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Experimental comparisons between implicit and explicit

implementations of discrete-time sliding mode controllers: towards

chattering suppression in output and input signals

B. Wang, B. Brogliato, V. Acary, A. Boubakir, F. Plestan

Abstract— This paper presents a set of experimental results
concerning the sliding mode control of an electro-pneumatic
system. Two discrete-time control strategies are considered for
the implementation of the discontinuous part of the sliding
mode controller: explicit and implicit discretizations. While
the explicit implementation is known to generate numerical
chattering [6], [7], [12], [13], the implicit one is expected
to significantly reduce chattering while keeping the accuracy.
The experimental results reported in this work remarkably
confirm that the implicit discrete-time sliding mode supersedes
the explicit ones, with several important features: chattering
in the control input is almost eliminated (while the explicit
and saturated controllers behave like high-frequency bang-bang
inputs), the input magnitude depends only on the perturbation
size and is largely independent of the controller gain and
sampling time.

I. INTRODUCTION

Consider the scalar system ẋ(t) = u(t)+d(t), with u(t) ∈
−sgn(x(t)), where sgn(·) is the set-valued signum function:
sgn(0) = [−1, 1], sgn(x) = 1 if x > 0, sgn(x) = −1 if
x < 0. Let the disturbance d(t) satisfy |d(t)| ≤ δ < 1
for some δ. Using Filippov’s mathematical framework of
differential inclusions, one deduces that for any x(0), the
state x(t) reaches the “sliding surface” x = 0 in a finite
time t∗, and then x(t) = 0 for all t ≥ t∗. In the differential
inclusions language, u(t) is a selection ξ(t) of the interval
[−1, 1] for t ≥ t∗, and it satisfies ξ(t) = u(t) = −d(t) after
t∗. In a sense, the set-valued controller acts as a disturbance
observer once the sliding mode is attained. It is clear that if
one multiplies the signum by a gain a > 0, i.e. u(t) = a
sgn(x(t)), then one still has u(t) = −d(t) in the sliding
phase after t∗. However this time the value of the selection
ξ(t) inside the set-valued part of sgn(x(t)) is divided by a,

i.e. ξ(t) = d(t)
a

.

Let us now consider the Euler discretization of this system.
It reads: xk+1 = xk + huk + hdk, where fk = f(tk) for a
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function f(·), and tk = t0+kh are the sampling times, h > 0
is the sampling period. In such a simple case, the Euler and
ZOH discretizations are the same, except for the disturbance
dk =

∫ tk+1

tk
d(t)dt for the ZOH method. Our focus is on how

to choose uk. The explicit method yields uk ∈ −sgn(xk),
yielding the closed-loop xk+1−xk−hdk ∈ −h sgn(xk). As
alluded to above, limit cycles exist which create oscillations
around the sliding surface (here the origin), known as the
numerical chattering in the output [6], [7], [12], [13]. One
of the consequences is that the explicit controller keeps
switching between the two values 1 and -1, and never
attains any point inside (−1, 1). In particular the explicit
controller cannot approximate the continuous-time selection
ξ(·) = u(·) when the system evolves close to the sliding
surface. If a gain a > 0 premultiplies u(·) then the explicit
controller switches between two discrete values a and −a,
the switching frequency being inversely proportional to the
sampling period: this is the numerical chattering in the input.
It is noteworthy that the mere notion of a sliding surface does
not exist in this case, since the discrete trajectories cannot
attain the origin, and the controller cannot take values in the
set-valued part equal to (−1, 1). One then has to resort to
so-called quasi-sliding surfaces [3], [11].

The implicit method is implemented as follows. Since
d(t) is unknown, one first constructs a nominal unperturbed
system with state x̃k, from which the input is computed:
x̃k+1 = xk + huk, uk ∈ −sgn(x̃k+1). This is a so-called
generalized equation with unknown x̃k+1. Its solution yields
after few manipulations

uk = h proj
(

[−1, 1];−
xk

h

)

that is the projection on the interval [−1, 1], and is a causal
input (not depending on future values of the state). Notice
that in the unperturbed case, x̃k and xk are the same.
As proved in [1], [2], the implicit controller guarantees
convergence of x̃k to the origin in a finite number of steps,
and disturbance attenuation by a factor h during the sliding
mode. Most importantly, the control input takes values in
(−1, 1) once x̃k has reached the origin, as may be seen from
the generalized equation from which it is calculated, and one
has during that phase uk = −dk: uk is a selection ξk of
the discrete-time differential inclusion x̃k+1 = xk + huk,
uk ∈ −sgn(x̃k+1), and the discrete-time input observes the
disturbance when the sliding mode is attained. Similarly to
the continuous-time case, if the controller is multiplied by a
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gain a > 0, then the selection ξk = −dk

a
.

