
Research Paper

Big data and extreme-scale computing:
Pathways to Convergence-Toward a
shaping strategy for a future software
and data ecosystem for scientific inquiry

M Asch, T Moore, R Badia, M Beck, P Beckman, T Bidot, F Bodin,
F Cappello, A Choudhary, B de Supinski, E Deelman, J Dongarra, A Dubey,
G Fox, H Fu, S Girona, W Gropp, M Heroux, Y Ishikawa,
K Keahey, D Keyes, W Kramer, J-F Lavignon, Y Lu, S Matsuoka, B Mohr,
D Reed, S Requena, J Saltz, T Schulthess, R Stevens, M Swany,
A Szalay, W Tang, G Varoquaux, J-P Vilotte, R Wisniewski,
Z Xu and I Zacharov

Abstract
Over the past four years, the Big Data and Exascale Computing (BDEC) project organized a series of five international
workshops that aimed to explore the ways in which the new forms of data-centric discovery introduced by the ongoing
revolution in high-end data analysis (HDA) might be integrated with the established, simulation-centric paradigm of the
high-performance computing (HPC) community. Based on those meetings, we argue that the rapid proliferation of digital
data generators, the unprecedented growth in the volume and diversity of the data they generate, and the intense
evolution of the methods for analyzing and using that data are radically reshaping the landscape of scientific computing.
The most critical problems involve the logistics of wide-area, multistage workflows that will move back and forth across
the computing continuum, between the multitude of distributed sensors, instruments and other devices at the networks
edge, and the centralized resources of commercial clouds and HPC centers. We suggest that the prospects for the future
integration of technological infrastructures and research ecosystems need to be considered at three different levels. First,
we discuss the convergence of research applications and workflows that establish a research paradigm that combines both
HPC and HDA, where ongoing progress is already motivating efforts at the other two levels. Second, we offer an account
of some of the problems involved with creating a converged infrastructure for peripheral environments, that is, a shared
infrastructure that can be deployed throughout the network in a scalable manner to meet the highly diverse requirements
for processing, communication, and buffering/storage of massive data workflows of many different scientific domains.
Third, we focus on some opportunities for software ecosystem convergence in big, logically centralized facilities that
execute large-scale simulations and models and/or perform large-scale data analytics. We close by offering some con-
clusions and recommendations for future investment and policy review.

Keywords
Big data, extreme-scale computing, future software, traditional HPC, high-end data analysis

1. Executive summary

Although the “big data” revolution first came to public

prominence (circa 2010) in online enterprises like Google,

Amazon, and Facebook, it is now widely recognized as the

initial phase of a watershed transformation that modern

society generally—and scientific and engineering research

in particular—are in the process of undergoing. Respond-

ing to this disruptive wave of change, over the past 4 years,

Innovative Computing Laboratory, University of Tennessee, Knoxville,

TN, USA

Corresponding author:

J Dongarra, University of Tennessee, Knoxville, TN 37996, USA.

Email: dongarra@icl.utk.edu

The International Journal of High
Performance Computing Applications
2018, Vol. 32(4) 435–479
ª The Author(s) 2018
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342018778123
journals.sagepub.com/home/hpc

mailto:dongarra@icl.utk.edu
https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/1094342018778123
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342018778123&domain=pdf&date_stamp=2018-07-16

the big data and exascale computing (BDEC) project orga-

nized a series of five international workshops that aimed to

explore the ways in which the new forms of data-centric

discovery introduced by this revolution might be integrated

with the established, simulation-centric paradigm of the

high-performance computing (HPC) community. These

BDEC workshops grew out of the prior efforts of the Inter-

national Exascale Software Project (IESP)—a collabora-

tion of US, European Union (EU), and Japanese HPC

communities that produced an influential roadmap for

achieving exascale computing early in the next decade. It

also shared the IESP’s mission to foster the codesign of

shared software infrastructure for extreme-scale science

that draws on international cooperation and supports a

broad spectrum of major research domains. However, as

we argue in more detail in this report, subsequent reflec-

tions on the content and discussions of the BDEC work-

shops make it evident that the rapid proliferation of digital

data generators, the unprecedented growth in the volume

and diversity of the data they generate, and the intense

evolution of the methods for analyzing and using that data

are radically reshaping the landscape of scientific

computing.

At a time when science is, and needs to be, more inter-

national and interdisciplinary than ever, this data-driven

upheaval is exacerbating divisions, both recent and long-

standing, in the cyberecosystem of science; it is thereby

raising a host of conceptual, political, economic, and cul-

tural challenges to future cooperation. The BDEC commu-

nity’s sustained examination of these changes focused on

the problems in two different divisions in the ecosystem

that the big data revolution has either produced or

destabilized.

1. The split between the traditional HPC and high-end

data analysis (HDA): The divide between HPC and

HDA software ecosystems emerged early this cen-

tury when software infrastructure and tools for data

analytics that had been developed by online service

providers were open sourced and picked up by var-

ious scientific communities to solve their own data

analysis challenges. Major technical differences

between the HPC and the HDA ecosystems include

software development paradigms and tools, virtua-

lization and scheduling strategies, storage models

(local vs cloud/storage area network (SAN)),

resource allocation policies, and strategies for

redundancy and fault tolerance. These technical dif-

ferences, in turn, tend to render future cross-

boundary collaboration and progress increasingly

problematic.

2. The split between stateless networks and stateful

services provided by end systems: The division

between stateless datagram-delivery networks

(e.g. the Internet) and stateful services provided

by network-attached end systems (e.g. supercompu-

ters, laptops, sensors, and mobile telephones) has

been fundamental to the cyberinfrastructure para-

digm that proved remarkably successful for well

over three decades. However, the exponential

growth in data volumes over the same period of

time forced users and service providers to repeat-

edly find new workarounds (e.g. FTP mirror sites,

web caches, web cache hierarchies, content delivery

networks (CDNs), and commercial clouds) in order

to manage the logistics of ever larger data flows.

Unfortunately, such workarounds seem to have

reached their limits. The most explosive growth in

data generation today is taking place in “edge

environments” (i.e. across the network from both

HPC and commercial cloud machine rooms). These

new data sources include major scientific instru-

ments, experimental facilities, remote sensors (e.g.

satellite imagery), and the myriad of distributed

sensors with which the plans for “smart cities” and

the Internet of Things (IoTs) are replete. The envi-

ronment in which many of these data torrents origi-

nate lacks the processing and buffer/storage

resources to manage the logistics of such immense

flows, and yet the conventional strategy of back-

hauling all data across a fast link to the cloud or

data center is no longer a viable option for many

applications. Hence, the intense commercial and

research interest in “fog” or “edge” computing

infrastructure—in one way or another—is supposed

to solve this fundamental problem by combining

processing, storage/buffering, and communication

in a converged distributed services platform (DSP)

that can be deployed in edge environments.

Looking toward the future of cyberinfrastructure for

science and engineering through the lens of these two

bifurcations made it clear to the BDEC community that,

in the era of big data, the most critical problems involve

the logistics of wide-area, multistage workflows—the

diverse patterns of when, where, and how data are to be

produced, transformed, shared, and analyzed. Conse-

quently, the challenges involved in codesigning software

infrastructure for science have to be reframed to fully take

account of the diversity of workflow patterns that differ-

ent application communities want to create. For the HPC

community, all of the imposing design and development

issues of creating an exascale-capable software stack

remain, but the supercomputers that need this stack must

now be viewed as the nodes (perhaps the most important

nodes) in the very large network of computing resources

required to process and explore rivers of data flooding in

from multiple sources.

Against that background, we suggest that the prospects

for integration of technological infrastructures and research

ecosystems need to be considered at three different lev-

els—or from three different perspectives. First, we discuss

opportunities for convergence of research applications and

workflows, where, despite the impediments of the ongoing

436 The International Journal of High Performance Computing Applications 32(4)

cyberecosystem Balkanization, progress toward a research

paradigm that combines both HPC and HDA is already

being made. Such success with application-workflow com-

munities both orients and motivates efforts at the other two

levels. Second, we offer an account of some of the prob-

lems involved with creating a converged infrastructure for

distributed edge, or “peripheral,” environments (i.e. shared

infrastructure that can be deployed throughout the network

in a scalable manner to meet the combined data processing,

communication, and buffer/storage requirements of mas-

sive data workflows). Third, we focus on some opportuni-

ties for software ecosystem convergence in large, logically

centralized facilities that execute large-scale simulations

and models and/or perform large-scale data analytics.

Finally, we offer some conclusions and recommendations

for future investment and policy review. We briefly sum-

marize each of these parts of the report in the following

sections.

1.1. Emerging convergence in large-scale
scientific applications

Despite the manifest challenges of a converged cyberin-

frastructure for multidisciplinary research, the scientific

and engineering opportunities are compelling. Many sci-

ence communities are combining HPC and HDA applica-

tions and methods in large-scale workflows that

orchestrate simulations or incorporate them into the stages

of large-scale analysis pipelines for data generated by

simulations, experiments, or observations. Communities

that would benefit substantially from application and

workflow convergence are abundant, spanning all of sci-

ence and engineering. To provide intellectual context for

an analysis of application-workflow level convergence,

we describe a unified model of the inference cycle for the

process of scientific inquiry that locates “computational

science” and “data science” as different phases of that

cycle. Next, to capture the complexity of application

workflows, which typically involve changing configura-

tions of software, hardware, and data flows, we structure

our discussion around three computational archetypes that

provide broader categories than specific traditional for-

mulations and that furnish a convenient grouping of col-

laborations by the “culture” of the users. We illustrate

these application workflows with exemplars that “follow

the data.” In that context, we address three modalities of

data provenance: (1) data arriving from the edge (often in

real time), never centralized; (2) federated multisource

archived data; and (3) combinations of data stored from

observational archives with a dynamic simulation. These

exemplars make it evident that understanding application

workflows, and especially application workflows that

involve far-flung data sources, is pivotal for developing

a new application-level convergence paradigm that com-

bines HDA and HPC.

1.2. Challenges to converged infrastructure in
edge environments

The proliferation of huge and heterogeneous flows of data

generated outside of commercial clouds and HPC centers

(i.e. across the wide area network (WAN) in peripheral

environments), as well as the need to distribute large data

sets from such centralized facilities to the edge, represents a

highly disruptive development that makes the way forward

in many different areas of research uncertain. At the core of

this uncertainty is the fact that the explosive growth of

digital data producers at the edge, or in the periphery, cre-

ates problems that are highly multidimensional. Looking at

the properties of the data flows being generated, they exhi-

bit a range challenging characteristics, including their vol-

ume, velocity, value, variety, variability, and veracity. The

most general designation for the field that must study and

understand the problems that these data flows present is

“data logistics” (i.e. the management of the time-sensitive

positioning and encoding/layout of data relative to its

intended users and the computational resources that they

can apply). But problems of data logistics affect not only

wide area workflows, but also workflows in the machine

room. For example, whether you are talking about the

output of a major instrument or a large HPC simulation,

some form of data reduction has to be applied locally

before any further data movement can be attempted.

Hence, one can think of data logistics as defining a con-

tinuum, with I/O issues inside the Internet data center

(IDC) or supercomputing facility falling at one end, and

data-intensive workflows that begin at remote and/or dis-

tributed data sources—possibly scattered across edge

environments—falling at the other.

Creating a common, shared software infrastructure that

can address the logistical challenges of application work-

flows along this entire continuum is a critically important

challenge for the scientific community in the coming

decade. We use DSP as a generic characterization of the

infrastructure/ecosystem that the community must develop

in order to support such compute- and/or data-intensive

workflows between the ingress/egress of the IDC or HPC

center and the network edge. We present two pieces of

common context for this discussion. First, we preserve con-

tinuity with the traditional TCP/IP þ Unix/Linux paradigm

by reiterating the importance of the hourglass architecture,

and the “spanning layer” at its waist, as the foundation for

ecosystem interoperability. Second, since these workflows

are inherently stateful processes, it is clear that an adequate

DSP must be not only wide-area capable, but must also

offer processing, memory/storage, and communication as

shareable resources. Satisfying these requirements in a

common, open, and interoperable way, which is essential

for the broad science and engineering community but

would also benefit society as a whole, will be no mean feat.

We conclude this section by briefly reviewing some of the

strategies (e.g. stream processing, CDNs, and edge

Asch et al. 437

computing) that are currently being deployed to address

different problem areas on the data-logistics continuum.

1.3. Pathways to convergence for large, logically
centralized facilities

Today, most scientific research programs are striving to

integrate both advanced computing and data analytics, and

the drive to fuse these two methodologies strongly moti-

vates the integration of the associated software with hard-

ware infrastructures and ecosystems. However, this desired

fusion raises a number of challenges: overcoming the dif-

ferences in cultures and tools; dealing with shifting work-

force skills; adopting new infrastructure; ensuring the

coexistence of stream and batch models; computing at the

edge; and implementing virtualization for sharing, resource

allocation, and efficiency. We have also identified two

major cross-cutting challenges: energy sustainability and

data reduction. As far as architectures are concerned, radi-

cally improved resource management is indispensable for

next-generation workflows, and—in this context—contain-

erization is a promising candidate for the narrow waist, or

spanning layer, of the hourglass model.

As the new era of big data and extreme-scale computing

continues to develop, it seems clear that both centralized

systems (e.g. HPC centers and commercial cloud systems)

and decentralized systems (e.g. any of the alternative

designs for edge/fog infrastructure) will share many com-

mon software challenges and opportunities. Software

libraries for common intermediate processing tasks need

to be promoted, and a complete software ecosystem for

application development is needed. Finally, the divergence

of programming models and languages poses a conver-

gence issue—not only with regard to interoperability of the

applications but also to the interoperability between data

formats from different programming languages.

