
24 July 2018

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Some Controversial Opinions on Software-Defined Data Plane Services / Risso F.; Manzalini A.; Nemirovsky M.. -
STAMPA. - (2013), pp. 1-7. ((Intervento presentato al convegno 2013 Software Defined Networks for Future Networks
and Services (SDN4FNS) tenutosi a Trento, IT nel November 2013.

Original

Some Controversial Opinions on Software-Defined Data Plane Services

Publisher:

Published
DOI:10.1109/SDN4FNS.2013.6702558

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2518571 since:

IEEE

Some Controversial Opinions on Software-Defined
Data Plane Services

Fulvio Risso
Dept. of Control and Computer Engineering

Politecnico di Torino
Torino, Italy

fulvio.risso@polito.it

Antonio Manzalini
Telecom Italia Strategy

Future Centre
Torino, Italy

antonio.manzalini@telecomitalia.it

Mario Nemirovsky
ICREA Research Professor

Barcelona Supercomputing Center
Barcelona, Spain

mario.nemirovsky@bsc.es

Abstract—Several recent proposals, namely Software Defined
Networks (SDN), Network Functions Virtualization (NFV) and
Network Service Chaining (NSC), aim to transform the network
into a programmable platform, focusing respectively on the
control plane (SDN) and on the data plane (NFV/NSC). This
paper sits on the same line of the NFV/NSC proposals but with
a more long-term horizon, and it presents its considerations
on some controversial aspects that arise when considering the
programmability of the data plane. Particularly, this paper
discusses the relevance of data plane vs control plane services,
the importance of the hardware platform, and the necessity
to standardize northbound and southbound interfaces in future
software-defined data plane services.

I. INTRODUCTION

The idea of transforming the network into a programmable
platform is probably one of the hottest topics in the current
research domain, which originates from the impossibility to
deeply change the behavior of current network devices. In
fact, in most cases only the manufacturer of the network
equipment has the privilege to create the software that controls
the device itself, while the possibilities for any other actor
(e.g., a network operator) are more limited. In fact, a network
operator can only configure the software already provided by
the network manufacturer (changing parameters, choosing a
routing protocol instead of another, etc.) but it cannot directly
install its own software on the network device, such as a
routing protocol customized for its particular environment.

Among the approaches that have been proposed so far
toward a greater flexibility, we can cite Software-Defined
Networks, Network Functions Virtualization [1] and Network
Service Chaining [2]. Software-Defined Networks (SDN) rep-
resent a new architectural model in which the control plane
is transformed into a programmable entity and is decoupled
from the data plane. Instead, Network Functions Virtualiza-
tion (NFV) and the IETF Network Service Chaining (NSC)
proposals can be considered fairly orthogonal to SDN and
aimed at simplifying the complex data plane processing path
present in network operator’s networks. Although a more in-
depth discussion of SDN and NFV/NSC is left for Section II,
we can summarize how SDN is more oriented to control
plane programmability, while NFV/NSC focuses on data plane
functions. Briefly, control plane refers to the set of functions
that influence how packets are forwarded to the destination;

for instance, the control plane faces the problem of managing
network paths between source and destination hosts. Vice
versa, data plane refers to the set of functions that can inspect,
and potentially modify, the content of the packets in transit,
i.e. it faces the problem of processing each single packet.

This paper discusses the problem of customizing data plane
services with a view limited to a single network device, and
assumes that future NFV/NSC solutions will allow users to
deeply change the behavior of the data path of the network,
e.g., by installing and running custom applications that operate
on an arbitrary portion of the network traffic. In case of such
of this event, we speculate that some assumptions that may be
valid for the SDN world may no longer be appropriate when
deep data plane programmability comes into play.

