4040 114 1252.9 1594.5 56 13319 114 1038.9 1742.2 34 12568 

capitals(mCNY) 

1510 198 524.5 1182.4 51 12512 236 604.1 1434.3 60.4 17512 

2010 158 291.7 224.7 80.2 1884.4 205 323.7 296.7 57.6 2689.6 

4040 114 298.3 234.3 66 1867.7 114 369.7 410.9 53.5 3722.7 

costs(mCNY) 

1510 198 1410.6 2935 37.6 25497.9 236 3620.3 9098.1 49.3 108422.4 

2010 158 995.1 1820.5 50 19358.6 205 1656.7 2563.9 110.4 19459.7 

4040 114 506.5 607.9 48 4157.4 114 774.4 964.3 12.2 8528.6 

assets(mCNY) 

1510 198 2478.9 4881.2 154.6 58042.1 236 4269.4 10471.3 164.4 142024.2 

2010 158 1671.7 1436.8 198.1 9907.9 205 2273.6 2330.4 172.9 18033.6 

4040 114 1659.2 1507 287 9690.3 114 2428.5 2747.5 27.3 21992.4 

debts(mCNY) 

1510 198 1120.2 2561.6 43 31752 236 2248.9 4926 22.6 63097.3 

2010 158 805.8 810.5 45.9 4810 205 1318 1491.5 55.6 9517.7 

4040 114 834.4 978.2 6.5 7380.5 114 1459.5 1675.6 7 13411.2 

             

Outputs 

profits(mCNY) 

1510 198 88.5 355.4 -1797.4 3709.6 236 281.4 1334.9 -997.2 18310.8 

2010 158 54.9 160.9 -1009.8 1011.8 205 60.4 238.2 -696 2057.1 

4040 114 44.1 126.1 -537.6 501.9 114 40.9 293.6 -1142.2 1976.2 

cash(mCNY) 

1510 198 16.7 336.9 -3686.2 872.5 236 -6.6 334.4 -2664.6 1784.3 

2010 158 50.1 208.1 -686.4 882.7 205 -15.6 160.9 -953.8 661.3 

4040 114 45.9 150.8 -329.9 585.2 114 -22.9 216.3 -1100.2 597.9 

sales(mCNY) 

1510 198 1499.3 3142.1 20.1 29170.8 236 3895.2 10297.5 17.9 126608.4 

2010 158 1037.8 1858.1 51.6 19565.1 205 1706.5 2657.2 0.9 19474.2 

4040 114 536.1 663.6 12.2 4455.1 114 825.4 1154.4 3.5 10558.9 

 

 

 

 

Table 1   Sample sizes 

 Training sample (2001 to 2003) Testing sample (2005 to 2007) 

Sector Code 1510 2010 4040 total 1510 2010 4040 total 

non-ST 181 144 95 420 218 185 92 495 

ST 17 14 19 50 18 20 22 60 

Total 198 158 114 470 236 205 114 555 

ST/Non-ST 9.40% 9.70% 20.00% 11.90% 8.30% 10.80% 23.90% 12.10% 

ST rate 8.59% 8.86% 16.67% 10.64% 7.63% 9.76% 19.30% 10.81% 
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Table 3   List of Eligible Financial Ratios 

Group Ratio Group Ratio 

Profitability (12) earnings per share (EPS) Capital composition (5) book value per share (BPS) 

 operating revenue per share  total assets / total liability 

 retained earnings per share  equity multiplier 

 return on equity (ROE)  current assets / total assets 

 return on assets (ROA)  tangible assets / total assets 

 return on invested capital (ROIC)   

 gross margin to total sales Cash flow (6) net cash flow from operating per share 

 operating profit / total sales  net cash flow per share 

 operating expenses / total sales  net cash flow from operating / operating revenue 

 financial expenses / total sales  net cash flow from operating / total liabilities 

 undistributed profits per share  net cash flow from operating / interest bearing liabilities 

 EBIT per share(EBITPS)  net cash flow from operating / current liabilities 

    

Liquidity (8) current liabilities / total liabilities Operation capacity (4) inventory turnover 

 current ratio  receivables turnover 

 quick ratio  current assets turnover 

 cash ratio  total assets turnover 

 total liabilities / equity   

 EBITDA / total liabilities Growth rates (4) operating revenue growth 

 surplus capital per share  total profit growth 

 surplus reserve per share  net profit growth 

   total assets growth 
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Table 4   Means and standard deviations of efficiency scores 