1.4. Conclusions and recommendations

Following the abovementioned structure of the document,

we have divided our findings and recommendations into

three categories: (1) global recommendations, (2) recom-

mendations for edge environments, and (3) recommenda-

tions for centralized facilities. However, our ultimate goal

is to lay the ground work for the kind of community-driven

“shaping strategy” (Hagel and Brown, 2017; Hagel et al.,

2008) that we believe would be both more appropriate and

more successful overall. Consequently, the conclusions as

they appear subsequently may have to be refactored to

serve the shaping strategy model.

Our primary global recommendation would be to

address the basic problem of the two paradigm splits: the

HPC/HDA software ecosystem split and the wide area data

logistics split. For this to be achieved, new standards are

needed to govern the interoperability between the data

paradigm and the compute paradigm. These new standards

should be based on a new common and open DSP that

offers programmable access to shared processing, storage,

and communication resources and that can serve as a uni-

versal foundation for the component interoperability that

novel services and applications will require.

We make the following five recommendations for

decentralized edge and peripheral ecosystems:

1. converge on a new hourglass architecture for a com-

mon DSP;

2. target workflow patterns for improved data

logistics;

3. design cloud stream processing capabilities for

HPC;

4. promote a scalable approach to content delivery/

distribution networks; and

5. develop software libraries for common intermediate

processing tasks.

We make the following five actionable conclusions for

centralized facilities:

1. Energy is an overarching challenge for

sustainability.

2. Data reduction is a fundamental pattern.

3. Radically improved resource management is

required.

4. Both centralized and decentralized systems share

many common software challenges and

opportunities:

a. leverage HPC math libraries for HDA;

b. more efforts for numerical library standards;

c. new standards for shared memory parallel

processing; and

d. interoperability between programming mod-

els and data formats.

5. Machine learning is becoming an important compo-

nent of scientific workloads, and HPC architectures

must be adapted to accommodate this evolution.

2. Introduction

This report, and the series of BDEC workshops that it sum-

marizes, is part of the response from the HPC community to

two major inflection points in the growth of scientific com-

puting in the 21st century. The first marks the disruptive

changes that flowed from the end of Dennard Scaling, c.

2004 (Dennard et al., 1974), which gave rise to the era of

multi-core, many-core, and accelerator-based computing,

as well as a variety of other complex and closely related

problems of energy optimization and software complexity.

The second, occurring nearly simultaneously, was the

relatively rapid emergence (c. 2012) of “big data” and

large-scale data analysis as voracious new consumers of

computing power and communication bandwidth for a

wide range of critical scientific and engineering domains.

Because the BDEC community has its roots in traditional

438 The International Journal of High Performance Computing Applications 32(4)

HPC, the marked difference in the ways in which this com-

munity has struggled to absorb and adapt to these two

watershed transitions, with varying degrees of success, pro-

vides essential context that informs the reading of this

report.

To those who witnessed previous transitions from vector

and shared multiprocessor computing, the response to the

end of Dennard scaling was comparatively familiar and

straightforward. Indeed, the dramatic effects of the end of

Dennard scaling on processor and system designs were

very much on the mind of the HPC leaders who gathered

at the 2009 International Conference for High-Performance

Computing, Networking, Storage and Analysis (SC09) to

form what would become the IESP (Dongarra et al, 2011).

Along with the European Exascale Software Initiative1 and

a parallel effort in Japan, these grass roots exascale efforts

were the progenitors of the BDEC.

Although the challenges that confronted the IESP’s

vision of exascale computing were unquestionably formid-

able—orders of magnitude more parallelism, unprece-

dented constraints on energy consumption, heterogeneity

in multiple dimensions, and resilience to faults occurring

at far higher frequencies—they fit within the problem space

and the ethos that defined traditional HPC. Participants in

that planning effort worked successfully over the next 3

years to draft a technology roadmap leading to a common,

high-quality computational environment for exascale sys-

tems (Attig et al., 2011; Dongarra et al., 2011). What the

HPC community did not adequately anticipate was the

eruption of interest in infrastructure and tools for doing

large-scale data analysis in cloud computing environments.

In the United States, this fact was revealed in the surprise

that accompanied the Presidential strategic initiative Exec-

utive Office of the U.S. President (2015a, 2015b) that

emphasized the importance of big data and HPC ecosystem

convergence. This has been echoed in recent European

Commission/EU communications on the “European Data

Infrastructure” and the “European Open Science Cloud,”2

where HPC has been completely “absorbed” into a broader

“digital single market” and only appears as a component in

this global system. In Japan, as well as in China, the latest

national roadmaps are focused on combining HPC with

artificial intelligence (AI) that itself is tightly linked to the

big data revolution. The Japanese program provides for a

107.8 billion yen (US$1 billion) commitment over the next

10 years on inter-ministry AI-related research that encom-

passes big data, machine learning, and the IoTs. In China’s

5-year plan for exascale systems, big-data analytics has

been considered as a major application category. As clearly

stated in the requirements for their exascale pilot systems,

deep learning benchmarks are an important metric for eval-

uating the capability and efficiency of the proposed new

hardware architectures.

The rapid transition of the earlier IESP roadmap activ-

ities to the BDEC effort shows how quickly the community

recognized that high-end data analysis (HDA) and HPC

needed to have equal status in an integrated computing

research and development agenda. However, although the

BDEC effort aims to expand the general mission of the

IESP—to foster the codesign of software infrastructure for

extreme-scale science drawing on international cooperation

and supporting a broad spectrum of major research

domains—subsequent experience has shown that adding

the HDA dimension to the scientific computing problem

space radically transforms it. As we argue in the following

section, it raises a host of conceptual, political, economic,

and cultural problems and places several of the existing

paradigms and assumptions underlying traditional scien-

tific computing and computational science into question.

2.1. Disruptive partitions in two current paradigms

The BDEC community’s sustained examination of the

changes wrought by the ongoing big data revolution has

revealed at least two different—and somewhat orthogo-

nal—ways that the cyberinfrastructure on which science

and engineering communities depend is becoming—or has

long been—bifurcated. One of these splits—between the

traditional HPC approach and strategies that leverage or

model commercial cloud computing—emerged early this

century as an unexpected byproduct of the explosive

growth of data associated with online commerce and social

media. The second split—between stateless datagram

delivery networks (e.g. the Internet) and stateful services

provided by network-attached end systems (e.g. supercom-

puters, laptops, sensors, and mobile telephones)—is funda-

mental to the cyberinfrastructure paradigm that has been in

use for well over three decades. Unfortunately, as we

explain subsequently, the big data revolution has also made

this entrenched bipartite cyberinfrastructure paradigm that

is highly problematic. As reflected in the analysis subse-

quently, we believe that any planning for cyberinfrastruc-

ture convergence today has to take into account the

partitioning of both types.

2.1.1. First partition: Recent split in software ecosystems. The

first split came to the attention of the BDEC community

early in the process. The “two software ecosystems” dia-

gram (Figure 1), which was introduced at the second BDEC

workshop, quickly became emblematic of the ongoing

bifurcation of the software ecosystems that were being

deployed for data analytics and scientific computing. The

computational science ecosystem developed and flourished

over the course of roughly four decades (primarily) to

increase the capabilities of scientists to model and simulate

(i.e. to enable scientists and engineers to project, in more

detail, the consequences of theories that had been—or

could be—expressed mathematically). Meanwhile, the

rapid growth of the data analytics ecosystem has occurred

largely during the last 15 years. For the most part, however,

it is not being developed by the scientific computing com-

munity to explore the rising flood of data from new instru-

ments and sensor systems, but rather by an equally thriving

group of academic and commercial software developers to

Asch et al. 439

process the torrents of business, industrial processes, and

social network data now being generated by consumer

devices and the burgeoning IoT. The pace of change in the

data analytics ecosystem is extraordinary, already render-

ing obsolete some of the elements in the figure above.

Thus, at least some of the major differences between the

HPC and the HDA ecosystems—software development

paradigms and tools, virtualization and scheduling strate-

gies, storage models (local vs cloud/SAN), resource alloca-

tion policies, strategies for redundancy, and fault

tolerance—can be accounted for by the fact that each

evolved during a distinctly different phase of the ongoing

digital revolution, driven by distinctly different optimiza-

tion criteria.3 For example, it can be reasonably argued that

scientific “big data” has existed for more than a decade, but

that it remained essentially “dark” (i.e. unavailable for

analysis) until commercial cloud technology and content

distribution networks began to provide broader access to

the computing power and data logistics needed by the com-

munities who wanted to analyze it.4 By contrast, the HPC

infrastructure model—a system of regional and national

supercomputing centers connected together by high-

performance research networks—was already fully mature

at the beginning of the century and serving the needs of the

modeling and simulation-centered parts of the scientific

community relatively well.

But even the ultimate convergence of the HPC and HDA

ecosystems, could it be achieved, would not help with the

ongoing breakdown of the other, more basic paradigm,

namely, the one in which networks only forward data-

grams, while all other storage and computation is per-

formed outside the network.

The problem is that much, if not most, of the explosive

growth in data generation today is taking place in “edge

environments” (i.e. outside of—and across the network

from—both HPC data centers and commercial cloud

machine rooms (Figure 2)). This includes not only major

scientific instruments, experimental facilities, and remote

sensors (e.g. satellite imagery), but even more importantly,

the incredible welter of digital data generators with which

the plans for “smart cities” and the IoT (Gorenberg et al.,

2016) are replete. For example, a recent National Science

Foundation workshop on the future of wireless networking

concluded that the ubiquitous deployment of sensor tech-

nologies that are a standard element in such plans will

“ . . . generate massive data inflows [that produce] as much

if not more data and network traffic than the World Wide

Web” and will therefore “ . . . reverse current loads, where

most data is produced in the cloud and consumed at the

edge” (Banerjee and Wu, 2013). Likewise, the authors of

the 2017 European Network on High Performance and

Embedded Architecture and Compilation report con-

cluded that

. . . to stem the flood of data from the Internet of things, we

must employ intelligent local data processing on remote

devices that use minimal energy. . . . This may well require

Ethernet
Switches

Local Node
Storage

X86 Racks +
GPUs or

Accelerators

In-situ
Processing

Infiniband +
Ethernet
Swtiches

SAN + Local
Node

Storage

Commodity X86
Racks

Lustre (Parallel
File System)

Batch Scheduler
(e.g., SLURM) HDFS (Hadoop File System)

System
Monitoring

Tools

Applications and Community Codes

Hbase BigTable
(key-value store)

AVRO

Sci. Vis.

Zookeeper (coordination)

Map-Reduce Storm

Hive Pig Sqoop Flume

Mahout, R and Applications

Domain-specific Libraries

FORTRAN, C, C++ and IDEs

Cloud Services (e.g., AW
S)) Virtual Machines and Cloud Services

Containers (Kubernetes, Docker, etc.)
Containers

(Singularity, Shifter, etc.)

DATA ANALYTICS ECOSYSTEM COMPUTATIONAL SCIENCE ECOSYSTEM

MPI/OpenMP
+Accelerator

Tools

Numerical
Libraries

Performance &
Debugging
(e.g., PAPI)

Figure 1. Different software ecosystems for HDA and traditional computational science. Credit: Reed and Dongarra (2015). HDA:
high-end data analysis.

440 The International Journal of High Performance Computing Applications 32(4)

us to break away from the traditional von Neumann architec-

ture and to rethink device technology. (Duranton et al., 2017)

Thus, this remarkable reversal of direction of the data

tide, which turns the familiar “last mile problem” into a

multidimensional “first mile problem,” represents a chal-

lenge for which neither cloud-based HDA nor center-based

HPC have a solution. In fact, explosive growth in data

generation in edge environments seems to clearly indicate

that revolutionary innovation in distributed computing sys-

tems is becoming an increasingly urgent requirement

(Calyam and Ricart, 2016; Chen et al., 2014; Fox et al.,

2016; Nahrstedt et al., 2017). As argued in the following

section, we believe this represents the breakdown of the

bipartite cyberinfrastructure paradigm that has been domi-

nant for nearly three decades, making the problem of con-

vergence substantially more complex and momentous.

2.1.2. Second partition: Inherent split in the legacy paradigm.
Some historical perspective is required to understand the

other “divergence” or paradigm breakdown that the prolif-

eration of data generators seems to be causing. If one were

to try to mark the year in which the two parts of the domi-

nant research cyberinfrastruture paradigm of the last 25

years—TCP/IP and Unix/Linux—were first fused together,

1989 would make a very plausible candidate. In June of that

year, the Berkeley Software Distribution (BSD) of Unix,

including a Defense Advanced Research Projects Agency-

approved version of the TCP/IP protocol stack, was made

freely available under an open-source license. Their com-

bination in that form was especially well received by the

research community:

As the Internet evolved, one of the major challenges was how

to propagate the changes to the software, particularly the host

software [T]he incorporation of TCP/IP into the Unix

BSD system releases proved to be a critical element in disper-

sion of the protocols to the research community. Much of the

[computer science] research community began to use Unix

BSD for their day-to-day computing environment. Looking

back, the strategy of incorporating Internet protocols into a

supported operating system for the research community was

one of the key elements in the successful widespread adoption

of the Internet. (Leiner et al., 2009)

Although TCP/IP and Unix/Linux became complemen-

tary parts of one integrated package, they supported two

different software ecosystems for two separate but comple-

mentary infrastructures. The former laid the software foun-

dation for a globally scalable data network that offered one

fundamental service: unicast datagram delivery to move/

copy data from one location (buffer/host/end system) to

another. The latter, by contrast, was designed to provide

an application interface to end systems of all kinds, ranging

from personal computers to “middle boxes” to supercompu-

ters; its purpose was to enable applications and services that

required the full complement of basic resources—processing

power, storage, and networking. But to understand our cur-

rent dilemma, we should recognize at least three additional

factors that helped foster the rapid spread of this composite

paradigm through the global research community.