This paper presents the personal (and potentially controver-
sial) opinion of the Authors on some issues related to the future
software-defined data plane services, namely the importance
of a programmable data vs control plane (Section III), the
necessity of the network hardware to evolve (Section IV) and
the necessity to define standard interfaces for future data plane
services (Section V). The paper includes also an introduction
to the existing SDN and NVF/NSC concepts (Section II), and
a final section (Section VI) that summarizes current findings
and presents some conclusive remarks.

II. BACKGROUND

A. Software-Defined Networks

Software-Defined Networks are based on the separation
between the control and the data plane of the network. The
former, which is supposedly where most of the intelligence
is, is transformed into an open programmable platform that
can potentially host any network control application, usually
provided by the network operator. This may allow different
actors (e.g., network operators) to finely control the forwarding
decisions taken in any portion of their network and implement
the best traffic forwarding strategy according to their necessi-
ties. As a consequence, SDN can enable the implementation
of smart algorithms e.g., to balance traffic across different
links based on several criteria such as the sender/receiver of
the traffic, the application, or anything else that is considered
useful for the network operator.

Fulvio
Typewritten Text
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."Risso F., Manzalini A., Nemirovsky M., "Some Controversial Opinions on Software-Defined Data Plane Services," in Proceedings of the 2013 Software Defined Networks for Future Networks and Services (SDN4FNS), Trento, IT, November 2013, DOI 10.1109/SDN4FNS.2013.6702558.

SDN predicates that the control is a logically centralized
function (although the implementations may be distributed)
and it should be programmed through a set of well-defined
interfaces, possibly standard, which could allow independent
developers to execute their applications on different con-
trollers.

While SDN represents definitely an important innovation in
the networking area, it limits its scope to the control plane.
In other words, it offers interesting possibilities to control
the path traversed by a generic network flow, but it is not
appropriate for data plane-oriented tasks that are very common
in nowadays networks, such as many functions implemented
by dedicated middleboxes (e.g., firewalls, network address
translators, web caches, etc.) often placed at the edge of the
network.

B. Network Functions Virtualization and Network Service
Chaining

Network Functions Virtualization (NFV) focuses on the
problem of consolidating and optimizing the processing of
the network traffic that needs to traverse many middleboxes
mentioned before, which is an increasingly important problem
particularly in network operators’ networks. In fact, new net-
work services often require the traffic to traverse a large set of
those boxes, each one implementing a specific function, with a
huge impact in terms of costs (CAPEX, power, management,
physical space), reliability and complexity of the network.

NFV is based on flow processing [3] and proposes to
implement in software the network functions that today run on
proprietary hardware, leveraging high-volume standard servers
(e.g., Intel-based blades) and IT virtualization. This poten-
tially enables greater flexibility and reduces costs, e.g., by
consolidating several functions on a few physical servers. NFV
can exploit control plane technologies such as OpenFlow [4]
to dynamically reprogram the paths of network flows and
allow them to traverse exactly the set of components (called
functions or applications) that are needed for the selected
service.

Network Service Chaining (NSC) is currently an unofficial
IETF working group still in the embryonic Birds-of-a-Feather
(BoF) discussion stage, whose vision looks similar to NFV. In
fact, NSC goal is the standardization of the general architecture
and the building blocks that are required to create network ser-
vice chains, such as protocols (for setting up, configuring and
managing the service chain), metadata (for passing additional
information among different services) and more.

Although NFV/NSC are oriented to the data plane services,
currently they do not enter into the detail of the imple-
mentation of each single function. For instance, a possible
implementation consists in having applications running as
virtual machine images, executed on hypervisors installed on
standard servers. This allows to exploit the best of both worlds,
i.e., servers execute applications, and network devices forward
traffic, but that in this case data plane processing blocks are not
integrated in the network device, but are located at its border,
which may be a possible source of inefficiency. However, this

Router Router Router

 NAT
Web cache

Firewall

SDN NFV/NSC (today) NFV/NSC (future)

Fig. 1. An overview of the SDN and NFV/NSC (present and future)
paradigms with respect to data plane functions, focusing on a single node.

