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Abstract

We use Hamiltonian ray tracing and phase—space representation to describe
the propagation of a single spatial soliton and soliton collisions in a Kerr
nonlinear medium. Hamiltonian ray tracing is applied using the iterative
nonlinear beam propagation method, which allows taking both wave effects
and Kerr nonlinearity into consideration. Energy evolution within a single
spatial soliton and the exchange of energy when two solitons collide are inter-
preted intuitively by ray trajectories and geometrical shearing of the Wigner
distribution functions.
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1. Introduction

Spatial solitons, where optical beams travel without divergence or conver-
gence in a nonlinear medium, have been theoretically presented and experi-
mentally demonstrated in various physical systems ﬂqu] Many applications
have been proposed for solitons and their interactions, including optical-fiber
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communication systems [7], “gateless” computers [8], soliton navigation [9],
etc. Although theoretical methods, e.g. inverse scattering theory, exist for
a few special cases [10], in others, it is not an easy task to predict soliton’s
behavior. Thus, one has to use numerical methods, such as split—step Fourier
method [11]. In particular, energy exchange during soliton collisions has been
under extensive research [10,12], but much remains unknown, especially the
detailed evolution of power flow during collisions. In this article, we present
a novel perspective on the propagation of spatial solitons and the energy in-
teractions during multi—soliton collision, using ray tracing and phase—space
representations.

Since rays represent power flows, ray diagrams are physically intuitive
and provide useful insights for the evolution of energy during a nonlinear
optical phenomenon. In addition, ray tracing is easy to interpret with tradi-
tional optical terms such as ray—intercept plots, aberrations, etc. As a result,
we expect ray description to be highly beneficial for understanding com-
plex nonlinear phenomena. However, traditional ray tracing method cannot
take wave effects such as diffraction and interference into consideration [13].
Furthermore, solving ray-tracing equations in Kerr nonlinear media is not
straightforward because of the coupling between optical intensity and refrac-
tive index. In this article, we propose to calculate ray trajectories using
the iterative nonlinear beam propagation method [14]. This method pro-
vides a rigorous way to include both wave effects and nonlinearity into the
ray—tracing results. Wave effects are considered by applying the Wigner dis-
tribution function (WDF') to Hamiltonian ray tracing as the initial condition
of the rays. Kerr nonlinearity, where the refractive index changes according
to the local optical intensity [15], is included by an iterative process which
updates the refractive index and intensity profiles at each iteration. The
WDF [16-18] is a phase-space representation of the coherence property of
an optical beam. It defines a generalized ray picture, known as the gener-
alized radiance, which is function of position and momentum [19]. Along
each ray, the radiance is conserved [18]. The optical intensity at any point
of space can be calculated from the WDF through a projection along the
momentum direction. The iterative nonlinear beam propagation method has
been previously shown as a versatile tool for the design of nonlinear optical
devices [20]. Here we show that the same method can provide useful physical
insight of spatial soliton’s propagation, collision and evolution with the use
of ray diagrams and rigorous consideration of wave effects through the WDF.

In this article, Hamiltonian ray diagrams and phase—space representations



of spatial solitons and multi-soliton collisions are studied. Energy evolution
is discussed through the spatial trajectories of rays. Here, only the propa-
gation of a single spatial soliton and the collision of two solitons are shown
as examples; the same ray tracing and phase—space representation approach
can be easily applied to other complex nonlinear phenomena. Furthermore,
such ray representation may also be applied to the study of temporal nonlin-
ear phenomena. For example, since spatial propagation of spatial solitons is
analogous to temporal evolution of temporal solitons through a direct map-
ping between the space and time variables, ray tracing results presented here
may be extended to temporal solitons by straightforward modifications.

2. Spatial soliton description

To investigate the Hamiltonian properties of a spatial soliton, we first
show that given the known refractive index profile of the nonlinear medium
where the soliton propagates, Hamiltonian ray trajectories yield a self—consistent
result. More specifically, we show that at any given plane transverse to the
optical axis, all rays have traveled for the same optical path length (OPL);
moreover, the intensity distribution /(x) [and thus the index profile according
to the Kerr effect relation n(z) = ng + nel(x)] maintains the same profile.