1. Both components were open source, public domain,

and designed to support broad experimentation and

rapid evolution. The TCP/IP-Unix/Linux platform

was introduced when the highly competitive (not to

say ferocious) battles between different proprietary

computing strategies (e.g. mainframe, minicompu-

ter, and PC), desktop operating systems (e.g. MS-

DOS, Windows, OS2, and macOS), and local area

networking technologies (e.g. Novell, Apple, DEC-

net, and systems network architecture) were still

ongoing. Avoiding high costs, loss of control of

one’s own tools, barriers to collaboration, and other

perils of “vendor lock in” made the open source

and public domain character of this new paradigm

especially attractive. At the same time, as we dis-

cuss in Section 4.1, both halves of the dominant

paradigm were designed in a way that facilitated

freedom of innovation and speedy growth, making

it especially well suited to the inclinations and the

aptitudes of the science and engineering

communities.

2. Each component embodies a different model of

resource sharing. Finding ways to share

Figure 2. Current problem of data logistics: The highest con-
centrations of computing power and storage are in the “center”
(i.e. in commercial clouds or HPC centers), but much of the rapid
increase in data volumes and the dramatic proliferation of data
generators is occurring in edge environments, where the pro-
cessing and storage infrastructure needed to cope with this rising
flood of data is ad hoc and under provisioned at best. HPC: high-
performance computing.

Asch et al. 441

computational resources has long been a fundamen-

tal part of the cyberinfrastructure problem, and

time-sharing operating systems and digital data net-

working have long been essential parts of the solu-

tion. But the two parts of the dominant paradigm

under discussion support resource sharing in differ-

ent ways and with different consequences for their

overall design (Bassi et al., 2002). In the context of

large, shared systems, Unix/Linux was designed to

allow the sharing of valuable processor, storage,

and other system resources with authentication and

access controls that created a secure environment

supporting free sharing of most resources. Enforce-

ment of storage quotas in Unix was a later adapta-

tion necessary in more highly shared/public data

center environments, and CPU metering and ration-

ing has been implemented in specialized high-value

supercomputing systems. By contrast, the TCP/IP

was designed to facilitate communications among

an enormous variety of devices used by a global

community of indefinite size. With maximum

deployment scalability as its goal, it shares avail-

able bandwidth in limited lightweight allocations

that are easy to access and that typically lack sig-

nificant admission or accounting controls. The

incredible power of this model of resource sharing,

especially in terms of its network effects, is

manifest.

3. Each component has a different approach to state

management. Perhaps the most significant asymme-

try between the components of the dominant para-

digm lies in the different ways that they handle

process state. The Internet is based on a stateless

(or virtually stateless) datagram delivery model,

where the intermediate nodes of the network are

stateless packet switches (Clark, 1988). By contrast,

the end systems that attach to the Internet, ranging

from smart phones to supercomputers, are typically

general purpose computing devices that regularly

have to manage a great deal of computational or

process states (much of it hidden), and a wide range

of mechanisms have been implemented to serve that

purpose; these end points manage all the state infor-

mation required to use the network. The Internet

community has traditionally held this design, which

keeps the core of the network simple and passive by

keeping services other than datagram delivery (e.g.

a storage service for caching and prefetching) out of

network layer of the TCP/IP stack. This design has

been essential to the remarkable scalability that the

Internet has demonstrated. And so long as applica-

tions and services could be factored into two

phases—using the datagram service to move data

between end systems and then applying end system

resources to achieve complex application or service

goals—this symbiotic union of stateless and stateful

systems was able to support an immense range of

applications.

But problems with this bipartite paradigm, especially

with respect to distributed state management in the wide

area, have been both evident and growing for more than

25 years. In particular, lacking any general ability to do

state management at its intermediate nodes (e.g. lacking

native asynchronous point-to-multipoint capabilities), the

Internet has long been plagued by bottlenecks or

“hotspots” for high-volume and/or high-popularity data

traffic. Since data volumes have been growing at expo-

nential rates over the same period, users and providers

have been forced to search for new workaround strategies

on a recurring basis. Indeed, the Internet community has

seen an evolving series of such workarounds, from collat-

eral storage services in the 90s (e.g. FTP mirror sites, web

caches, and hierarchical web caches) to full blown server

replication in CDN and commercial cloud infrastructure

beginning in this century (Figure 3). Today’s CDNs and

clouds have more or less followed this path to its logical

conclusion, using private or non-scalable mechanisms to

implement internal communications among logically cen-

tralized, but physically distributed, nodes or machine

rooms while using the Internet to implement selected parts

of this scheme and to provide for end-user access.

IP Multicast

ROUTER

SOURCE

DESTINATION

Web Caching

CACHE SERVERPROPRIETARY
NETWORK

Content Delivery Network

SERVER

Cloud

Figure 3. Evolution of the network to deal with growth in data volumes and rapid fluctuations in their popularity. The need to be able
to use storage and computation at intermediate nodes (e.g. for asynchronous point-to-multipoint transfer) stimulated the development
of content delivery networks and clouds with proprietary networks and server replication using standard IP to reach clients at the
network edge. Credit: Beck et al. (2017).

442 The International Journal of High Performance Computing Applications 32(4)

Similarly, major HPC application communities have long

since moved their high-volume traffic to non-TCP-

friendly data transfer methods using dedicated bandwidth

on over-provisioned research networks.

Unfortunately, we have entered an era—the era of big

data—when such workaround strategies seem to have

reached their limits. The cause of this exhaustion, as we

argue earlier, is the unprecedented explosion in data gen-

eration in edge environments. The burgeoning torrents of

data that are flowing from highly diverse and widely dis-

tributed sources originate in environments which, for the

most part, lack the capacity to process or manage the logis-

tics of such immense flows. Whether because of sheer vol-

ume and flow rate, or because of application-specific

latency issues, the conventional strategy of backhauling all

data across a fast link to a cloud service provider or an HPC

data center (Figure 8) is no longer a viable option for many

applications. Hence, there is intense commercial and

research interest in “fog” and “edge” computing infra-

structures (Bastug et al., 2014; Bonomi et al., 2012; Hu

et al., 2015; Satyanarayanan et al., 2009; Wang et al.,

2017). For perhaps obvious reasons, we view the creation

of a future-defining DSP that meets the fundamental

requirements of the scientific community to be—at

best—a difficult problem full of unknowns and fraught

with economic and political obstacles. More immediately,

this assessment has influenced the structure of this report,

as we describe next in our document overview.

2.2. Pathways overview: Prospects for convergence
at three different levels

As noted at the outset of this report, the transition from the

IESP to the BDEC project forced a radical shift in perspec-

tive on the part of HPC community participants. In contrast

to the “big machine” focus of traditional HPC, the center

stage in the era of big data has to be given to the many

unsolved problems surrounding wide-area, multistage

workflows—the diverse patterns of when, where, and how

all that data are to be produced, transformed, shared, and

analyzed. Consequently, the challenges involved in code-

signing software infrastructure for science have to be

reframed to fully take account of the diversity of workflow

patterns that different communities want to create. All of

the imposing design and development issues associated

with creating an exascale-capable software stack remain;

however, the supercomputers that need this stack must now

be viewed as the nodes (perhaps the most important nodes)

in the very large network of computing resources required

to process and explore gigantic rivers of data.

As discussed previously, the dominant cyberinfrastruc-

ture paradigm that has been the foundation of such

workflows for decades is now eroding—if not

collapsing—under the onslaught of this growing data

deluge. Unfortunately, this fact requires the BDEC com-

munity to find a new way to express its results. IESP parti-

cipants were able to successfully produce an influential

technology roadmap (Dongarra et al., 2011) for creating a

software stack to support science applications on extreme-

scale platforms. However, the IESP had the advantage of

targeting a shared goal that was different in scale, but not

different in kind, from less extreme goals that had been

achieved before. For BDEC, the shared goal is not so clear.

Arguably, the main cyberinfrastructure challenge of the big

data era is to adapt or replace the legacy paradigm with a

new type of DSP—one that combines computing, commu-

nication, and buffer/storage resources in a data processing

network that is far more integrated than anything hitherto

available. But since there is no widely agreed upon model

for this platform, traditional technology road mapping tech-

niques seem to be inapplicable.

Instead, we suggest that the development of a

community-driven “shaping strategy” (Hagel and Brown,

2017; Hagel et al., 2008) would be a far more appropriate

goal to pursue. A shaping strategy is a plan for changing the

infrastructure/ecosystem of a market, industry, or commu-

nity by proposing a well-defined concept of a technical

platform that can support many kinds of applications or

enterprises, and combining that platform with an inspiring

vision of the mutually beneficial future that could be cre-

ated through its widespread adoption and use. By offering a

range of possible incentives to all the stakeholders who

would benefit from such convergence, shaping strategies

seek to coordinate and direct the creativity and energy of

participants who might build on this platform in a way that

leverages network effects and produces positive external-

ities. Shaping strategies are thought to be especially appro-

priate when the absence or breakdown of an established

infrastructure/ecosystem paradigm has disrupted or

unsettled some large field of endeavor. With the era of big

data, this is precisely the situation that the scientific com-

munity now confronts.

Against that background, the reflections of BDEC par-

ticipants over the course of successive workshops have

suggested that the prospects for integration of technologi-

cal infrastructures and research ecosystems need to be

considered at three different levels, or from three different

perspectives. The three major sections of this document,

in turn, focus on one of these levels, as listed in the

following.

1. Opportunities for convergence of research applica-

tions and workflows (Section 3): We begin at the

level of applications and workflows (i.e. composite

applications) for two reasons. First, operating on the

general principle that the goal of any infrastructure

is to serve its users, it seems appropriate to begin by

examining the forms of inquiry, new and old, that a

converged infrastructure for research is supposed to

support. Second, pushing back against the popular

idea that HDA represents a distinctly new paradigm

of scientific methodology, we argue that HDA actu-

ally represents the computerization of two phases of

the classic model of the scientific method, which

Asch et al. 443

had heretofore been far less digitally empowered.

Accordingly, we offer examples in which HPC and

HDA applications are being composed in work-

flows that embody the entire inference cycle of sci-

entific inquiry.

2. Issues in the creation of a converged infrastructure

for large-scale, logically decentralized facilities

(Section 4): This section offers one account of some

problems associated with creating a converged

infrastructure for distributed edge environments,

one which can be deployed—in a scalable man-

ner—to meet the data processing, communication,

and storage requirements of massive data work-

flows in the wide area. Developing such a “next-

generation Internet” for the big data era in science

and engineering is fraught with challenges in vari-

ous dimensions. There is, however, a great deal of

excitement and activity in this part of the infrastruc-

ture convergence space under the heading of “fog”

and/or “edge” computing, but there are also very

high levels of uncertainty. Consequently, although

we survey and discuss some of the prominent ideas

and strategies, our review is by no means

exhaustive.

3. Opportunities for convergence of infrastructures of

large, logically centralized, resource-rich facilities

(Section 5): The third major section of this report

focuses on major facilities that execute large-scale

simulations and models or that perform large-scale

data analytics. We refer to such systems as

“logically centralized” because, whether or not they

are actually physically distributed, they present

themselves as being under the control of a single

administrative domain, and users are required to

interact with them in that form. Such facilities are

already supporting some of the converged applica-

tions and workflows previously discussed, and

some convergence at this level can and is already

occurring.

Drawing on discussions at the BDEC workshops,5 we

begin each of the major sections by suggesting some points

of plausible consensus that are intended to provide com-

mon context for cyberinfrastructure planning, especially

for the development of a community-driven shaping strat-

egy. These points of convergent opinion include an inte-

grated conception of the general process of scientific

inquiry, the overarching issue of energy efficiency as crit-

ical for sustainability, the new importance of questions of

“data logistics,” and prevalence of the “hourglass” model

as a paradigm of good infrastructure/ecosystem design. We

have assigned these assumed pieces of common context to

the major sections that seemed most appropriate, but admit-

tedly some are of a general nature and certainly apply in

other sections as well.

Since the idea developing a community-driven shaping

strategy for a new DSP for science was arrived at late in the

BDEC reporting process, we do not describe even a straw

man version of such a plan here. Nonetheless, we believe

that the various observations, arguments, and conclusions

we record in what follows should feed directly into the

dedicated community effort that will be required to develop

such a plan. For example, the argument for focusing on the

careful design of the “spanning layer” at the waist of

the hourglass model (Section 4.1) dovetails perfectly with

the need to define an attractive “shaping platform” that

many stakeholder communities will build on and use, and

such a platform definition is one of the primary constituents

of a successful shaping strategy. Likewise, we believe that

analyzing—and building on—the application-workflow

exemplars of the kind we describe and classify in Sections

3.2 and 3.3 and is an essential step in developing the

“shaping view” that successful strategies must have in

order to incentivize participation and motivate adopters and

users. Accordingly, as we note in Section 6, we offer our

final conclusions and recommendations with the intention

of preparing the groundwork for a new community effort to

develop the kind of shaping strategy for future cyberinfras-

tructure that the scientific community must have in order to

thrive in the ongoing data revolution.

3. Emerging convergence in large-scale
scientific applications

Despite the manifest challenges of a converged cyberin-

frastructure for multidisciplinary research, the scientific

and engineering opportunities are compelling. Many sci-

ence communities are driven by a combination of comput-

ing tasks and managing large-scale data volumes resulting

from data flows that range from continuous to sporadic.