possible implementation can be seen as a pragmatic move
toward a (near) future with customized applications running on
the data plane, enabled by an architectural model that leverages
the highest possible number of existing components instead of
starting the design from a blank new sheet. For instance, the
reuse of existing components is one of the explicit goals of
NSC. In essence, the architectural model proposed to imple-
ment the NFV/NSC in the near future is shown in the block
in the middle of Figure 1: flexible data plane processing is not
achieved by changing the architecture of the network device
and integrating the new customized data plane applications in
it; instead, service chains are created by establishing a closer
collaboration between network equipment and mainstream
computing platforms. Finally it is worth mentioning that the
NFV/NSC architecture supports distributed processing chains,
in which services are installed in different locations, even in
a remote datacenter, and then chained in the proper order.

C. A long term view on NFV/NSC

This section focuses on the implementation of the single
functions defined in NFV/NSC on a long term horizon.
Although predicting the future is always a difficult activity,
we can foresee the presence of at least two fundamental
differences from today. First, we foresee that future data
plane architectures will spot a deeper integration between net-
working and general purpose processing components, possibly
deeply integrated within the same network box1. Second, we
foresee that new network devices will allow third parties (e.g.,
network operators) to install their own data plane applications
directly on network device. This new software could either
complement the standard data plane processing code provided
by the device manufacturer with new functions or could
replace it totally, and it will potentially operate on the all the
packets flowing through the network device. In fact, several
proposals in this direction have been made so far; among the
others we can cite Click [5] and some recent papers such as
[6], [7], [8], [9] and [10].

While everybody agrees that future network devices should
become hybrid platforms that can execute both traditional net-
working tasks and new complex data plane processing applica-
tions, the hardware architecture needed for those new network

1Although many network manufacturers already offer network equipment
that supports also general-purpose processing blades, currently those compo-
nents are not properly integrated with the other data plane modules.

devices is still under debate. Options range from replacing
the currently dedicated network hardware with standard high-
volume components (e.g., clusters of servers equipped with
mainstream CPUs) to the creation of hybrid devices that
integrate both dedicated networking components (e.g., special
purpose ASICs) and general purpose linecards.

Independently from the resulting hardware implementation
of future network devices, the different approaches (control vs.
data plane) taken by SDN/NFV/NSC may suggest the neces-
sity of different hardware architectures, which are summarized
in Figure 1. For instance, an SDN router may appear as a
simple (dumb) switch (indeed, the intelligence is in the control
plane), a NFV/NSC router may look like a (dumb) switch con-
necting several (smart) modules that operate on the data plane,
while a future data plane router should resemble to a more
integrated device, including switching and customized data
plane processing functions in the same box. As a consequence,
we foresee that future routers for data plane services will
become smart devices with the capability to deeply modify the
network packets, such as changing the value of some fields
(e.g., in NAT applications) or even implementing complex
data plane applications such as transparent web proxies, WAN
accelerators, and more.

III. ON THE RELEVANCE OF THE DATA VS. CONTROL
PLANE

SDN speculates that the network control plane is the place
where the intelligence should be, while the data plane should
look similar to a fast (but dumb) switch. As a consequence,
SDN assumes that the control plane is much more relevant
than the data plane because of the presence of more high-level
functions.

While not questioning that the control plane is where most
of the network intelligence would be, we would like to analyze
the relevance of the data vs. control plane by looking at
the point of view of two different entities, namely network
operators and end users. With network operators we intend
all the entities that are in charge of operating a network,
such as companies whose business consists in selling network
services (e.g., connectivity) to end users, companies that own
a datacenter and sell added value services to third parties, and
more. Vice versa, with end users we intend all the entities that
buy network connectivity and, possibly, services from network
operators, such as domestic ADSL users or corporate networks
connected to the Internet.