Hamiltonian equations describe a ray trajectory by its position x and
momentum p, along = direction at any transverse plane z, for a given index
distribution n(z, z), and can be written as [21]

dx 8h__pm dp,  0h  ndn

dz Op, A’ dz  Or  hOx’ (1)
where h = —y/n? — p2 is the screen Hamiltonian. Note that the momen-
tum is proportional to the direction of ray propagation by p, = sin¢/A\,
where ¢ is the angle of the propagation with respect to z axis, and A is the
wavelength. Based on the nonlinear Schrédinger equation, there exists an
analytical solution for the optical field of a spatial soliton,

A(z, z) = Ag sech (z/wg) exp (i0(2)), (2)

where Ag is the peak amplitude, wy is the beam width and # is the phase
which is invariant along z direction [22]. In a Kerr nonlinear medium, the
refractive index changes proportional to the intensity distribution; thus the
index profile for the spatial soliton is

n(z, 2) = ng + ngAlsech *(x/wy), (3)
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where the ng is usual, weak—field refractive index, and ns is the Kerr effect
coefficient. Given the index distribution, the ray trajectories can be obtained
by solving the pair of Hamiltonian equations in Eq. ({l). To obtain an input
ray distribution consistent to the field description in Eq. (2]), we compute the
WDF W(z,p,) of A(z,z = 0) to define the initial rays for Eq. (1), according
to the definition [18§]

/ /
Wiz, pa) = / Al + DA (@ — D)o da’ (@)
In the simulation shown in Fig.[l(a), we used ng = 1.5, ny = 2x10713 (m/V)?,
Ap = 281 V/m and wy = 0.55 mm. Note that although each ray takes a
distinct periodic trajectory, the rays propagate around the central region of
the soliton experience higher refractive indices; the total OPLs [defined as
the path integral of n(x, z) along a ray trace| of all the rays at any transverse
plane are the same. This result suggests that the wavefronts are always
perpendicular to the optical axis which agrees with the definition of # in
Eq. @).
Next we consider a dynamic process where the initial refractive index is
a constant ng, and show that given the initial rays satisfying the fundamen-
tal soliton solution [in Eq. ()] at the input plane of a Kerr medium, the
solution to the Hamiltonian equations converges to the same index distri-
bution as Eq. ([B]). We demonstrate this result using our iterative nonlinear
beam propagation method. The method starts with a medium of constant
weak—field refractive index ng, and the definition of all the initial rays, i.e.
initial position and direction, based on the WDF of the input “sech” profile.
Each ray carries a generalized radiance, given by the value of WDF at the
given position and momentum. At each iteration, we apply Hamiltonian ray
tracing for each ray for the current index distribution; at the end of each
iteration, the intensity at each point of space is calculated as the sum of
the generalized radiances carried by all the rays passing through the point,
according to the projection property of the WDF'. Refractive index distribu-
tion is then updated according to the Kerr effect, whose result is used in the
next iteration. As the iterations continue, all the rays converge to form a
soliton. The converged ray trajectories are shown in Fig. [i(b), which match
the result in Fig. [[(a). Note that the intensity profile [i.e. the refractive
index profile according to n(x) = ng + nel(x)] is the same as Fig. [[l(a), thus
we are not showing it again.
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Figure 1: (a) Hamiltonian ray tracing results based on the known index pro-
file of a spatial soliton, and (b) iterative nonlinear beam propagation method
results starting from a medium of constant weak—field index. Solid lines are
a subset of all 10,100 rays used in the simulation. In (a), color shading de-
notes the distribution of the normalized intensity profile, proportional to the
nonlinear index change nol(x). Dashed vertical lines indicate the wavefronts
with respect to different OPLs. In (b), colors of lines indicate the generalized
radiances carried by these rays.



According to the ray tracing results, rays with different generalized ra-
diances and initial condition oscillate at different periods. Though most of
the rays propagate in oscillatory fashion instead of straight lines parallel to
the optical axis, the generalized radiances of all rays sum up to the correct
intensity profile of a spatial soliton. The WDFs calculated from the rays
intercepting two different z planes are shown in Fig. Pl As illustrated in the
figure, both the WDF and the intensity distribution remains invariant as the

soliton propagates, which matches the Hamiltonian ray tracing description
and also the analytical results.
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Figure 2: (a) WDF at the input plane. (b) WDF at the plane where
OPL= 250. (c) Intensity profiles at different z planes. (d) The intensity
difference between input plane and OPL= 250 plane. Horizontal axis x is

the transversal position and p is the momentum, i.e. direction of ray propa-
gation.