The associated computations may come from large-scale

workflows that orchestrate simulations or from different

stages of large-scale analysis pipelines for data generated

by simulations, experiments, or observations, including the

transitions between these stages and provenance tracking.

Communities that would benefit substantially from appli-

cation and workflow convergence are abundant, spanning

all of science and engineering. Examples include (1) multi-

scale materials science; (2) integrative environmental

modeling and analysis; (3) astronomy and cosmology; (4)

aerospace; (5) autonomous vehicles; (6) weather and cli-

mate prediction; (7) smart cities; (8) health and biomedi-

cine; and (9) exploration geophysics and seismology.

Several of these application communities are highlighted

subsequently in our examples of convergence.

It is important to note that when we talk about

“applications” and “workflows” in this context, we are not

talking merely about isolated software tools or application

codes but rather about complex (and changing) configura-

tions of software, hardware, and data flows that support

long-running science and engineering campaigns and

research practices. For this reason, we prefer to structure

the discussion subsequently around three computational

archetypes that provide broader categories than specific

444 The International Journal of High Performance Computing Applications 32(4)

traditional formulations (e.g. partial differential equations

and principal component analysis) or approaches (e.g.

implicit method and randomized singular value decompo-

sition). These three archetypes will instead furnish a con-

venient grouping of collaborations by the users’ “culture.”

To provide the intellectual context for this analysis of

application-workflow level convergence, we begin by

describing a unified model of an inference cycle for the

process of scientific inquiry, pushing back against the pop-

ular idea that computational science and data science rep-

resent disparate paradigms in the search for new knowledge

(Section 3.1). After presenting the rationale for our division

of application-workflow archetypes, we illustrate them

with exemplars that follow the data, since it is the data that

carry the costs (time, energy, and human labor needed to

produce and manage the data). We address three modalities

of data provenance: (1) data arriving from the edge (often

in real time), never centralized; (2) federated multisource

archived data; and (3) combinations of data stored from

observational archives with a dynamic simulation. These

exemplars make it evident that the concept of workflows

has become pivotal for understanding the convergence

paradigm between data and simulation. Notably, however,

we leave out of this account—but discuss later (Section

4)—many issues surrounding the data logistics infrastruc-

ture that would, and will be, needed to support our exem-

plar workflows.

3.1. Common context: A shared model of scientific
inquiry for infrastructure planning

One notable objection to pursuing software infrastructure

convergence for the scientific community draws on the idea

that, along with traditional forms of experiment and theory,

the emergence of digital information technology (IT) and

the explosive growth in computing power have combined

to produce two distinctly new paradigms of how science

can be done: (1) modern computational science and (2)

data-intensive science. Commenting on the latter, Turing

award winner Jim Gray, who apparently originated this

way of narrating the transformation of science in the digital

age, asserted that, “The techniques and technologies for

such data-intensive science are so different that it is worth

distinguishing data-intensive science from computational

science as a new, fourth paradigm for scientific

exploration” (Hey et al., 2007). Sorting sciences into these

different methodological boxes has become conventional

wisdom in the HPC community, and this supposition, in

turn, makes it plausible to argue that the HPC and HDA

software ecosystems have separated because each is

adapted to the peculiarities of a very different paradigm

of scientific research. If this were true, it would seem to

put a significant obstacle in the path of software ecosystem

convergence.

A recent white paper from the Computing Community

Consortium addressed this question, presenting a generic

account of the “scientific process” that accommodates a

more unified point of view (Honavar et al., 2016). Follow-

ing that suggestion, and for the moment leaving aside some

important socioeconomic aspects of the problem, Figure 4

shows a simplified version of the key logical elements of

that model.6 It expresses the classic view that the scientific

method is a complex inferential process that seeks to

improve our predictive understanding of nature by building

on a foundation of thorough and carefully controlled obser-

vation. The three distinct forms of inference it identifies,

(1) abduction (i.e. guessing at an explanation), (2) deduc-

tion (i.e. determining necessary consequences of a set of

propositions), and (3) induction (i.e. making a sampling-

based generalization), are the chief elements in the “logic

of discovery” first articulated by the American scientist and

polymath Charles S. Peirce (Bellucci and Pietarinen, 2017).

Likewise, in a more contemporary treatment of the same

topic, Richard Feynman’s account of the logic of discovery

for physical laws can be summarized as having essentially

the same three steps or stages (Feynman, 1967).

1. We guess at a law that would explain what is cur-

rently inexplicable.

2. We derive the consequences of the law that we

guessed.

3. We make further observations to see if the conse-

quences predicted match the reality we find.7

On this analysis, all three steps taken in combination are

required to increase our predictive understanding of the

world (i.e. to really make our knowledge grow).

Now, if we accept this model as a plausible hypothesis,

then we can draw at least two conclusions that are directly

relevant to the problem of cyberinfrastructure convergence.

Figure 4. The inference cycle for the process of scientific inquiry.
The three distinct forms of inference (abduction, deduction, and
induction) facilitate an all-encompassing vision, enabling HPC and
HDA to converge in a rational and structured manner. HPC: high-
performance computing; HDA: high-end data analysis.

Asch et al. 445

First, by viewing the transformation of science in the era of

digital computing through the lens of this model, we can

see that there is an alternative way to account for these

changes—one that does not require us to posit substantially

new paradigms of scientific inquiry. Namely, rather than

forking new methodological branches, one can explain the

more rapid emergence of computational science, and the

slower and later emergence of data-intensive science, by

examining the factors that made it possible to apply vast

amounts of computing power to the deductive stage of the

inference cycle far earlier than to the abductive and induc-

tive stages.

As conventionally defined, computational science pri-

marily covers the deductive part of the inferential process:

Computer-based simulation and modeling shows what a

given theory, expressed mathematically, predicts for a

given set of input data. This could equally be viewed as

mapping complex models to data. By the middle of the 20th

century, when the power of microprocessors began to fol-

low their amazing exponential arc upward, many physical

sciences already had well established mathematical models

of their target phenomena but had access to only enough

computing power to solve them for relatively small prob-

lems and/or for cases where inherent uncertainties were not

take into account. The impact of Moore’s law was, there-

fore, immediate and explosive.

By contrast, the gathering and analysis of observational

data have always been the focus of the abductive and induc-

tive stages of scientific inquiry. Whether data are being

explored to discover novel patterns or anomalies that might

initiate new inquiry or being carefully examined for some

predicted phenomena that would test (i.e. further confirm

or potentially falsify) some well-formulated theory, data

analysis strives to put the reasoning of scientists and engi-

neers into relatively direct contact with the realities they are

trying to understand. When the data are digital, such anal-

yses obviously require computational power. But in a mir-

ror image to the HPC situation, so long as the data volumes

remained tractable, concerns about the amount of computa-

tional power required to do the necessary data analysis

could be sidelined: either a small cluster could be used to

analyze data where it was collected (e.g. at the site of the

instrument), or, when necessary, the raw data could be

transferred via a high-performance network to a supercom-

puting center for analysis.

Of course, since the turn of the century, these flows have

become progressively more intractable, as remarkable

improvements in sensor technology and other data gather-

ing capabilities produce exponential growth in research

data flows. This data deluge was spotted on the horizon

early in this century’s first decade (Hey and Trefethen,

2003), with projects like the Large Hadron Collider (LHC)

serving as a harbinger of unprecedented increases in data

rates across a wide variety of fields. Yet despite the bur-

geoning quantities of data that needed to be processed, the

big data revolution was not really launched until the end of

the decade, when the explosion of consumer/customer

usage being collected and utilized by online companies

(e.g. Google, Amazon, and Facebook) motivated the build

out of massive, private, cloud computing infrastructures to

store and process it all.

As we discuss in more detail in Sections 5 and 4.2, this

proliferation of distributed data sources means that scien-

tific cyberinfrastructure design must focus as never before

on issues of workflow and data logistics, thereby covering

the full path of data use from its collection to its use as a

decision-making aid. Moreover, this focus is required in no

small part by the new efforts, in line with the cycle of

inquiry illustrated in Figure 4, to synthesize elements of

HPC and HDA in new application-workflow hybrids. In

short, the concept of a scientific application, familiar from

the heyday of traditional computational science, is being

gradually redefined. To set the stage for our application

“exemplars,” we first briefly discuss the new perspective

on application workflows that is now emerging.

3.2. Classification of application-workflow archetypes

A good first step in understanding any new area typically

consists of working out some rough classification of the

different types of objects that make it up. It is no surprise,

then, that every BDEC meeting has dedicated substantial

amounts of effort to categorize the various data-intensive,

compute-intensive, and hybridized applications and appli-

cation workflows. Viewed from a relatively traditional

standpoint, the categories or classes most frequently dis-

cussed included simulations, database and data manage-

ment problems, scientific data analysis, and commercial

data analytics. The last three have many examples in the

National Institute of Standards and Technology’s

(NIST’s) collection of 51 big data use cases,8 and simula-

tions are illustrated in many HPC benchmarks (e.g. the

NASA Advanced Supercomputing Parallel Benchmarks)

and the Berkeley Dwarfs. The ways in which such appli-

cations are driving new software infrastructure develop-

ments was a frequent point of interest. For example, we

noted that MapReduce was originally introduced to par-

allelize basic database operations as seen in Apache Hive,

but Andrew Ng from Stanford9 observed that many

machine learning algorithms exhibited the “summation

form” and could be parallelized with MapReduce. It was

later noted that this could be optimized with so-called

Iterative MapReduce—a model supported by Apache

Spark and Flink.

One BDEC white paper by Fox G, et al. (2016) noted

that the comparison of simulation and big data problems

can be made more precise by distinguishing data and mod-

els for each use case and carefully making model-to-model

and data-to-data comparisons and not confusing them. This

article introduced a common set of 64 properties or facets,

divided into four views, that could be used to characterize

and compare use cases within all the application classes

defined earlier. As an example, the first “problem

architecture” view includes four very common facets

446 The International Journal of High Performance Computing Applications 32(4)

describing the synchronization structure of a parallel job:

(1) pleasingly parallel, (2) MapReduce, (3) Iterative Map-

Collective, and (4) Map Point-to-Point. Another important

problem architecture facet is “Map Streaming,” seen in

recent approaches to processing real-time data. Other

well-known facets in this view are single program, multiple

data and bulk-synchronous processing. An execution view

includes relevant facets like model size, variety, data vol-

ume, velocity, and veracity. The third data view includes

storage and access models and relevant information on IoT,

geospatial information systems, and need for provenance.

The final processing view includes algorithm characteriza-

tions like optimization, alignment, N-body method, spec-

tral method, and so on. One can look at use cases, assign

facets, and use this information to understand commonal-

ities and differences and how this is reflected in the hard-

ware and software.

Complicating this algorithmic perspective of the classi-

fication problem is the fact that—from a strictly data/work-

flow point of view—data analysis is usually an iterative

process. The model is often unknown beforehand, since

principled statistical model selection is not solved in a gen-

eral setting. Moreover, data must be interactively under-

stood, and often “debugged,” that is, we need to find

anomalies in the data and detect wrong assumptions on the

data. In this context, schemes of distributed computing are

evolving, but users often do not rely on distributed comput-

ing, hence the data analysis operations are not expressed in

a language that renders distributed computing suitable.

Typical code is a succession of operations written in an

imperative way. Here, it is useful to think of the computing

as a dataflow graph, since access to data (and related band-

width) can often be a bottleneck.

Three dataflow schemes are often encountered:

1. Extract, transform, and load (ETL): Pipelines that

apply transformations known beforehand often

encountered in data-input preprocessing. This is

already done in distributed environments (e.g. with

Hadoop). It can lead to data-parallel pipelines.

2. Database-centric distributed computing, as with

Spark: heavily out-of-core, simple operations.

Operations are then specified in a data-oriented lan-

guage, often not imperative, such as the structured

query language (SQL) or Scala. Such a language

requires more training to perform complex process-

ing pipelines.

3. Machine-learning on streams: stochastic gradient

descent, as in deep learning. Here, distributing the

model fit needs to be tackled with a different para-

digm. However, applications often require fitting

many models independently, which is embarrass-

ingly parallel.

A typical dataflow is illustrated in Figure 5, where sev-

eral hundred gigabytes of data from the autism brain ima-

ging data exchange are treated and analyzed to extract the

most predictive biomarkers. It should be noted that I/O is

critical in this pipeline, and data reduction dominates the

Training set Testing set
A B C D E A B C D E

Training set Testing set

ROIs estimation

Harvard-Oxford Yeo

ICA MSDL

K-Means Ward

Time series
extraction Matrix estimation

Correlation

Partial
correlation

Tangent embedding

Classification

Ridge classifier

SVC-
SVC-

Intra-site cross-validation
Subjects from each site are proportionnaly split

R-fMRIROIs

Time series

41 2 3

Site A Site B Site C Site D Site E

B

Site A Site B Site C Site D Site E

A B C D E

Inter-site cross-validation
A site is left out for validation

Figure 5. A functional magnetic resonance imaging analysis pipeline with cross-validation schemes. Regions of interest are deduced
from predefined (Harvard-Oxford, Yeo) or data-driven atlases (K-means, independent component analysis (ICA), maximum distance
secant line (MDSL)) and result in dimension reduction. Extracted time series are fed into a correlation matrix estimator that finally feeds
into the classifier that distinguishes between autism spectrum disorder and typical controls. Credit: Abraham et al. (2017).

Asch et al. 447

computational costs. The results obtained in the study by

Abraham et al. (2017) required 2 months of computation on

a high-end cluster with a dedicated, local network attached

storage housing the data. Obviously, this does not scale,

and the need for more efficient data communication and

reduction, as well as convergence with an HPC environ-

ment, are clearly needed here.