This section makes use of three steps to present the personal
view of the Authors on the relevance of the control vs. data
plane. First, we analyze the relevance of the data vs. control
plane from the point of view of the network operator. Second,
we move our focus to end users and we discuss the possibility
of giving them the privileges to to customize the behavior of
the network (being it the control or the data plane). Finally,
we discuss the relevance of the control vs. data plane focusing
on the point of view of the end user.

A. The view from the network operator

The capability to customize the control path of the network
represents a big value for a network operator, which can use
this technology to optimize its infrastructure, create overlays
or partitions in the network (e.g., Virtual Private Networks),
avoid bottlenecks, and more. In essence, a clever control plane
allows the network operator to improve its costs and to provide
new services, although, from private conversations with some
network operators, Authors infer that the first objective (i.e.,
reducing costs) looks more important than the second (i.e.,
providing new services).

Similar advantages can be achieved by a programmable
data plane as well. The network provider can improve its
operating cost by consolidating and optimizing many func-
tions currently in use (firewalls, intrusion detection systems,
network monitors, transparent web caches, etc.). Furthermore,
it can introduce new services with shorter setup time and
higher customization capabilities, such as parental controls,
personal security software, network mobility solutions (e.g.,
LISP [11]), etc. For instance, a recent study [12] on the
Italian market, which accounts 41.37M Internet users and
60.9M inhabitants at December 2012, evaluates the potential
customers and the corresponding revenues coming from the
five possible data plane services listed in Table I, all belonging
to the security domain. The result is that those services alone
have the potential to bring to the telecom operators more than
500Me, on a market that is estimated at about 60 billions
euro/year. Although this preliminary number does not account
the cost of delivering the service, nor the fact that a potential
customer may decide not to buy the service, it shows that
the introduction of a programmable data plane can offer to
the telecom provider interesting opportunities for new added
value services.

Although previous numbers should be considered as ball-
park estimations2, they seem to suggest that data plane cus-
tomization may become an important source of revenues for
the network operator, possibly originating a bigger economic
impact than control plane customization.

B. User customization of the control/data plane

Historically, network manufactures looked suspiciously at
the idea of allowing other actors (e.g., network operators) to
create and install their own software on their network devices.
In addition to the several reasons that come from the business
side, we can cite the problem of guaranteeing the integrity
of the “core” functions of the devices, which should run
unaffected by the behavior (including bugs) of the external
applications.

Nevertheless, due to market demand, some network equip-
ment manufacturers recently opened (partially) their boxes to
other actors, but, interesting, the previous problem did not

2For instance, in addition to the sources of uncertainty related to the
economic impact of data plane programmability already mentioned in the
text, other potential issues are the lack of estimates about the revenues that
may come from a customized (programmable) control plane, and the cost
reductions achievable through programmable control/data planes.

TABLE I
POSSIBLE YEARLY REVENUES FOR A TELECOM OPERATOR FROM NEW DATA PLANE SERVICES (ITALY ONLY)

Market description Potential users Pricing Revenues
Customers (families) interested in a parental control software 1383180 30e/year 41.5Me
Customers interested in personal security software (e.g., personal firewall, etc) 18281920 15e/year 274.2Me
Corporate mobile users interested in mobile protection software 787913 50e/year 39.4Me
Corporate users that adopt the BYOD paradigm, interested in mobile protection software 2412964 50e/year 120.6Me
Companies interested in operator-based protection software (e.g., corporate firewall) 52414 1000e/year 52.4Me
Total 528.1Me

disappear. In fact, the ball is now in the hands of network
operators, which prefer not to allow any other entity but them-
selves to install additional software on the network equipment.

In any case, the Authors believe that long-term plans for
control/data plane programmability should allow the soft-
ware coming from arbitrary sources (as proposed in [6]) to
change the behavior of the network, either control or data
plane, for the same reasons (both technical and economic)
presented before. In fact, the future of control/data plane
programmability should be the capability to offer to several
parties (network providers, service providers, end users) the
possibility to install and execute their software on the network
and hence deeply influence its behavior. According to this
model, user applications can target both control plane (e.g.,
changing forwarding paths) and data plane functions (e.g.,
drop e-mails with malicious attachments).