    Training Sample Holdout Sample 

      TE PTE SE  TE PTE SE 

Sector 

code 
ST N Mean SD Mean SD Mean SD N Mean SD Mean SD Mean SD 

1510 0 181 .557 .209 .628 .214 .886 .117 218 .493 .219 .597 .214 .824 .163 

 1 17 .323 .180 .533 .277 .647 .247 18 .237 .086 .439 .199 .614 .233 

 All 198 .537 .216 .620 .221 .866 .148 236 .474 .222 .585 .216 .808 .178 

2010 0 144 .556 .239 .694 .214 .792 .171 185 .493 .242 .615 .227 .796 .198 

 1 14 .231 .082 .473 .243 .545 .188 20 .201 .084 .439 .182 .497 .194 

 All 158 .527 .248 .675 .225 .770 .186 205 .465 .247 .598 .229 .767 .216 

4040 0 95 .632 .251 .728 .232 .864 .154 92 .578 .285 .706 .269 .824 .221 

 1 19 .368 .271 .574 .264 .665 .300 22 .207 .092 .394 .218 .610 .278 

 All 114 .588 .272 .702 .244 .831 .199 114 .506 .298 .646 .287 .782 .247 

Total 0 420 .574 .231 .673 .222 .849 .151 495 .509 .243 .624 .233 .813 .188 

 1 50 .314 .206 .532 .261 .625 .255 60 .214 .087 .422 .199 .574 .241 

 All 470 .546 .242 .658 .230 .825 .179 555 .477 .249 .602 .238 .788 .208 
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Table 5   Levels of Returns to Scale 

  RTS 2001 RTS 2005 

 Decreasing Constant Increasing Total Decreasing Constant Increasing Total 

ST 69 69 282 420 58 66 371 495 

Non-ST 5 0 45 50 0 0 60 60 

Total 74 69 327 470 58 66 431 55 

 

 

 

 

Table 6   Models to be compared 

A Efficiency Variables Only 

Model 1 Industry specific TE only 

Model 2 Industry specific PTE and SE 

Model 3 Industry specific TE and RTS 

Model 4 Industry specific PTE, SE and RTS 

Model 5 Pooled TE 

Model 6 Pooled PTE and SE 

  

B Efficiency Variables force entry, financial ratio variables selected by stepwise routine 

Model 7 
Industry specific TE forced entry, financial ratios selected by forward stepwise 

routine. 

Model 8 
Industry specific PTE and SE forced entry, financial ratios selected by forward 

stepwise routine 

Model 9 
Industry specific PTE, SE and RTS forced entry, financial ratios selected by 

forward stepwise routine 

  

C Financial variables selected by stepwise and then forced entry with efficiency variables 

Model 10 Financial variable selected by forward stepwise routine. 

Model 11 Industry specific TE, financial ratios from Model 10 

Model 12  Industry specific PTE and SE, financial ratios from Model 10 

Model 13 Industry specific PTE, SE and RTS financial ratios from Model 10 
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Table 7   Coefficient estimates from efficiency only logistic regressions A 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Technical Efficiency Score     -10.52**  

 Raw materials -11.89**  -12.34**    

 Industrial Equipment -14.23**  -24.41**    

 Real Estate -9.40**  -8.56**    

Pure Technical Efficiency Score      -4.95** 

 Raw materials  -3.82**  -4.39**   

 Industrial Equipment  -6.93**  -9.53**   

 Real Estate  -5.89**  -5.77**   

Scale Efficiency Score      -7.33** 

 Raw materials  -9.79**  -10.16**   

 Industrial Equipment  -9.02**  -12.27**   

 Real Estate  -7.26**  -6.90**   

Returns to Scale       

 Raw materials   -0.97 -5.77   

 Industrial Equipment   2.08 3.32   

 Real Estate   1.39 -1.54   

Constant 2.58** 7.56** 3.47** 8.59** 2.13** 6.20** 
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Table 8 Coefficient estimates from logistic regressions B 