Although it is somewhat natural to try to classify appli-

cations either (most commonly) on the basis of the algo-

rithms they share or (more rarely) on the basis of the

workflow patterns in which they are embedded, the fact

that motivations abound for converging large-scale simula-

tion and big-data workflows that are executed largely inde-

pendently today suggests that we should try to classify

application workflows that represent the combination or

interaction of these two dimensions. The interaction matrix

shown in Table 1 describes some benefits that are imme-

diately available to each paradigm and includes the rise

of machine learning. For this purpose, we distinguish

workflows that are independent of the data and are

throughput-oriented from those that are learning-oriented

and transform themselves by means of the data. Lumping

together many varieties of batch-oriented scientific simula-

tions, we therefore consider three types of workflows—

each of has its own niche of applications, its own software

stack, and its own user community.

As indicated in the first column of the matrix, to take

advantage of advances in analytics and learning, large-

scale simulations should evolve to incorporate these tech-

nologies in situ, rather than as forms of postprocessing.

This potentially reduces the burden on file transfers and

on the runtime I/O that produces the files. In some appli-

cations at major computing centers (e.g. climate and

weather modeling), I/O is well documented (Luu et al.,

2015) as consuming more resources than the computation

itself. In situ data analytics allows the simulation to avoid

writing data that is needed only to advance the simulation,

though this does not apply to post examination. However,

the benefits go far beyond this and into the realm of steer-

ing. Smart steering may obviate significant computation—

along with the I/O that would accompany it—in unfruitful

regions of the physical parameter space, as guided by the in

situ analytics. In situ machine learning offers additional

benefits to large-scale simulation, beginning with smart

data compression, which complements analytics in reduc-

ing I/O and storage use. Beyond assisting with the perfor-

mance of the known implementation, machine learning has

the potential to improve the simulation itself. This is

because many simulations incorporate empirical relation-

ships like constitutive parameters or functions that are not

derived from first principles but are tuned from dimen-

sional analysis, intuition, observation, or other simulations.

For such components, common in multi-scale and multi-

physics models, machine learning in the loop may ulti-

mately (or already) be more effective than the tuning of

expert scientists and engineers. Such learning would

“probe” a simulation, necessitating an in situ process.

Next, turning to the first row of the interaction matrix,

simulation potentially provides significant benefits to ana-

lytics and learning workflows once the software and hard-

ware environments converge. Data science models have

had limited penetration in systems representing complex

physical phenomena. Theory-guided data science (Kar-

patne et al., 2016) is an emerging paradigm that aims to

improve the effectiveness of data science models by requir-

ing consistency with known scientific principles (e.g. con-

servation laws). Theory-guided data science is gaining

attention in applications like turbulence, materials, cosmol-

ogy, and climate modeling. It is analogous to

“regularization” in optimization, wherein nonunique can-

didates are penalized by some physically plausible con-

straint (such as minimizing energy) to narrow the field.

In analytics, among statistically equally plausible out-

comes, the field could be narrowed to those that satisfy

physical constraints, as checked by simulations. Simulation

can also provide training data for machine learning, thereby

complementing data that are available from experimenta-

tion and observation. A traditional advantage of simulation

over experiment is emphasized in this context: Some inter-

esting regions of the parameter space—physically realiz-

able in principle or representing an extreme limit that is not

realizable (e.g. flow with zero viscosity)—can be opened

up to a learning algorithm.

The other two nontrivial elements of the matrix are

between the two workflows within big data. For machine

learning, analytics can provide feature vectors for training.

In return, machine learning can provide analytics with the

imputation of missing data and functions of detection and

classification. For any of these “off-diagonal” fruits to be

harvested efficiently, the corresponding workflows should

be cohosted. The scientific opportunities are potentially

important enough to overcome the enormous inertia (and

Table 1. A 3 � 3 matrix showing beneficial interactions in the six
off-diagonal locations between large-scale simulation, data
analytics, and machine learning.

To large-scale
simulation To data analytics

To machine
learning

Simulation
provides:

— Physics-based
“regularization”

Data for
training,
augmenting
real-world
data

Analytics
provides:

Steering in high-
dimensional
parameter
space; in situ
processing

— Feature
vectors for
training

Learning
provides:

Smart data
compression;
replacement
of models
with learned
functions

Imputation of
missing data;
detection and
classification

—

448 The International Journal of High Performance Computing Applications 32(4)

spur convergence) of the specialized communities that have

gathered around each of these tremendously successful

paradigms.

3.3. Exemplars of application-workflow convergence:
Science at the boundary of observation and
simulation

Over the course of successive BDEC workshops, it quickly

became apparent that application communities would be

leading the drive toward convergence. Given the

“converged” model of scientific inquiry described earlier

(Section 3.1), this is more or less to be expected. Indeed,

recent developments show that it is already happening. One

contrast with commercial cloud computing that these

developments highlight is based on the fundamental differ-

ence between the data generated by human interaction with

computers (such as social media and other commercial

sites) and data collected from sensors and observations.

The latter is governed by some underlying physical process

even if it is a nondeterministic one or one that has not been

understood yet. The analysis performed on scientific data

may, sometimes, resemble that performed on commercial

data—that of drawing inferences without a hypothesis or

conjecture. However, such analysis is limited to instances

where there is little or no prior knowledge about the under-

lying physical processes. In those instances, inferences help

to formulate hypotheses and ultimately the theory. More

often some theory exists, and the observations collect data

that are used to prove or falsify a derived prediction that

helps refine the theory. Examples of the different, rough,

and overlapping patterns with these research workflows

include the following:

� Patterns of interplay between simulation and data

analysis: High-energy physics has several examples

where interplay between simulations and data anal-

ysis plays a critical role in scientific insight. One

example is large experiments like European Organi-

zation for Nuclear Research (CERN’s) LHC, which

currently generates about 30 petabytes of data per

year, which is expected to grow to 400 petabytes in a

decade. Experiments need support from theory

which is provided by the simulations. Confronting

data generated from the simulations with the obser-

vational data helps tune both the model and the

experiment design (see the inference cycle in Sec-

tion 3.1). Another example of synergy between

simulations and experimental data is in determining

the placement of sensors in an experiment. This has

been used in designing high-energy density physics

laser experiments, where simulations can predict

where to place the measuring instruments to have

the best chance of detecting features being formed.

Without this interaction between simulation and pla-

cement of instruments in experiments, entire fea-

tures can be missed and have been known to have

done so in the past. Use of simulations to determine

the placement of instruments or sensors is now mak-

ing its way into many areas, including environmen-

tal and climate observations.

� Patterns of alternating data generation and con-

sumption: Another interesting class of workflows are

ones that alternate between data generation and data

consumption. These kinds of workflows occur in

experimental and observational validation and

uncertainty quantification. Here, the data volumes

and patterns vary throughout the pipeline. The

experimental data may require fine-grained “event”

style analysis where data pipelines can be complex

and need to be run many times. Demands on I/O can

vary due to the nature of the simulations and the

fine-grained nature of the outputs (many small files).

An example of such complex workflows is in dark

energy research where understanding type Ia super-

novae is critical. A typical workflow requires run-

ning a model simulation, postprocessing it, and

running it through another computational stage that

results in generating the spectra and the intensity

curves. On the other side, similar artifacts are gen-

erated for comparison from the observational data

through various stages of analysis. An important

challenge faced in this kind of workflow is data

movement. Large volumes of data are generated

both from observations and from computations—

typically at different sites. It is not just the process-

ing, but also the curation, migration, and archiving

of data that becomes the scientists’ concern. Good

science requires provenance of data involved in sci-

entific discovery, which makes the task of managing

the data pipelining highly resource intensive for

many scientists.

� Patterns of multi-messenger scientific inquiry: Sev-

eral discussions at the BDEC workshops highlighted

the way in which the application of different obser-

vational modalities, which can now be simultane-

ously applied to the same object, promises to

dramatically increase our predictive understanding

of those objects. Generalizing the idea “multi-

messenger astronomy” (Wikipedia, 2017c), we refer

to this application-workflow pattern as “multi-

messenger scientific inquiry.”10 The ability to pre-

dict the effects that result from interactions between

physical or biological systems, or to predict patient

outcomes or treatment responses, hinges on the

accurate multi-resolution characterization of the

objects and systems involved. Happily, the dramatic

reduction in costs required to obtain imaging and

sensor data has made it increasingly feasible to cap-

ture the necessary data.

The general approach, which cuts across the many

relevant application domains, is to carry out and

synthesize the diverse data streams that record dif-

ferent types of sensor observations of the same

Asch et al. 449

object, or set of objects; and in many such scenarios,

analysis and integration of data streams from differ-

ent types of sensors is coupled with simulations. The

earth sciences offer a number of outstanding exam-

ples, as in the study of the earth’s magnetic field,

where satellite data, ground instruments, paleo data-

bases, and simulation are all combined. Aspects of

this huge field are briefly surveyed in Sections 3.3.2

and 3.3.3. Likewise, biomedicine also contains a rich

and growing collection of multi-messenger use

cases, where—for example—integration of informa-

tion from pathology, radiology, and molecular stud-

ies is becoming increasingly crucial in guiding

cancer therapy (Section 3.3.4). Finally, light and

neutron source beamline analyses constitute a third

collection of multi-messenger use cases. Require-

ments have a great deal of commonality across,

beamlines and scientific projects. Beamline experi-

ments frequently generate data that, when recon-

structed, can be used to characterize properties of

materials, tissue, or chemical systems.

The examples of convergent application workflows

shown here highlight the factors that will have to be taken

into account when developing the platform infrastructure to

support them. These considerations led to a number of

pertinent questions that will feed into the following two

sections and motivate our discussions in follow-up BDEC

meetings.

3.3.1. Plasma fusion. Building the scientific foundations

needed to accelerate the delivery of fusion power can best

be accomplished by engaging the predictive capability of

modern big-data-driven statistical methods featuring

machine learning and deep learning. These techniques can

be formulated and adapted to enable new avenues of data-

driven discovery in key scientific applications areas such as

the quest to deliver fusion energy. An especially time-

critical and challenging problem facing the development

of a fusion-energy reactor is the need to deal reliably with

major, large-scale disruptions in magnetically confined

tokamak systems like today’s EUROfusion Joint European

Torus (JET) and the upcoming International Thermonuc-

lear Experimental Reactor (ITER). The JET team led the

development of supervised machine-learning, support vec-

tor machine (SVM)–based predictive methods, which have

achieved over 80% predictive capability for disruptions

that occur 30 ms prior to damaging events—far exceeding

current HPC “first principles” approaches. However, ITER

will require approximately 95% or better predictive accu-

racy with less than 5% false positives at least 30 ms before

disruptions. Accordingly, this requirement will demand the

deployment of improved physics-based classifiers that

encompass multidimensional features—a machine learning

challenge for training that exceeds the current capabilities

of SVM methods.

Very encouraging advances in the development and

deployment of deep learning recurrent neural nets were

recently demonstrated in the results obtained by the team

at the Princeton Plasma Physics Laboratory. The results

have already exceeded those of SVM methods (i.e. better

than 90% predictive accuracy with 5% false positives at

least 30 ms before the occurrence of JET disruptions).

Moreover, scalability studies of the fusion recurrent neural

net (FRNN) deep learning code—first on 200 GPUs on

Princeton University’s “Tiger” cluster and then on 6000

GPUs on Oak Ridge National Laboratory’s (ORNL’s)

“Titan” leadership-class supercomputer—show encoura-

ging results that indicate that sufficiently rapid training of

higher physics fidelity classifiers is now feasible.

FRNN uses the well-known “Theano” and “Tensorflow”

(from Google) back ends to train deep neural networks

(DNNs; e.g. stacked, long short-term memory). With this

approach, a replica of the model is kept on each worker,

processing different mini-batches of the training data set in

parallel. The results on each worker are combined after

each epoch using standard message passing interface (MPI)

methods, and the model parameters are synchronized using

parameter averaging. The learning rate is adjusted after

each epoch to improve convergence.

This project has direct access to the huge EUROfusion

JET disruption database (over 500 terabytes of data) to

drive these studies. Since the JET signal data come in

sequences of variable length, the training of RNNs for time

intervals as long as 2000 time steps is challenging but

achievable in that FRNN uses a technique of patches and

chunks that make it possible to capture physical patterns

that are only visible for significantly long sequences (i.e.

about 1–2 s). The FRNN project will explore the viability

of modern deep learning code for deployment on

leadership-class supercomputers that feature a very large

number of modern Pascal P100 GPUs (e.g. “Piz Daint” at

the Swiss National Supercomputing Centre and “Tsubame

3.0” at the Tokyo Institute of Technology) and future Volta

GPUs (e.g. Summit at ORNL).

3.3.2. Earth, planetary, and universe sciences. The earth, pla-

netary, and universe (EPU) sciences are exemplary in their

sharing of scientific culture with observational, data-driven

research practices that cover a wide spectrum of spatial and

temporal scales. EPU research addresses fundamental

problems associated with the understanding of the forma-

tion, structure, and evolution of EPU systems in their envi-

ronment (e.g. stellar and fluid envelopes); transient events

(e.g. stellar explosions, earthquakes, and volcanic erup-

tions) and their radiation (e.g. high-energy astro particles

and gravitational, electromagnetic, acoustic, and seismic

waves); and associated applications of societal and eco-

nomic impact (e.g. prevention and risk mitigation of vol-

canic and seismic hazards, exploration and management of

energetic resources, evaluation and monitoring of environ-

mental changes, and spatial meteorology).