Therefore the implicit controller has the same features as
its continuous-time counterpart. We may summarize them as
follows:

(i) When there is no perturbation, the sliding surface is
reached after a finite number of steps. When a perturba-
tion acts on the system, the state of the nominal system
reaches the sliding surface after a finite number of steps,
while the perturbation effect is attenuated by a factor h
on the system’s state.

(ii) Despite the system’s state xk never attains its sliding
surface due to the disturbance, the notion of discrete-
time sliding mode does exist, and corresponds to the
nominal system’s state x̃k vanishing, or equivalently
to the set-valued controller evolving strictly inside the
interval [−1, 1]. In this mode the controller compensates
for the disturbance, and is a copy of it. Its magnitude
is therefore independent, in the sliding mode, of the
controller gain, and there is no need to adapt the gain
(denoted as a above, and as G in the sequel) on-line.

(iii) Theoretically there is no numerical chattering during the
sliding mode, neither in the sliding variable, nor in the
input.

(iv) The discrete-time controller keeps the simplicity of its
continuous-time counterpart, with no added gain to tune.

(v) Computing the input at each step boils down to solving
a simple generalized equation, equivalently a projection
on [−1, 1], or solving a quadratic program. This is quite
easy to implement in a code.

The implicit algorithm extends to higher dimension systems,
and with sliding surfaces of codimension ≥ 2 [2]. The
main objective of this note is to confirm these features
experimentally.

II. DYNAMICS OF THE PLANT AND CONTROLLERS

The electropneumatic system used for the controllers eval-
uation consists in two actuators which are controlled by two
servodistributors (see Figure 1).

Fig. 1: [10] the electropneumatic system - On the left hand
side is the “main” actuator whose its position is controlled.
On the right hand side is the “perturbation” actuator whose
load force is controlled.

Under some assumptions detailed in [10], the dynamic model

of the pneumatic actuator can be written as a nonlinear
system which is affine in the control input [uP uN ]T , uP

(resp. uN ) being the control input of the servodistributor
connected to the P (resp. N ) chamber. The model is divided
in two parts: two first equations concern the pressure dynam-
ics in each chamber whereas the motion of the actuator is
described by the two last equations. Then the model of the
electropneumatic experimental set-up reads as
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ṗP =
krT

VP (y)
[ϕP + ψP · uP −

S

rT
pPv]

ṗN =
krT

VN(y)
[ϕN + ψN · uN +

S

rT
pNv]

v̇ =
1

M
[S (pP − pN)− bvv − F ]

ẏ = v,

(1)

with pP (reps. pN ) the pressure in the P (resp. N ) chamber,
y and v being the position and velocity of the actuator.
The force F is a disturbance. Note that the previous system
appears to have two control inputs given that there is one
servo distributor connected to each chamber. In the sequel,
only the main actuator position is controlled: given that there
is a single control objective, one states

u = uP = −uN .

The choice of sliding mode controller has been made because
of its intrinsic features of robustness. Let us define the so-
called sliding variable as

σ(x, t) = ë+ λ1ė+ λ0e (2)

with e = y − yd(t), yd(t) being the desired trajectory,
supposed to be sufficiently differentiable. As shown in [9],
[8], the first time derivative of σ can be written as

σ̇ = Ψ(x, t) + Φ(x)u
= Ψn(x, t) +∆Ψ(t) + [Φn(x) +∆Φ(t)] u

(3)

such that Ψn,Φn are the nominal functions and ∆Ψ,∆Φ
are the uncertain terms. From [9], [8], functions Ψ and Φ
are bounded in the physical working domain (which gives
that the uncertain terms are also bounded). Furthermore, one
supposes that ∆Φ is sufficiently small with respect to Φn

to ensure that 1 + ∆Φ
Φn

> 0. From a practical point of view,
this assumption is not too strong: it simply means that the
uncertainties are small compared to the nominal values. Let
us consider the control law1:

u =
1

Φn

[−Ψn + v] . (4)