While the idea of allowing any entity to install its own
application on the network may look dangerous because it may
break the network itself, we can note that a similar behavior
represents the common practice in the computing world, in
which the entity that operates the hardware infrastructure (such
as in public datacenters) may be different from who installs
and operates the applications. In our opinion, it is just a matter
of which permissions we grant to the users and how we enforce
the control on their actions, not if they are allowed to do so.
For example, we foresee that users could install applications
such as personal firewalls in the network, operating only on
the traffic generated by all the devices of the users itself, and
more.

C. The view from the final end user
While the capability to customize the network paths can

represent a value for the telecom operator, we believe that in
most cases this represents an insignificant detail for a typical
end user. In fact, end users usually expect their traffic to be
delivered to the destination and they do not care about the
path traversed by their packets.

Vice versa, they may be interested to install their appli-
cations on a programmable data plane, which enables them
to relocate some existing functionalities (firewalls, intrusion
detection systems, protocol translators, VPNs, etc.) in the
network, and potentially add even new applications. From
the point of view of the end user, there are two advantages
in this model: (i) users have the freedom to install the data
plane application they want, without being limited by the
ones offered by their network operator, as in it would be in

the scenario of Section III-A, and (ii) users do not have to
deal with the hardware/deployment details required by those
applications, which will be delegated to the network operator.

As a consequence, we believe that a programmable data
plane is in general much more relevant than a programmable
control plane and that the introduction of user-customizable
capabilities in the data plane of the network would be noticed
by the end user; hence it may represents an additional selling
value for the network operator.

IV. ON THE IMPORTANCE OF THE HARDWARE IN FUTURE
DATA PLANE SERVICES

A widespread opinion in the SDN world states that, as most
of the intelligence resides in the control plane, the data plane
will soon become a commodity, hence almost irrelevant for
delivering future services.

However, if we move our focus to data plane services,
this conclusion may no longer be valid because the levels
of performance required for future data plane services will
definitely be a challenge, not achievable with the hardware in
use today. For example, telecom operators currently aggregate
up to 10-20K ADSL users on a single network node that,
taking into account a speed of 20Mbps per user, leads to an
aggregated bandwidth of about 200Gbps. It is important to
notice (i) that this number is expected to grow (more users
could be aggregated in the future, and link speed could become
larger), and (ii) that we are focusing on deeply programmable
data plane applications, which may be required to perform
custom processing (not just simple forwarding) on each single
packet. This seems to suggest that the hardware may become
less important for the general public, which will focus on high-
value functions and care less about the underlying details (as
today in the computing world), but it should definitely evolve
in order to support future data plane services.

In fact, if we take a look at the world of computing, which
shares many similarities with future data plane services, we
can observe that the hardware has evolved considerably even
in the last few years, although exploiting the advantages of the
scale economies. For instance, thanks to the standard high-
volume approach, we can use the same hardware in many
different application fields (standardization) and we increase
the number of devices that rely on the a few (sophisticated)
components (high volume), reducing the overall cost of the
system.

In fact, although most people think that current CPUs are
just faster than some years ago, among the many innovations

we had in the general purpose processing hardware, we can
cite virtualization primitives that allowed to execute virtual
machines more efficiently, 64-bit instructions that enabled
applications to deal with huge amount of data, efficient locking
primitives for shared data; furthermore, dedicated accelerators
such as graphics processing units (GPUs) and vector proces-
sors, are becoming increasingly common and are increasingly
part of the capabilities of a general purpose CPU.

Similarly, we expect that the hardware needed to deliver
future data plane services will be very different from today and
that future network equipment need to evolve considerably.
Particularly, if we assume that the end user can customize the
data plane (Section III-B), we should expect a new breed of
applications, possibly rather different from today network soft-
ware, whose requirements could introduce additional pressure
on the necessity to evolve the hardware. Probably, designing
future network equipment would not be perceived as cool as
creating fancy applications, but this would not mean that the
hardware will become irrelevant.