450 The International Journal of High Performance Computing Applications 32(4)

EPU communities are well organized and federated at

the national and international levels around more and more

complex space missions (e.g. Euclid, the laser interferom-

eter space antenna, the International Gamma-Ray Astro-

physics Laboratory, and the Advanced Telescope for

High ENergy Astrophysics), large instruments (e.g. the

large synoptic survey telescope, the Cherenkov Telescope

Array, and the Square Kilometer Array (SKA)), and obser-

vation systems (e.g. cubic kilometer neutrino telescope,

AstroMev, the Laser Interferometer Gravitational-Wave

Observatory (LIGO)-Virgo, EarthCube, and the European

Plate Observation System) often run by international inter-

governmental consortia and agencies. The communities

place a premium on internationally distributed and feder-

ated data resources for archiving and distributing data and

have pioneered the prevailing philosophies of globally

shared and open data with internationally approved data,

metadata, and exchange standards—including provenance

and interoperability—together with a growing commitment

to open science.

Building federated computing and data analysis plat-

forms with persistent storage to capture and aggregate the

large volumes of diverse data (e.g. events, time series, and

images) from the observations systems—which use distrib-

uted archive resources—and from large numerical simula-

tions (e.g. virtual instruments) to accelerate the path of data

use can best be accomplished by engaging a research-

driven strategy shown outlined in the following.

� Design and exploit more and more complex space

missions, large instruments, and federated observa-

tion systems that have complex, on-the-fly data pro-

cessing and analysis workflows for instrument

calibration and data compression, together with

large HPC simulations of the experiments in their

environment;

� Develop innovative, big data-driven methods to

accelerate the full path of data use, with data-

stream workflows orchestrating data processing and

physics-based or data-driven statistical analysis

methods, in a Bayesian inference framework featur-

ing machine learning and deep learning;

� Use advanced, physics-based stochastic simulations

of multi-physics and multi-scale natural systems that

map complex model space of high dimensions (e.g.

cosmology, magnetohydrodynamics, and seismol-

ogy) into data space, exploring prior density prob-

ability information together with data assimilation;

and

� Implement modern, big data-driven, high-resolution,

and multi-scale imaging techniques featuring

nonlinear inversion methods in the framework

of new Bayesian approximate and variational

inference—together with machine learning—to

efficiently sample posterior probability distributions

in high dimension and quantify statistical incertitude

measurements and extreme events.

Recent developments in high-end statistical data analy-

sis have been demonstrated with new results in the direct,

physics-based detection of gravitational wave signals from

two ground interferometers (LIGO), thereby opening new

observational conduits in astronomy for dense and massive

astrophysics objects (e.g. black holes and neutronic stars).

These recent developments are also apparent in physics-

based extraction of coherent seismic signals from statistical

correlation-based analysis of noncoherent background sig-

nals—generated by environmental sources resulting from

the coupling of the solid Earth with external fluid envelopes

(i.e. atmosphere and ocean)—recorded on dense seismic

arrays, thereby opening new imaging methodologies in

Earth sciences and exploration geophysics. Finally, these

high-end statistical data analyses have helped with data-

driven detection from dense seismic arrays of new,

unknown, long-period seismic signals (tremors) associated

with transient deformation processes in volcanic and tec-

tonic contexts, thereby opening a completely new area of

research for the understanding and monitoring of natural

hazards.

New discoveries in EPU sciences are critically depen-

dent on innovative computing and data analysis platforms

federating parallel computing and data resources with

research-driven architectures and services that can inte-

grate data-aware computing environments; data-aware

architectures; collaboratively designed software with large,

complex observation systems; and new virtualization

techniques.

For EPU applications, recent advances in Bayesian

approximate and variational inference methods—together

with machine learning—have the potential to dramatically

impact event detection, data analysis, and data modeling

methods. New statistical analysis methods featuring

machine learning also have an increasing role in efficient

data assimilation and in situ data analysis of large-scale

stochastic simulations of EPU systems. In parallel, an

increasing number of new scientific problems require a

combination of model and multi-type data from experi-

ments and simulations across multiple domains.

3.3.3. Data assimilation in climate research. Data assimilation

combines data coming from both observations and model

outputs in an optimal way to provide a more complete and

coherent description of the system and thus improve our

predictive capabilities (Figure 6). An obvious requirement

is that a model of said system must be available, whereby

the increased and novel forms of data analysis helps drive

the development of the system model. Climate and weather

forecasting applications are among the most common and

most important examples of this process, where observa-

tional data are combined with simulation data to create a

better model than either could create separately.

Data assimilation can be used with two different aims:

(1) reconstruct the actual state of a system by combining

the two types of information; in this case, it could be said

that observational data and model outputs complement

Asch et al. 451

each other by helping correct the largest errors from one or

the other and provide respective interpolation/extrapolation

tools to reconstruct the best possible description of the

actual system. (2) Or use data assimilation for prediction

in time; in this case, the best reconstruction refers to the

initial time of the forecasting model, and data assimilation

ensures both that this initial state is as good as possible

from a physical point of view, and that it is also coherent

with the model dynamics, therefore avoiding too-large

transient effects in the simulation.

A technology complementary to simulation, namely,

emulation, is rapidly evolving in the domain of geospatial

statistics. Emulation is emerging as a reliable and less

expensive computational alternative to simulation in its

predictive power; however, it lies wholly within the

HDA-driven approach and is not covered in this brief

discussion.

The relationship of assimilation to the computational

model and the inputs and outputs of the combined system

is shown in Figure 6. Two major approaches can be used:

(1) a variational approach based on optimization theory,

and (2) a statistical approach based on optimal (Kalman)

filtering and ensemble averaging. Today, the tendency is to

combine the two into what are know as “hybrid ensemble-

variational approaches” (Asch et al., 2017). These

approaches constitute a major challenge for convergence

of HPC with HDA.

The huge amounts of data required for weather predic-

tion make forecasting the weather a highly data and

compute-intensive exercise. For each forecast, data must

be collected from multiple sources—including satellites,

dropsondes, weather stations and buoys, current and histor-

ical observations, and simulations of the Earth’s physical

patterns and processes. All of this information is then input

into complex, nonlinear meteorological models that simu-

late weather patterns that are likely to occur, based on data

assimilation, as shown in Figure 6.

When data assimilation is used for forecasting, the dif-

ferences between the predicted values and the observed

values are inputs to the assimilation engine. However, the

observational data are sparse compared to the number of

degrees of freedom required to specify the state of the

system. Therefore, they are not used to directly reset indi-

vidual state values. They go into an optimization process

typically in the form of a Kalman filter. Data assimilation is

perhaps best understood in the context of inverse prob-

lems—the latter being well developed in theory and algo-

rithms (Asch et al., 2017).

With the availability of increasing computing power,

data assimilation can rely on an ensemble consisting of a

large number of independent simulations. Given a thousand

instances of a petascale simulation, one has an exascale

computation, with the last factor of 1000 in scaling coming

in a different dimension than traditional weak-scaling that

employs a finer resolution of a given space-time domain.

Data assimilation is therefore a prime example of the

immediate utility of exascale capability, since the software

and workflows already exist. Their combination is not tri-

vial but rides existing efforts to scale up individual simula-

tions with a higher payoff factor.

Recent work by Miyoshi et al. (2016) addressed so-

called “big data assimilation” for rapidly changing, severe

weather forecasting. The aim is to provide early warnings

to civilians and administrations of impending, high-

magnitude weather events. By coupling a high resolution

“Phased Array Weather Radar” system with RIKEN’s “K

Computer,” they have been able to produce such early

warnings for local, severe-weather events. One hundred

simulated states are fed into a (local transform) ensemble

Kalman filter, and each state is simulated in 30 s (only) on

3072 nodes of the 10 petaFLOP/s K Computer. This can be

scaled up to the full 88,128 nodes (705,000 processors) of

the K Computer, yielding a full data assimilation cycle that

remains within the 30-s time window and provides a con-

stantly updated 30 min forecast. It should be noted that data

volumes are of the order of 1 terabyte of observation data

and 3 petabytes of simulation-produced data. To achieve

such spectacular execution times, this required extensive

code optimization at all levels, from I/O to basic linear

algebra routines.

3.3.4. Cancer diagnosis and treatment. The Cancer Moon-

shot11 aims to accomplish 10 years of cancer research in

only 5 years. With complex, nonlinear signaling networks,

multi-scale dynamics from the quantum to the macro level,

and giant, complex data sets of patient responses, cancer is

a major challenge for HPC and big data convergence. In

light of the difficulty and relative inefficiency of new drug

development and screening,12 the CANcer Distributed

Learning Environment (CANDLE) project proposes to

employ machine learning techniques to cancer biology,

pre-clinical models, and cancer surveillance. The aim is to

. . . establish a new paradigm for cancer research for years to

come by making effective use of the ever-growing volumes

and diversity of cancer-related data to build predictive models,

Figure 6. Data assimilation combines observations with model
outputs in an optimal fashion, to improve predictive capabilities.
This provides a concrete illustration of the Inference Cycle of
Section 3.1.

452 The International Journal of High Performance Computing Applications 32(4)

provide better understanding of the disease, and, ultimately,

provide guidance and support decisions on anticipated out-

comes of treatment for individual patients.13

The project’s specific objective is to position deep learn-

ing at the intersection of Ras14 pathways, treatment strate-

gies, and drug response. Computational requirements

associated with cancer diagnosis and treatment are

extremely heterogeneous, and the work carried out in the

CANDLE project is a very interesting subset of a much

broader set of computational challenges.

Predictive modeling of drug response is a function of

tumors (gene expression levels) and drug descriptors. These

can be analyzed by deep, convolutional, supervised learning

algorithms. But how can one search a trillion drug combina-

tions to predict the response of a given tumor to a given drug

combination? One possible answer is deep learning. Within

scientific computing applications, hundreds of examples of

this technique are emerging, including fusion energy (see

above), precision medicine, materials design, fluid dynamics,

genomics, structural engineering, intelligent sensing, and so

on. To apply deep learning to drug response, modeling

requires a hyper-parameter search of 10,000 dimensions that

can only be done by effective parallelism at the level of

1,000,000–100,000,000 compute cores. In order to achieve

this, the following questions need to be addressed

1. What are the key frameworks and workloads for

deep learning?

2. What hardware and systems architectures are emer-

ging for supporting deep learning?

3. Is deep learning a distinct class worthy of its own

software stack in the BDEC Universe?

We will briefly address each of these in turn, noting that

they remain largely open questions that are certainly appli-

cation dependent.

The number of available frameworks is increasing every

day with a concomitant risk of dispersion and lack of inter-

operability. The most well-known frameworks are Torch,

Theano, Caffe, TensorFlow, and the Microsoft Cognitive

Toolkit. Numerous languages are supported, and this can

vary from framework to framework, but they are mostly

interactive scripting-type languages such as Julia, Python,

Lua, and R. In addition, the presence of interactive work-

flows is an important aspect of many deep learning proj-

ects. We are currently witnessing an exponential growth in

the number of deep learning-based projects. All of this

argues in favor of some type of standardization that could

be motivated by convergence issues.

But to apply deep learning across a broad range of fields,

a number of deep learning system architecture challenges

must also be confronted. The first is “node centric” versus

“network centric” architectures with either integrated

resources on a node or disaggregated resources on a net-

work. Then the issue of name space/address space across

instances/stacks can be approached by either one integrated

space across all stacks or each stack maintaining names and

addresses. But are the technology components converging?

Finally, the issue of “training” versus “inferencing” must

be addressed. What balance should there be between online

versus offline training, and what are the possibilities of

embedding the training within simulation environments?

We are witnessing the emergence of numerous hardware

and system architectures for supporting deep learning. Here

we can point out CPUs (e.g. chips with advanced vector

extensions, chips with vector neural network instructions, and

Xeon Phi), GPUs (e.g. NVIDIA’s P100, AMD’s Radeon

Instinct, and Baidu’s GPU), application-specific integrated

circuit (IC) chips (e.g. Nervana, DianNao, Eyeriss, Graph-

Core, tensor processing unit (TPU), and deep learning pro-

cessing unit), field-programmable gate arrays (FPGAs; e.g.

Arria 10, Stratix 10, and Falcon Mesa), and neuromorphic

technologies (e.g. True North, Zeroth, and N1). But which

solution or combination is best for a given application?

So, is deep learning a distinct class worthy of its own

software stack in the BDEC Universe? The CANDLE proj-

ect has developed a stack of its own (see also the above-

mentioned dataflow and plasma fusion discussions) made

up of workflow, scripting, engine, and optimization layers.

The workflow contains hyper-parameter sweeps and data

management using the NVIDIA deep learning GPU train-

ing system or Swift. The scripting consists of a network

description and an application programming interface

(API) for execution (e.g. Keras or Mocha). A tensor/graph

execution engine is based on Theano, Tensorflow, and so

on. Finally, an architecture-specific optimization layer is

added, based on the NVIDIA CUDA deep neural networks

library or the Intel Math Kernel Library for DNNs.

To enable HPC convergence, parallelism options and I/

O must be examined. Data parallelism (distributed training

by partitioning training data) must be managed at an appro-

priate level within the stack. Model parallelism (parallel

training by partitioning network) could be managed inde-

pendently. At what level should streaming training data

loaders be implemented? And what about main I/O?

As we have seen, numerous fundamental questions are

raised here. These will require careful consideration for a

successful convergence of deep learning approaches within

the context of HPC.

3.3.5. Numerical laboratories. Large supercomputer simula-

tions are rapidly becoming instruments in their own right.

Scientists in many disciplines seek to compare the results of

their experiments to numerical simulations based on first

principles. This requires not only that we can run sophisti-

cated simulations and models, but also that the results of

these simulations are available publicly through an easy-to-

use portal. We have to turn the simulations into “open

numerical laboratories,” in which anyone can perform their

own experiments. Integrating and comparing experiments

to simulations is a nontrivial data management challenge

(Figure 7). Not every data set from a simulation has the

same life cycle. Some results are transient and only need to

Asch et al. 453

be stored for a short period for analysis, while others will

become community references with a useful lifetime of a

decade or more.