Variable Model 7 Model 8 Model 9 

Technical Efficiency Score    

 Raw materials -8.35**   

 Industrial Equipment -10.67**   

 Real Estate -7.12**   

Pure Technical Efficiency Score    

 Raw materials  -2.81     -1.82     

 Industrial Equipment  -6.19** -9.75     

 Real Estate  -6.24** -5.25*   

Scale Efficiency Score    

 Raw materials  -10.82** -11.08** 

 Industrial Equipment  -9.66** -16.17** 

 Real Estate  -8.21** -7.93** 

Returns to Scale    

 Raw materials   -1.68     

 Industrial Equipment   5.24     

 Real Estate   -2.09     

Net cash flow per share  -5.43** -6.12** -4.82** 

Return on equity -0.09*   -0.20** -0.25** 

Return on assets -0.18**   

Gross margin / total sales -0.07**   

Operating profit / total sales 0.03*     

Financial expenses / total sales 0.13*   0.12*   0.15*   

Tangible assets / total assets -0.04*   -0.05** -0.06** 

Current ratio  3.22**  

Quick ratio   3.31** 

Cash ratio   -6.37** -7.77** 

Net cash flow / interest bearing liabilities    

Net cash flow / current liabilities   -5.53*   

Inventory turnover 0.36** 0.66** 0.72** 

Total assets growth -0.08** -0.09** -0.09** 

Constant   3.47** 10.16** 11.74** 

Models 7, 8 and 9: Efficiency variables forced entry, financial variables selected by forward 

stepwise routine. 
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Table 9 Coefficient estimates from logistic regressions C 

Variable Model 10 Model 11 Model 12 Model 13 

Technical Efficiency Score     

 Raw materials  -3.88       

 Industrial Equipment  -5.2       

 Real Estate  -3.1       

Pure Technical Efficiency Score     

 Raw materials   -0.63     -1.48     

 Industrial Equipment   -1.15     -2.79     

 Real Estate   -1.28     -2.16     

Scale Efficiency Score     

 Raw materials    -5.37** -5.97*   

 Industrial Equipment   -5.95** -8.19*   

 Real Estate   -4.20*   -4.95*   

Returns to Scale     

 Raw materials    -1.73     

 Industrial Equipment    0.07     

 Real Estate    -1.3     

Net cash flow per share  -3.26** -3.33*   -3.35*   -3.47*   

Return on equity -0.07*   0.07     -0.07*   -0.07*   

Return on assets -0.18** -0.18*   -0.19** -0.18*   

Gross margin / sales -0.05*   -0.06*   -0.06*   -0.06*   

Operating profit / total sales     

Financial expenses / total sales 0.11** 0.09*   0.11*   0.11*   

Tangible assets / total assets     

Current ratio -1.25** -0.96*   -1.17*   -1.25*   

Quick ratio     

Cash ratio      

Net cash flow / interest bearing liabilities -3.23     -2.5     -2.4     -3.16     

Net cash flow / current liabilities     

Inventory turnover     

Total assets growth -0.08** -0.06*   -0.05** -0.05** 

Constant   1.18     2.57*   5.55** 7.79** 

Model 10: All variables selected by forward stepwise routine.   

Model 11, 12 and 13: Efficiency variables forced entry, financial variables from Model 10. 
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Table 10 Model results 

  Training sample Testing sample 

  Type I error Type II error 
Overall 

accuracy 
AUROC GINI Type I error Type II error 

Overall 

accuracy 
AUROC GINI 

Model 1 40.0% 4.8% 91.5% 0.869  0.738  41.7% 4.8% 91.2% 0.921  0.841  

Model 2 52.0% 6.2% 88.9% 0.881  0.761  46.7% 5.5% 90.1% 0.898  0.797  

Model 3 42.0% 5.0% 91.1% 0.882  0.765  46.7% 5.5% 90.1% 0.915  0.829  

Model 4 52.0% 6.2% 88.9% 0.887  0.775  45.0% 5.3% 90.5% 0.895  0.791  

Model 5 42.0% 5.0% 91.1% 0.844  0.687  43.3% 5.1% 90.8% 0.917  0.833  

Model 6 50.0% 6.0% 89.4% 0.843  0.686  46.7% 5.5% 90.1% 0.891  0.781  

Model 7 20.0% 2.4% 95.7% 0.970  0.940  36.7% 4.2% 92.3% 0.952  0.904  

Model 8 30.0% 3.6% 93.6% 0.979  0.957  40.0% 4.6% 91.5% 0.935  0.869  

Model 9 24.0% 2.9% 94.9% 0.983  0.965  40.0% 4.6% 91.5% 0.935  0.870  

Model 10 26.0% 3.1% 94.5% 0.961  0.923  36.7% 4.2% 92.3% 0.954  0.907  

Model 11 22.0% 2.6% 95.3% 0.966  0.933  33.3% 3.8% 93.0% 0.957  0.914  

Model 12 22.0% 2.6% 95.3% 0.968  0.937  35.0% 4.0% 92.6% 0.956  0.911  

Model 13 20.0% 2.4% 95.7% 0.972  0.943  36.7% 4.2% 92.3% 0.954  0.907  

Type I error occurs when a distressed company is wrongly classified as a non-distressed company. 

Type II error occurs when a non-distressed is wrongly classified as a distressed company. 
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Figure 1 ROC curves 
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Figure 2   Kolmogorov-Smirnov Plots 
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