By applying (4) in (3), one gets

σ̇ =
∆Φ

Φn

Ψn +∆Ψ+

[

1 +
∆Φ

Φn

]

v. (5)

1As shown in [4], such a control law allows to reduce the magnitude
of the sliding mode controller by using the nominal informations in the
controller.
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Once u has been designed to linearize by feedback the
system (1), the discontinuous part of the controller is defined
as

v ∈ −Gsgn(σ) (6)

with G tuned sufficiently large. The controller v has been
implemented under its discrete forms as follows (with k ≥ 0,
σk = σ(kh), h being the sampling period)

• Explicit sliding mode control (with sgn(·) function)

vk = −Gsgn(σk), (7)

• Implicit sliding mode control (with sgn(·) multifunc-
tion)

vk ∈ −Gsgn(σk+1) (8)

(implemented with a projection as indicated in the
introduction).

III. EXPERIMENTAL RESULTS

The two controllers have been implemented with several
feedback gains and sampling times. The length of the interval
of study is 20 seconds. The comparisons are made mainly
with respect to: the input v magnitude and chattering, and
the tracking error.

A. Comparison of the tracking errors e

Data in Tables I–II and III–V characterize the position
tracking error e obtained by the two different implementa-
tion methods, from the aspects of average, range, standard
deviation and variation with five different sampling periods.
The symbol Avg denotes the average of the tracking error
over the duration of the test, abs is the absolute value of
tracking error, Rge is the range. The variation of a real-
valued function f(·) defined on an interval [a, b] ⊂ R is the
quantity

V ar[a,b](f) =
N−1
∑

i=0

|f(ti+1)− f(ti)| (9)

where the set of time instants {t0, t1, · · · , tN} is a partition
of [a, b]. In the following, the variations of the position error e
for the two implementation methods with the different gains
G, have been calculated by choosing the partition times ti
in (9), as the sampling times.

Remark 3.1: The variation in (9) as a quantity to char-
acterize the analyzed signals, is not common in Control
Engineering. It is thought here in the context of sliding
mode control, that such a quantity is useful to measure the
chattering level of a signal, since it does represent how much
the signal varies. However due to the partition that has been
chosen (the sampling times) the results are not comparable
from one sampling period to the next, but only between the
three controllers for a fixed h. In other words, in Tables III—
V data have to be compared inside a single column, but not
from one column to another one.

All the data concerning e are reported in Tables I—V and
Figure 2. It is confirmed in Tables III–V, that the variation of
the implicit input starts to be significantly smaller than that of

the other two, for h ≥ 5 ms, the improvement being huge for
h = 15 ms. These first data tend to indicate that, in the case
of the implicit input, its variation is drastically smaller for
larger sampling periods (for h = 15 ms: 1836 for the explicit
method, 8.10 for the implicit one with G = 104), confirming
that chattering on e is reduced when the implicit controller
(8) is used. The fact that the output signal is smooth for the
implicit method, while it chatters for the explicit controller
for large sampling time, is obvious in Figure 2. Similar
conclusions were obtained for G = 104 and are not reported
here because of lack of space.

Tables I—II concerns G = 105. The two methods show
similar results in terms of average, range and standard
deviation of e, the implicit one providing slightly better
results. The variation values are given in Tables III—V with
G = 105, and is quite visible in Figure 2: the variation of e
with the implicit input is much smaller than with the explicit
controllers, except for h = 1 ms where the obtained values
are of same order. This indicates that the chattering on e is
drastically reduced with the implicit input2.

! A first conclusion, that will be strengthened in the

next paragraph, is that the implicit control method allows

to take larger gains without decreasing the performance (it

means that it is possible to reject/counteract larger pertur-

bations/uncertainties without more chattering). The perfor-

mance of implicit control is better when G is larger, while

it is less good with the explicit and saturation controllers.

h 1ms 2ms
Avg(abs(e)) 1.1252 0.98336
Rge e (-5.5069, 5.6270) (-4.3911, 3.9936)
Stand. Dev. e 1.4605 1.2430

(a) Explicit control

h 5ms 10ms
Avg(abs(e)) 1.7017 3.2844
Rge e (-5.8677, 4.6001) (-8.1843, 6.3261)
Stand. Dev. e 1.9237 3.5816

(b) Implicit control

TABLE I: Comparisons of position error e when G = 105.