As we have learned over the years, once the data volume

is too large, we have to move the analysis (computing

resources) to the data rather than the traditional approach,

which moved the data to the computing resources. With

these large data volumes, one has to approach the data in

a fully algorithmic fashion—manual exploration of small

(or large) files is no longer feasible. Even though the largest

simulations today are approaching hundreds of billions of

particles or grid points, the total size of the output gener-

ated rarely exceeds 100 terabytes and almost never reaches

a petabyte. As the interconnect speeds are not going to

increase by a factor of 30–100, it is likely that this limita-

tion will remain. Even with exascale machines, the publicly

available outputs will likely remain in the range of a few

petabytes. To date, the usual way of analyzing someone

else’s simulation is to download the data. With petabyte-

scale data sets, this is obviously not going to work. For a

scalable analysis, we need to come up with a data access

abstraction or metaphor that is inherently scalable. For the

user, it should not matter whether the data in the laboratory

are a terabyte or a petabyte. The casual user should be able to

perform very lightweight analyses without downloading

much software or data. Accessing data through the flat files

violates this principle: The user cannot do anything until a

very large file has been physically transferred. This implies

an access pattern drastically different from the sequential I/O

of the checkpoint restart. We need to support random access

patterns, where we have a “database” of the most interesting

events. This approach is reminiscent of how physicists at the

LHC are only storing one out of 10,000,000 events—still

yielding tens of petabytes every year.

Supporting such localized access patterns can enable

new metaphors for interacting with large numerical simu-

lations. For example, one can create a so-called immersive

environment in which the users can insert immersive vir-

tual sensors into the simulation, which can then feed a data

stream back to the user. By placing the sensors in different

geometric configurations, users can accommodate a wide

variety of spatial and temporal access patterns. The sensors

can feed data back on multiple channels, measuring differ-

ent fields in the simulation. They can have a variety of

operators, like computing the Hessian or Laplacian of a

field or applying various filters and clipping thresholds.

Imagine how scientists could launch mini accelerometers

into simulated tornadoes, emulating the movie Twister!
Scientists at Johns Hopkins have successfully imple-

mented this metaphor for various turbulence data sets and

are now porting it to cosmology simulations. This simple

interface can provide a very flexible and powerful way to

do science with large data sets from anywhere in the world.

The availability of such a 4-D data set “at your fingertips”

and the ability to make “casual” queries from anywhere is

beginning to change how we think about the data.

Researchers can come back to the same place in space and

time and be sure to encounter the same values.

The Twister metaphor mentioned above has been imple-

mented in the Johns Hopkins Turbulence Database (Li

et al., 2008), the first space-time database for turbulent

flows containing the output of large simulations made

Figure 7. Future scenario for numerical laboratory analysis and data flows.

454 The International Journal of High Performance Computing Applications 32(4)

publicly available to the research community. It supports a

web service that handles requests for velocities, pressure,

various space derivatives of velocity and pressure, and

interpolation functions. The data and its interface are used

by the turbulence research community and have led to

about 100 publications to date. As of this writing, the ser-

vice has delivered over 44,000,000,000,000 (trillion) data

points to the user community. In a recent paper on magne-

tohydrodynamics, trajectories were computed by moving

the particles backward in time—impossible to do in an in

situ computation and only made possible by interpolation

over the database (Eyink et al., 2013).

A similar transformation is happening in cosmology. The

Sloan Digital Sky Survey SkyServer framework was reused for

the Millennium simulation database (Kuntschke et al., 2006).

The database has been in use for over 10 years, has hundreds of

regular users, and has been used in nearly 700 publications.

These large numerical data sets, analyzed by a much

broader range of scientists than ever before, using all of

the tools available in the computer age, are creating a new

way to do science, one that we are just starting to grasp. We

cannot predict where exactly it will lead, but it is already

clear that these technologies will bring about dramatic

changes in the way we do science and make discoveries

and how we will use our exascale simulations.

4. Challenges to converged infrastructure
in edge environments

Based on our report on the cumulative work of the BDEC

community so far, one might reasonably draw at least two

provisional conclusions. First, at the level of scientific

applications and interdisciplinary research, the conver-

gence of techniques and methods of compute-intensive

simulation and data-intensive analytics is already under-

way. Several of the examples given in Section 3 show that

a more complete and integrated vision of the general logic

of scientific inquiry is already being implemented in multi-

phase workflows, and there is every reason to expect that

many more dramatic and complex products of this process

will be emerging in the near and medium term. Second, at

the level of (logically) centralized infrastructure (i.e. on

stand-alone HPC systems and distributed cloud facilities

[Section 5]), promising avenues for integrating the HPC

software stack and the HDA software stack are being

opened and explored from both sides. If the ultimate suc-

cess of these two developments, taken together, were suf-

ficient to reestablish the shared foundation of

interoperability and software portability that has proved

so catalytic for scientific collaboration and progress over

the past two decades, then the BDEC community—in con-

cert with other ongoing infrastructure planning efforts from

around the world—would be well positioned to draft a

roadmap to get there. Unfortunately, the proliferation of

huge and heterogeneous flows of data generated outside

such centralized facilities (i.e. across the WAN in “edge

environments”), as well as the need to distribute large data

sets from the center to the edge, represents a third factor

that makes the way forward uncertain (Figure 8).

The explosive growth and dispersion of digital data pro-

ducers in edge environments is a highly multidimensional

problem. Looking at just the properties of the data flows

Figure 8. The general problem with multiple high-volume generators at the edge is that these “edge environments” (i.e. environments
across the network from centralized facilities) are, or soon will be, experiencing unprecedented increases in data rates from diverse and
rapidly proliferating sources. Everyone agrees that these data will have to be buffered/stored and processed in various ways and for
various reasons; but there is currently no shared—open—interoperable infrastructure adequate for the task and no agreed-upon
roadmap for developing it.

Asch et al. 455

being generated, the published lists of the challenging char-

acteristics they exhibit include their volume, velocity,

value, variety, variability, and veracity (Bethel et al.,

2016; Chang, 2015; Grady et al., 2014; Hashem et al.,

2015; ur Rehman et al., 2016). The size dimension tends

to be highlighted first, if only because the volumes are so

striking. Big instruments—such as the LHC and the

Argonne photon source (APS) mentioned in the Section

5.2—provide familiar illustrations, but other examples are

plentiful. For instance, a review of the records of over two

decades of storage usage for neuroimaging and genetics

data shows that the influx is doubling every year, with some

estimates reaching over 20 petabytes per year by 2019

(Dinov et al., 2014). In a different domain, light detection

and ranging (LIDAR) survey technology (Wikipedia,

2017b), which has hundreds (if not thousands) of applica-

tions in mapping and monitoring for many fields of science,

engineering, and technology, already routinely produces

terabyte-level data sets, with cumulative volumes that are

correspondingly immense (Cao et al., 2015). Autonomous

vehicles will generate and consume roughly 40 terabytes of

LIDAR data for every 8 h of driving, and LIDAR prices

have come down three orders of magnitude in 10 years.

Finally, taking a more comprehensive perspective, a recent

Cisco Global Cloud Index (2015) report index asserts that

mobile data traffic has increased more than three orders of

magnitude over the last decade and will continue to grow at

more than 50% annually; by 2020, this data traffic is pro-

jected to surpass 500 zettabytes in total (Shi et al., 2016;

Wang et al., 2017).

Another set of factors that render edge environments

complex is the diversity of the data collecting devices and

the modes in which they can be used. LIDAR remote sen-

sing can be used in several modes: static terrestrial (e.g.

tripod), mobile (e.g. autonomous vehicles), and aerial (e.g.

drones). Some, like the SKA and environmental sensor

nets, are highly distributed, so that the data they produce

generally need to be aggregated and appropriately coordi-

nated or merged. Others, like the LHC, are centralized.

Moreover, the power constraints under which some devices

can or must operate obviously affect the schedule on which

they can collect and transmit data. All of these factors will

need to be taken into account in designing a DSP that will

need to be deployed in order to support them.

Perhaps the most general designation for the field into

which this large welter of problems falls is “data logistics”

(i.e. the management of the time-sensitive positioning and

encoding/layout of data relative to its intended users and

the resources they can use) (Chard et al., 2012). Any user

who wants to analyze data that are generated at one location

or many locations, but is worked on somewhere else and

possibly in many other places or in transit, confronts chal-

lenges of data logistics in this sense. High-profile examples

for the international scientific community, including the

LHC, the SKA, and the climate modeling communities

(e.g. through the Earth System Grid Federation), illustrate

how managing the movement and staging of data—from

where it is collected to where it needs to be analyzed—can

take up most of the time to solution.15 Moreover, in many,

if not most cases, some form of data reduction has to be

applied locally before any further data movement can even

be attempted (Section 5.2). However, other more mundane

examples are plentiful, and, clearly, the concept of data

logistics can be applied much more broadly. At the root

of the problem is that the data and the computing resources

needed to process it have to be co-located for work to

proceed. From the point of view of “time to solution,” the

challenges of just moving massive data objects into and out

of the memory of HPC systems can also be characterized as

logistical in nature. Hence, one can think of data logistics as

defining a continuum, with I/O issues inside the IDC or

supercomputing facility falling at one end,16 and big data

workflows that begin at remote and/or distributed data

sources—possibly scattered across edge environments—

falling at the other.

Now, experience shows us that coping with the logistics

of multiform workflows in the wide area is a nontrivial

problem, especially when the only service the underlying

network supplies is the routing of datagrams between end

points. As noted earlier in Section 2.1.2, the Internet’s lack

of native support for point-to-multipoint content distribu-

tion, among other things, has forced the research commu-

nity (and service providers generally) to deploy

workarounds to problems of data logistics since the earliest

days of the network. Figure 3 provides a snapshot summary

of successive attempts to bypass this problem: first with

FTP mirrors and web caching, which generally preserve

the classic Internet article; and then via CDNs and cloud

computing, which use standard IPs to connect to clients at

the edge of the network but deploy proprietary networks in

their core that incorporate storage and computing as ser-

vices at the intermediate nodes. Historically, work on

CDNs served as the origin of current efforts to develop

computing infrastructure for edge environments (i.e. infra-

structure to provide storage, computing, and networking at

various places along the path from the cloud or data center

to the edge (Satyanarayanan, 2017).

A variety of different approaches under a variety of

different names have been proposed for edge computing

infrastructure: the European Telecommunications Stan-

dards Institute’s mobile edge computing (MEC) (Hu

et al., 2015), fog computing (Bonomi et al., 2012), cloudlet

(Satyanarayanan et al., 2009), and edge caching (Bastug

et al., 2014), to name some prominent contenders (Wang

et al., 2017). Wherever possible, we use the expression

DSP as a more generically descriptive phrase for infrastruc-

ture designed to support compute-intensive and/or data-

intensive work that must be carried out between the cloud

(or data/HPC center) ingress/egress and the network edge.

This is motivated partly by the fact that there appears to be

little consensus at this point about what the right approach

should be or about which of the contenders might come

to dominate (Fox et al., 2016; Wang et al., 2017). In this

regard, the current situation in edge computing

456 The International Journal of High Performance Computing Applications 32(4)

infrastructure has plausibly been compared to the situation

in networking “at the dawn of the Internet in the late 1970s

to early 1980s” (Satyanarayanan, 2017). In any event, the

unsettled state of the field means that our exploration below

of some of the important issues to be addressed by, and

some of the main strategies for using, such an infrastructure

needs to focus on possible points of agreement upon which

the views of different stakeholders might converge.

4.1. Common context: Converging on a new hourglass

If we want a new distributed infrastructure to support sci-

ence and engineering research in the era of big data, an

infrastructure with the kind of openness, scalability, and

flexible resource sharing that has characterized the legacy

Internet paradigm, then a recent community white paper on

“intelligent infrastructure” for smart cities makes the nature

of the challenge clear:

What is lacking—and what is necessary to define in the

future—is a common, open, underlying ‘platform,’ analogous

to (but much more complex than) the Internet or Web, allow-

ing applications and services to be developed as modular,

extensible, interoperable components. To achieve the level

of interoperation and innovation in Smart Cities that we have

seen in the Internet will require [public] investment in the

basic research and development of an analogous open plat-

form for intelligent infrastructure, tested and evaluated openly

through the same inclusive, open, consensus-driven approach

that created Internet. (Nahrstedt et al., 2017, emphasis in

source)

As argued above, the dominant cyberinfrastructure para-

digm of the past three decades actually has two main com-

ponents: the IP stack and the Unix operating system, the

kernel interface of which became the foundation for an

immense ecosystem of largely interoperable open-source

tools and operating systems, such as Linux. If we are to

go in search of a future-defining DSP, it seems reasonable

to start from a prominent architectural feature that they

share. Specifically, they both conform to the “hourglass”

design model for layered software stacks (Beck, 2016). The

hourglass image (Figure 9) represents the idea that an

appropriately designed common interface can be imple-

mented on a wide variety of technology platforms (yielding

a wide “lower bell”), while at the same time supporting an

equally wide variety of applications (yielding a wide

“upper bell”). David Clark, one of the leading designers

of the IP stack, called the common middle interface (i.e.

the thin waist of the hourglass), the “spanning layer”

because it bridges, through virtualization, a heterogeneous

set of resources that lie below it (Clark, 1997). In the case

of IP, these underlying resources consist of different types

of local area networks (LANs). In the case of the Unix/

Linux kernel interface, possible technology substrates

include an enormous variety of software/hardware

platforms—from massive compute clusters to handheld

devices and wrist watches.