V. ON THE STANDARDIZATION OF NORTHBOUND AND
SOUTHBOUND INTERFACES IN FUTURE DATA PLANE

SERVICES

The standardization of the northbound and southbound
interfaces are hot topics in SDN and NSV/NSC. We define
the northbound interface (NBI) as the set of APIs that allow
developers to create software for a given platform. Vice versa,
the southbound interface (SBI) is the set of APIs that allow
that code to be instantiated on the physical hardware.

This section presents some thoughts about the standardiza-
tion of NBI and SBI for future data plane service, introduced
by the analysis of how a similar problem has been solved
in the world of the general-purpose computing. Although the
general purpose programming model may not fit perfectly the
necessities of future data plane services, it represents a very
strong candidate and, most likely, it could be the model that
will be used first.

A. The programming model in general-purpose computing

The programming model in general-purpose computing,
which is well understood and has been proved to be quite
effective over the years, leverages the different layers and
components shown in Figure 2. User programs, which im-
plement the application-layer logic, are written in one of the
many existing languages and make use of additional libraries
that facilitate the implementation of specific functions. Those
three components, with the help of the proper compilers,
are used to create an executable that, leveraging the services
(and, possibly, some virtualization functions) exported by the
operating system, can run directly on the hardware.

If we want to introduce the NBI and SBI concepts in the
general-purpose computing model, we could identify the NBI
as the set of programming languages and libraries used by
programmers, while the SBI is the interface represented by
the hardware, which includes the CPU instruction set as one
of the main components.

Hardware

Operating System

User
programs

User
programs

User
programs

Northbound interface

Southbound interface

C
o

m
p

ile
rs

Libraries Programming languages

Fig. 2. The programming model used in modern computing environment.

The presence of a standard interface could guarantee many
advantages, interoperability among the others, which is one of
the reasons why the networking community is pushing for the
standardization of NBI and SBI. However, we can note that
in the computing world no standards exist for NBI and SBI
and this did not prevent the creation of a very active software
ecosystem.

Although the Authors believe that the standardization has
many clear advantages, particularly in case of large networks
where the heterogeneity of the hardware platforms is the com-
mon practice, we present in the following some motivations
(both technical and economic) that suggest that NBI and SBI
may not standardized in future data plane services, similarly
to what happened in the general-purpose computing world3.

B. Northbound interface

The northbound interface should be driven by the appli-
cations. Back to the computing world, we invented many
programming paradigms (procedural languages, event-driven
languages, functional languages, etc.) and many languages
(e.g., Fortran, C, C++, Java, Python, SQL, etc.), each one
probably representing the best choice in a given condition,
such as resource-constrained environments, client-server pro-
gramming, artificial intelligence applications, etc.. Moreover,
since applications (and business necessities) evolve over time,
also languages and paradigms evolved, hence new languages
were defined, other were abandoned, other where enriched
with new functions, and more.

Similarly to what happened in the computing world, we
expect not only that the NBI should evolve over time, but that
there should be many “northbound interfaces”, each one being
the most appropriate for a different business need. On the
other way, we believe that the standardization of the NBI could
limit the evolution of data plane services and prevent people
to exercise their creativity and envision new applications. For
instance, the lack of a standardized NBI (and the freedom to
invent new “interfaces” when needed) was probably one of the
key that enabled the continuous evolution that characterized
the computing world.

3In fact, another possible outcome is that a standard will be defined but it
will not be used in practice, which happened many times in the past.

C. Southbound interface

The southbound interface, being more close to the hardware,
is probably less “cool” than the northbound but nevertheless
it represents the “workhorse” that allows high-level data plane
applications to work.