2The results for too small sampling periods (h ≤ 2 ms) are not
conclusive, because of the limited bandwidth of the filters used to compute
ė and ë to construct σ.
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h 15ms
Avg(abs(e)) 5.5254
Range of e (-17.7670, 19.0185)
Standard Devi-
ation of e

6.4330

(a) Explicit control

h 15ms
Avg(abs(e)) 5.0835
Range of e (-9.2313, 8.1833)
Standard Devi-
ation of e

5.4152

(b) Implicit control

TABLE II: Comparisons of position error e when G = 105.

h 1ms 2ms
Explicit control 3.7426e+03 2.5724e+03 3
Implicit control 3.1577e+03 1.6360e+03

(a) G = 105

TABLE III: Variation of position error e.

B. Comparison of discontinuous inputs v in (7) and (8):

The features of the control inputs is a key-point in this
work, given that one of the objectives is to show the influence
of implicit control to the chattering effect. Let us now pass to
the control inputs comparisons, with data reported in Tables
VI–VIII, Tables IX–XI and Figure 3. Data given in Tables
VI–VIII and IX–XI characterize the “switching functions”
for these three methods. It includes the range and variation.
Remark 3.1 applies also for the variation of the control, so
that in Tables VI–VIII, data have to be compared inside a
single column, but not from one column to another one.

! What we call the switching functions are sgn(σk) in

(7), and sgn(σk+1) in (8). For the implicit controller, this is

what we called the selection ξk in Introduction. This is not

to be confused with the discontinuous control v in (6).

Comparisons of the inputs in the two methods are given in
Tables VI–VIII from range and variation aspects. In addition,
the two controllers are depicted in Figure 3, for various time
steps and gains.

Globally, the experimental results show that the implicit
method drastically reduces the input chattering and mag-
nitude compared with the explicit method. The explicit
switching input keeps oscillating between the maximum and
minimum values like a bang-bang controller (see data in
Tables VI–VIII, and Figure 3(a), which is quite representative
of all the switching functions obtained with explicit dis-
cretizations). In the tables, all the values used to characterize
the chattering in implicit method are invariably much less
than the explicit method. Figures 3(b)–3(d), which concerns
the implicit controller switching function for various sam-
pling times, show that the implicit input v in (8) is largely
independent sampling time. From Table VI–VIII, the data
in the rows corresponding to the implicit controller allow
to obtain a confirmation of this fact. The magnitudes of the
switching function for the implicit controller, for 6 different
gains G and two different sampling periods h, are reported in

h 5ms 10ms s
Explicit control 1.7742e+03 1.6081e+03
Implicit control 650.2710 480.1660

(a) G = 105

TABLE IV: Variation of position error e.

h 15ms
Explicit control 2.5070e+03
Implicit control 228.8022

(a) G = 105

TABLE V: Variation of position error e.

Tables IX–XI. It confirms that the magnitude of the input v
in (6), which is the switching function times the gain G, does
not depend neither on G nor on h in this range of sampling
times.

! This insensitivity property is believed to be a funda-

mental property of the implicit method introduced in [1],

[2], compared to explicit implementations which drastically

differ when h and/or G are varied.

The results depicted in Figure 3 clearly demonstrate that
whereas the explicit controller tends to approximate a signal
that switches infinitely fast between two extreme values
like bang-bang inputs, this is not at all the case for the
implicit controller that behaves in a totally different way.
This is a nice confirmation of both theoretical and numerical
predictions [1], [2], that the implicit controller does repre-
sent the discrete-time approximation of the selection of the
differential inclusion according to Filippov’s mathematical
framework.

Input chattering is also visible in Table VI–VIII. Variation
of the implicit switching function is much smaller than the
other two.

C. Summary

These extensive experimental tests prove that items (ii)
(iii) (iv) and (v) in the Introduction, are not only theo-
retical and numerical predictions obtained in [1], [2], but
significantly influence the discrete-time implemented sliding-
mode controller. The implicit method (8) allows to drastically
reduce the input chattering and magnitude, while enhancing
the tracking capabilities (output chattering is almost entirely
eliminated). It also allows the designer to choose larger
sampling periods, which may be of strong interest in practice.
Perhaps counter-intuitively for Control Engineers, the perfor-
mance and robustness increase when the gain G increases,
which is thought to considerably simplify the controller gain
tuning process.