Next we consider an input deviated from the ideal fundamental soliton
shape. Theoretically, it has been predicted that given an appropriate pertur-



bation, the beam will automatically evolve into a fundamental soliton [11].
Here we choose super—Gaussian [23] as a perturbed input example. A super—
Gaussian with optical field A(z) = 0.785-exp(—(z/(2wy))?) is launched from
the initial plane into the Kerr nonlinear medium. The simulation starts with
a medium of constant refractive index ny. The converged solution from the
iterative method is shown in Fig. Bl where it is observed that the beam ad-
justs its shape and width, and becomes a fundamental spatial soliton, i.e.
with a “sech” profile. In this process, most of the energy is coupled into the
soliton while some energy spreads out as leaky waves [11]. This is shown more
intuitively in terms of ray trajectories, where six sampled rays spread away
from the soliton [see Fig. B(a)]. The rays that are coupled into the soliton
propagate in oscillatory fashion with different periods. These results agree
with spatial soliton ray tracing described above. The iterative method esti-
mates that 8.3% of input energy is lost, which is close to the result calculated
from the split-step Fourier method (7.9%) [11].
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Figure 3: (a) Spatial soliton formation from super-Gaussian input calculated
using our iterative method. White lines are a subset of all rays used in
the simulation. (b) Transversal intensity profiles at the input and output z
planes.

3. Soliton collision

Next we proceed with the analysis of soliton collisions using our iterative
nonlinear beam propagation method and the WDEF. Collision of two spatial
solitons has been solved analytically using the nonlinear Schrodinger equa-
tion [2, 24, 25]; however, it does not give an intuitive picture of how the
energy exchanges during the collision. Here, without loss of generality, we
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Figure 4: (a) Intensity profile (normalized) and three sampled ray trajectories
of two colliding spatial solitons. (b) Evolution of the three sampled rays
represented in phase-space diagram (WDF). Here zy = 0.55 mm.

take two solitons with the same peak amplitude and no initial phase difference
as the input to a Kerr nonlinear medium. Initial rays are defined according
to the WDF of the analytical optical field at the input plane expressed in
Eq. (3.78) of Ref. [2], where a = 0.25/w, and b = 0.1/wy. Simulation results
using the iterative nonlinear beam propagation method are shown in Fig. @l
Corresponding WDF's for selected z positions are shown in Fig. Bl together
with intensity profiles calculated from a projection of the WDF along mo-
mentum direction. It is shown that the collision process can be intuitively
interpreted as shearing along the x direction of the WDF, as expected from
the propagation property of the WDF [18]. The WDF consists of two bright
“spots” (solitons) and an “interference” pattern due to the nature of coherent
light [19]. Collision occurs when the two “spots” line-up along the momen-
tum direction. During the collision, the oscillating “interference” pattern in
the middle of the WDF results in a multi-peak intensity profile; while way
from the collision, the “interference” pattern is tilted at a large enough angle
so that the oscillation adds up to zero when summing along the momentum
direction, resulting in two distinct solitons. In this way, the WDF clearly ex-
plains the “interference” of two solitons during the collision. Fig.[4 also plots
three ray trajectories as examples of all 20, 200 rays used. These rays are also
represented on the phase—space diagram to better illustrate their behavior
[see Fig. @(b) and the marks on Fig. B]. Ray B remains in the top “spot”,
while Ray A and C oscillate between two “spots” during the collision; this
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Figure 5: The WDF's (top) and transversal intensity profiles (bottom) of
two spatial soliton collision at different z positions. Marks on the WDF

correspond to the three sampled rays in Fig. [ where Ray A is denoted as
o, Basg, and C as ¢.



is a clear indication of energy exchange during the collision. After the colli-
sion, Ray A remains at the original soliton but Ray C switches to the other.
These results agree with the ray trajectories in Fig. [d{(a), providing more
insights into the energy interactions during the soliton collision. In addition,
although energy exchange exists in the ray diagrams, the net power transfer
between the two solitons is zero, which agrees with analytical prediction [26]
and experimental observations [27].

4. Conclusion

In conclusion, we have applied the iterative nonlinear beam propaga-
tion approach and the Wigner distribution function to analyze single spatial
soliton propagation and the evolution of multi—soliton collisions. The Hamil-
tonian ray diagrams combined with the phase—space (e.g. Wigner space)
description offer a comprehensive and physically intuitive picture of energy
evolution in these nonlinear optical phenomena. It is possible to adapt the
same approach to other nonlinear optical effects, which is beyond the scope
of the current work.
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