In the ideal world, a standardized SBI could allow the same
data plane application to be executed on any network device.
However, the computing world does not have a standard
interface here, as each hardware platform has its own charac-
teristics (e.g., CPU instruction set) in addition to the different
API exported by the operating system. Nevertheless, we have
several options to create portable software, such as source
code recompilation, “cross-platform” languages (e.g., Java),
interpreted languages, etc. The experience of the computing
world suggests that, while a standard SBI interface would be
useful for application portability, in practice the same result
can be achieved with other technologies. Although the problem
of code portability with respect to data plane functions seems
to be more difficult to solve because of the heterogeneity of
the networking platforms, we have no evidence that the same
solutions that work in the computer world would not apply to
the networking world as well.

On the other side, there are at least two reasons against
the standardization of the SBI. First, from the business point
of view, a standard SBI could be against the interest of
the (major) network manufacturers, which would lose the
possibility to differentiate their products from competitors.
Second, on the technical side, a standard SBI could limit
the degree of innovation that we can introduce in the hard-
ware/operating system. For instance, the Authors believe not
only that the hardware should evolve with the new additional
primitives needed to offer a better support to future data plane
applications (as presented in Section IV), but that the same
applies to the operating system that supervises the network
box. This could be achieved much more efficiently if several
manufacturers compete to improve their products and are not
tied to a fixed and the-same-for-all interface.

D. The role of Openflow in the future SBI

The OpenFlow protocol has been proposed as a possible
southbound interface by the SDN community, hence we may
wonder if it may be an option for data plane services as well.
This section motivates why OpenFlow is not appropriate in
case we would like to define a SBI for data plane services.

OpenFlow was defined by the networking community in
order to increase the flexibility of current networks. The
networking community focuses on the whole network4 and
it consider a network device as a black box that takes packets
from the input ports and forwards them to the most appropriate
output port. According to this network-centered view, a net-
work switch could be modeled by a simple lookup table that,
in fact, is what OpenFlow does: a network device becomes

4Although this statement looks obvious, please do not underestimate its
importance, which will be clarified in the following.

Router

The view of a router
from a Network

perspective

Router

The view of a router
from a Computing

perspective

net1 port1

net2 port2

net3 port1

Network Port

L2 bridging

Deep Packet
Inspection

L3 routing

QoS

NAT

VPN

Lookup table

Memory (TCAM,
SRAM, DRAM)

Bus,
crossbar

Dedicated
ASICs

Hardware
accelerators

Network
processor

Fig. 3. Different views of a router.

a lookup table5 that can be reprogrammed by an external
software, hence achieving very flexible forwarding policies.

However, if we change our perspective to the one of a
computer engineer, the view of the network device would
be tremendously different, as depicted in the right side of
Figure 3. For instance, the router would be a collection of
functions (L2 bridging, L3 forwarding, VPN concentrator,
NAT, QoS, etc.) and of functional blocks (CPU, network
processors, memories, hardware coprocessors, etc.). When
looking from this angle, not only a network device requires a
model that is more complex than a simple lookup table, but
deriving a suitable model may not be straightforward at all.
In essence, we cannot define a standard SBI until we have a
suitable model of the network hardware, but the definition of
a comprehensive model that satisfies the necessities of data
plane applications is still a rather unexplored research topic
and no clear solution is visible on the horizon.

As a consequence, the OpenFlow protocol is not a suitable
SBI for data plane applications, as it would not be able to
exploit the (required) hardware features present in data plane-
oriented network devices, although it may be sufficient in some
environments where network devices are requested mainly to
forward traffic, such as the case of datacenter switches.

VI. CONCLUSION

This paper presents the opinion of the Authors on some
(controversial) aspects that, when examined with a data plane
perspective, may look different compared to the the view from
the control plane world. Particularly, this paper focuses on
three aspects.