We have also conducted extensive experiments with a
saturated explicit input. The results we obtained are quite
similar to the case without saturation (the saturation seems to
play a very tiny role in chattering effects), and are therefore
not reported in this note.
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h 1ms 2ms s
Explicit control
(7)

(-1.000, 1.000) (-1.000, 1.000)

Implicit control
(8)

(-0.0844, 0.0973) (-0.0606, 0.0545) )

(a) Range of the switching function.

h 1ms 2ms
Explicit control
(7)

3804 2980

Implicit control
(8)

660.5150 183.1965

(b) Variation of the switching function.

TABLE VI: Switching function, gain G = 105.

h 5ms 10ms
Explicit control
(7)

(-1.000, 1.000) (-1.000, 1.000)

Implicit control
(8)

(-0.0360, 0.0417) (-0.0289, 0.0349)

(a) Range of the switching function.

h 5ms 10ms
Explicit control
(7)

2050 1932

Implicit control
(8)

34.7510 25.2005

(b) Variation of the switching function.

TABLE VII: Switching function, gain G = 105.

IV. CONCLUSION

Experiments have been conducted on an electropneumatic
system, with two different implementations of the sliding
mode controller: explicit and implicit discretizations. The
results demonstrate that the theoretical and numerical pre-
dictions of [1], [2] are true: the implicit implementation,
which consists merely of a projection on the interval [−1, 1]
and is thus very easy to implement in a code, drastically
supersedes the other one. The output and input chattering
are reduced in a significant way, without changing the
controller basic structure (i.e., no additional filter, observer,
or dynamic controller is added compared to the original,
basic sliding mode controller) and keeping its simplicity
(in particular the gain tuning is easy, which is a strong
feature of the ECB-SMC method). The main feature of
the implicit discretization, is that it keeps, in discrete-time,
the multivalued feature of the theoretical continuous-time
sliding-mode controller, as it is mathematically imposed in
Filippov’s framework. The proposed implicit discretization
method is generic in the sense that it could apply to any
kind of sliding mode, set valued control. Future research
should therefore concern similar experiments on the same
and other set-up, with twisting and high-order sliding-mode
controllers.

h 15ms
Explicit control (7) (-1.000, 1.000)
Implicit control (8) (-0.0173, 0.0247)

(a) Range of the switching function.

h 15ms
Explicit control (7) 1836
Implicit control (8) 8.1039

(b) Variation of the switching function.

TABLE VIII: Switching function, gain G = 105.

G 104 5.104

h = 5 ms (−0.3, 0.35) (−0.05, 0.05)
h = 10 ms (−0.25, 0.3) (−0.05, 0.06)

TABLE IX: Magnitude of implicit switching function
sgn(xk+1) for varying gains G and sampling period h.
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G 105 5.105

h = 5 ms (−0.03, 0.035) (−0.006, 0.0063)
h = 10 ms (−0.025, 0.03) (−0.005, 0.006)

TABLE X: Magnitude of implicit switching function
sgn(xk+1) for varying gains G and sampling period h.

G 106 5.106

h = 5 ms (−0.003, 0.003) (−0.0006, 0.00065)
h = 10 ms (−0.0025, 0.0025) (−0.0005, 0.0005)

TABLE XI: Magnitude of implicit switching function
sgn(xk+1) for varying gains G and sampling period h.
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(a) h = 1ms. Explicit method.
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(b) h = 1ms. Implicit method.
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(c) h = 15ms. Explicit method.
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(d) h = 15ms. Implicit method.

Fig. 2: Real position y (mm) in blue and yd (mm) in red,
under h = 1ms and h = 15ms for G = 105.
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(a) Explicit. sign(sk). G = 104, h = 5ms.
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(b) Implicit. sign(sk+1). G = 105, h = 5ms.
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(c) Implicit. sign(sk+1). G = 105, h = 10ms.
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(d) Implicit. sign(sk+1). G = 105, h = 15ms.

Fig. 3: Switching function: Comparison between explicit
method (sign(sk)) and implicit method (sign(sk+1)).
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