First, it argues that, although the control plane received
much more attention in the past, a programmable data plane
may be more valuable than the control plane because it is
more visible by the end users, which may be willing to
pay for the possibility to customize its services. Second, it
suggests that building the hardware that is needed to provide
future data plane services is definitely a challenge, which
looks the opposite compared to the vision suggested by the
SDN paladins, i.e., that future networking gear will become

5In fact, more recent versions of OpenFlow (gt 1.0) model a router with
a set of lookup tables. While this may be more appropriate for some cases,
still does not capture the complexity of a modern router.

commodity. Third, it suggests that the standardization of the
northbound and southbound interfaces, which is receiving a
great attention in the SDN/NFV/NSC worlds, may not be
successful for both business and technical reasons.

Although the Authors agree that some aspects presented
in this paper may be controversial, they hope that that their
personal opinions will be useful to foster the discussion on
programmable data plane issues in future networks.

ACKNOWLEDGMENT

The authors would like to thank the many friends that
participated to this discussion; among the other we would
like to mention Marco De Benedetto (Embrane) and Pere
Monclus (PLUMgrid). We would also like to thank Alessandra
Colombelli and Rafael Scaglia De Paula who investigated the
business side of future data plane services.

FINAL NOTE

This paper is slightly different from the one submitted to the
conference and published by IEEE. This version includes some
modifications that take into account the discussion during the
presentation of the paper at the SDN4FNS conference. The
authors would like to thank all the SDN4FNS participants for
the very inspiring discussion.

REFERENCES

[1] “Network functions virtualisation,” Introductory White Pa-
per, Oct. 2012, work in progress. [Online]. Available:
http://www.tid.es/es/Documents/NFV White PaperV2.pdf

[2] P. Quinn, J. Guichard, S. Kumar, P. Agarwal, R. Manur, A. Chauhan,
N. Leymann, M. Boucadair, C. Jacquenet, M. Smith, N. Yadav,
T. Nadeau, K. Gray, B. McConnell, and K. Glavin, “Network
service chaining problem statement,” Internet Engineering Task Force,
Internet-Draft draft-quinn-nsc-problem-statement-03, Aug 2013, work
in progress. [Online]. Available: http://tools.ietf.org/html/draft-quinn-
nsc-problem-statement-03

[3] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley,
and L. Mathy, “Flow processing and the rise of commodity network
hardware,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 2, pp. 20–
26, Mar. 2009.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[5] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” in Proceedings of the seventeenth ACM symposium on
Operating systems principles, ser. SOSP ’99. New York, NY, USA:
ACM, 1999, pp. 217–231.

[6] F. Risso and I. Cerrato, “Customizing data-plane processing in edge
routers,” in Proceedings of the European Workshop on Software Defined
Networking (EWSDN), 2012, pp. 114–120.

[7] J. Martinsy, M. Ahmed, C. Raiciuz, and F. Huici, “Enabling fast, dy-
namic network processing with clickos,” in ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking (HotSDN), 2013.

[8] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao,
and Y. Zhang, “Serverswitch: a programmable and high performance
platform for data center networks,” in Proceedings of the 8th USENIX
conference on Networked systems design and implementation, ser.
NSDI’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 2–
2.

[9] J. Whiteaker, F. Schneider, R. Teixeira, C. Diot, A. Soule, F. Picconi,
and M. May, “Expanding home services with advanced gateways,”
SIGCOMM Comput. Commun. Rev., vol. 42, no. 5, pp. 37–43, Sep.
2012.

[10] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat, “xomb:
extensible open middleboxes with commodity servers,” in Proceedings
of the eighth ACM/IEEE symposium on Architectures for networking
and communications systems, ser. ANCS ’12. New York, NY, USA:
ACM, 2012, pp. 49–60.

[11] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Rfc 6830: The
locator/id separation protocol (lisp),” Jan 2013.

[12] R. S. D. Paula, “Market analysis for programmable router,” Politecnico
di Torino, Torino, Italy, Tech. Rep. MSc thesis, July 2013.