In terms of general cyberinfrastructure design, and

cyberinfrastructure for science and engineering in particu-

lar, this combination of properties is critical. From the point

of view of application communities, the ability to easily

implement a spanning layer on new hardware is fundamen-

tal, because the underlying platform technologies are con-

stantly evolving. Unless a spanning layer can be ported or

reimplemented on each successive generation, the applica-

tions it supports will be stranded on some island of techni-

cal obsolescence. Yet new types of applications and

application requirements are also constantly emerging. So

no matter how portable a spanning layer is, if it cannot

address innovative application demands, it will be aban-

doned for a software stack that can. The challenge, of

course, is to provide a service specification (i.e. an API)

for the spanning layer that can satisfy both of these

requirements.

The waist of the hourglass is called “thin” or “narrow”

because it needs to be minimal, restricted, or otherwise

weak to be easily implementable on new software/hard-

ware substrates. However, as shown in Figure 9, and con-

trary to what is commonly believed, squeezing the waist of

the hourglass, in order to increase the number of possible

implementations covered by the lower bell, will tend to

have the reverse effect on the width of the upper bell (i.e.

this will reduce the potential range of supported applica-

tions) (Beck, 2016). Hence, the design challenge for creat-

ing a specification for a scalable DSP spanning layer is to

find one that optimally balances these two opposing goals.

If we assume that we are talking about a software stack for

workflows, which are inherently stateful processes, that

would seem to imply that the spanning layer must include

(orthogonal) primitives for communication, computation,

and storage. So, striking the right balance is likely to prove

challenging indeed.

Unfortunately, in seeking a new DSP spanning layer to

address the challenges of the big data era, the science

Figure 9. The “hourglass model” of the system software stack.
The goal is to achieve deployment scalability while maximizing the
diversity of applications. Credit: adapted from Beck (2016).

Asch et al. 457

cyberinfrastructure community finds itself in something of

a dilemma. On the one hand, at present, there does seem to

be at least one plausible and widely touted candidate for the

new spanning layer—operating system-level virtualization

that supports software “containers” (Figure 13 and Section

5.3.2). Certainly, converging on a common interface for

containerization would go a long way to achieving ecosys-

tem convergence and do so in way that requires something

closer to evolutionary, as opposed to revolutionary,

changes to current modes of operation. Perhaps for that

reason, and as participants in the BDEC workshops made

clear, the potential of containerization is a very active area

of research and experimentation across all the contexts that

scientific cyberinfrastructure will have to address, includ-

ing commercial clouds, HPC systems, and computing

resources deployed in edge environments. Indeed, the

“Two Ecosystems” picture (Figure 1) was recently updated

to show that both HDA and HPC are pursuing container-

ization strategies. In Section 5.3.2, we explore the possible

benefits and liabilities associated with sliding yet another

layer of virtualization (i.e. for software containers) into the

current software stack.

4.2. Common context: A common DSP for
data logistics

Given the complex nature and broad scope of the data

logistics problem space, the DSP label captures at least

three features that any reasonably adequate infrastructure

capable of meeting these challenges should have.

1. Be wide area capable: The intermediate nodes of

the DSP must support services that can be deployed

in a decentralized fashion across the wide area (i.e.

outside the machine room and the LAN).

2. Offer flexible compute, storage, and communication

services: These nodes must go beyond simple data-

gram forwarding to provide compute and storage/

buffering services in the system’s core as well. The

need for this capability follows directly from what

is perhaps the primary application requirement for

edge computing. Namely, relatively low-latency

processing (e.g. aggregation, analysis, compression,

and distillation) of massive quantities of data flow-

ing from edge devices and sensors) (Desprez and

Lebre, 2016).

3. Provide a scalable model of resource sharing: Like

the legacy cyberinfrastructure paradigm that is

becoming increasingly problematic (Section

2.1.2), the DSP (which will replace the legacy para-

digm) must—for both technical and practical rea-

sons—enable a variety of different application

communities to share a core set of services and the

resources they require.

Yet, while several of the proposed alternatives for edge

computing (e.g. Fog, cloudlet, and MEC) might provide a

DSP that meets what seem to be the major technical

requirements for this problem space—highly responsive

and resilient cloud services, scalability through local data

processing, flexible control of privacy, and computational

offloading for client devices (Satyanarayanan, 2017)—the

overarching goal of the BDEC community requires a

broader perspective. In particular, the guiding purpose of

the BDEC community has always been to foster the code-

sign of a software infrastructure for science and engineer-

ing research that supports the broadest possible spectrum of

fields or domains and empowers international cooperation

both within and among them.

Consequently, since the scientific community, thus

broadly conceived, embraces an enormous network of

organizations and actors, extending not just around the

world but also across generations, the problem of designing

a DSP that can be voluntarily adopted as foundational by

this community raises unique software ecosystem consid-

erations (Figure 10) that ought to frame our deliberations.

Following both the suggestion of the Computing Commu-

nity Consortium whitepaper quoted earlier (Nahrstedt et al.,

2017) and the spirit of the original IESP (Dongarra et al.,

2011) below, we briefly discuss three ecosystem design

constraints that seem to be among the most important:

commonality, openness, and interoperability.

1. A Common DSP: The legacy DSP paradigm—the

Internet—enabled the scientific community to

bridge geographic, organizational, political, and

technological boundaries and fostered a profusion

of interdisciplinary collaborations across a vast

range of fields. The motivation for seeking a

Figure 10. Stakeholders in the software/data ecosystem for
science and engineering.

458 The International Journal of High Performance Computing Applications 32(4)

“future-defining” DSP that provides a similarly

common foundation for future scientific inquiry

should, therefore, be evident. Of course, it should

be equally evident that the problem of designing a

common DSP that everyone in the community

might voluntarily adopt, in the absence of coercive

legal or economic power, is truly formidable.

The upper and lower bells of the “hourglass” soft-

ware architecture model (see Section 4.1 and Figure

9) are intended to illustrate two critical conditions

that any proposed universal solution would appar-

ently have to satisfy. First, a wide lower bell for a

given DSP means that its spanning layer (Clark,

1997; Kavassalis et al., 1996; Messerschmitt and

Szyperski, 2005) (i.e. the common interface at the

“narrow waist”) can be implemented on a very

large collection of heterogeneous hardware tech-

nologies, so that all the applications and services

above the spanning layer can, through it, access

and utilize the resources these technologies make

available. The wider the lower bell, the stronger

the assurance that hardware technology—both

legacy and future—will support that DSP’s span-

ning layer. Second, a wide upper bell means that

the small set of primitive services that the spanning

layer makes available on the system’s nodes can be

composed, in combination with end system

resources, to support a very large diversity of

higher-level services and applications. The wider

the upper bell, the stronger the assurance that more

specialized application communities, down to the

level of individuals, can build on top of the shared

infrastructure that the community provides. Now,

if a given DSP can thus be implemented with rea-

sonable ease on an extremely broad spectrum of

hardware technologies, and can thus be used to

create an enormous diversity of services and appli-

cations to satisfy multifarious user demands, those

facts will tend to minimize barriers to its universal

adoption. However, it is important to remember

that defining a spanning layer that includes shared

compute and/or storage services, and that is weak

enough to achieve the former but strong enough to

achieve the latter, is still an unsolved problem

(Beck, 2016; Beck et al., 2017).

2. An Open DSP: Even if a DSP spanning layer with

requisite technical properties can be specified, lack

of openness would also present a major barrier to

the kind of ubiquitous acceptance the scientific

community needs to achieve. Absent proprietary

legal constraints, such a software specification is

paradigmatic of a public good (i.e. of something

that no one is excluded from using and which can

be exploited in a completely non-rivalrous fashion).

At a minimum, then, the specification should be

freely accessible for people to use as their circum-

stances require. Moreover, the standardization

process should be equally nonproprietary and open

and carried out with due process, broad consensus,

and transparency (Fälström, 2016). We know that in

the case of the IP stack such openness was critical to

its relatively rapid acceptance by the global scien-

tific community. We also know that this acceptance,

working outward from the universities, government

laboratories, and all institutional niches where

research gets done, played an instrumental role in

spreading the Internet to society generally. It is rea-

sonable to expect that if the more general DSP that

science now seeks is kept open, then similar—if not

more powerful and more positive—spillover effects

for society are likely to result.

3. An Interoperable DSP: Although both openness and

community deployment are essential objectives for

a next generation DSP for data logistics, the linch-

pin of any plan for achieving those goals is inter-

operability (i.e. the capacity for different modules

or devices using shared protocols to exchange infor-

mation with and/or invoke services on one another,

despite differences in their implementations). For

one thing, interoperability fosters openness by low-

ering or eliminating switching costs, which helps

users avoid well-known problems like “vendor

lock-in,” while enabling well-known advantages

like “fork-lift upgrades.” More importantly, provid-

ing a foundation for widespread interoperability

tends to catalyze community adoption and deploy-

ment through powerful direct and indirect network

effects, in which increases in the number of adop-

ters of platform-compatible systems drives up the

platform’s value for all of its users (Messerschmitt

and Szyperski, 2005). The success of the Internet

paradigm has been due in no small degree to these

effects of interoperability, and so one should rea-

sonably expect the same would be true of a new

DSP paradigm that supported similar levels intero-

perability. But if we believe that “ . . . [a]s a practical

matter, real interoperation is achieved by the defi-

nition and use of effective spanning layers” (Clark,

1997; see also Kavassalis et al., 1996; Messersch-

mitt and Szyperski, 2005), then we must also

acknowledge that the goal of creating a more gen-

eral, future-defining DSP, with a primary spanning

layer that the entire community is willing to adopt,

has already shown itself to be very elusive. In the

United States alone, over the past 20 years at least

four well-supported efforts—Active Networking

(Tennenhouse and Wetherall, 1996), Globus (Foster

et al., 2001), PlanetLab (Anderson et al., 2005), and

the Global Environment for Network Innovations

(McGeer et al., 2016)—took up this challenge

explicitly; and while all of them have been (and

even continue to be) successful in many other

respects, their proposed platforms, and the alterna-

tive spanning layers that they have tried to build on,

Asch et al. 459

have not yet achieved the kind of broad acceptance

and organic growth that the convergent DSP would

require.

Although these interrelated design assumptions may not

be exhaustive, they are sufficient for this report’s discus-

sion of the alternative strategies for data logistics and

related challenges. There seem to be at least four nonex-

clusive alternatives for interfacing HPC to this new para-

digm, in which no strong assumptions are made about

where the data are: (1) data streaming, (2) in transit pro-

cessing, (3) processing at the edge of the distributed system

(i.e. as close to the data sources as possible), and (4) logi-

cally centered cloud-like processing. This last option is not

of the same nature as the first three, and it could encompass

them: The user could have a cloud-inspired vision of pro-

cessing that is decoupled from physical resource distribu-

tion; under the hood, the actual processing can rely on

options 1–3 (i.e. in situ processing, in transit processing,

or streaming across multiple sites).

We briefly discuss each of these strategies in Section

4.3, but expect the BDEC and big data communities to

substantially develop this discussion.

4.3. Strategies for processing and state management
between the edge and the centralized
computing facility

As the examples discussed in Section 3.3 suggest, various

combinations of computations and data movement are

required to integrate often noisy information from often

spatially distributed sensors to create a high-quality,

multi-scale description of the physical or biological system

under study. For instance, a variety of commonly employed

methods cut across many multi-messenger use cases, mak-

ing this area both an important opportunity and a complex

challenge for the design of shared software infrastructure.

Most methods include the need to (1) carry out low-level

reconstruction, filtering, and noise reduction processing to

improve data quality; (2) detect and often segment perti-

nent objects to extract imaging features and classify objects

and regions of images; (3) characterize temporal changes;

and (4) use simulation, machine learning, or statistical

methods to make predictions.

4.3.1. Strategy 1: Streaming. An emerging model of big data

applications is that data are generated or collected at multiple

places in the “system.” The data may need to move from

location to location within the system, and processing may

be needed at different locations as the data move through the

system. Further, unlike classical HPC, where the data source

and sink are in the same location, in the new model, there

may be multiple sources and sinks, and they may not be at

the same location. An example is the SKA project. Scattered

telescopes collect data, but because of the vast amounts of

data collected, not all the data can be streamed to a single

location for processing. Instead, there are advantages to

doing some amount of processing at the instrument. Data

are then streamed to intermediate sources, where once again

the ability to aggregate and perform local processing allows

for smarter (required) reduction of the data streams. While

the SKA project will have a relatively static mapping of

sources, sinks, and data streams to their processing locations,

other applications may be more dynamic. Regardless, to

support this emerging model, tools are being developed that

let workflow designers abstractly describe the sources, sinks,

streams, data, and processing elements and then dynamically

connect them as the situation requires.

To accommodate the needs of such applications, stream

processing languages have been developed to allow pro-

grammers to specify the needs of their workflows and

applications to feed into the tools and runtimes being devel-

oped. Two common examples from the cloud space are

Apache Spark and Flink. These data-centric libraries and

runtimes enable the programmer to more easily describe

the requirements laid out above (i.e. be able to specify

where data are originating, ending, and how it needs to

be processed as it moves from source to sink). Many of the

languages and runtimes abstract the notion of processing

elements, network connections, data sources, sinks, and

processing elements. This provides for a separation of con-

cerns, thereby enabling the programmers to focus on

describing what connections need to exist and what pro-

cessing needs to occur without specifying where it occurs

and how the processing elements are connected. Some of

the languages and runtimes allow the programmers to pro-

vide hints or specify where (on which nodes or computers)

the processing should occur and what networking topology

should be used to connect the processing elements.

The use of data streaming has three benefits: (1) low

overhead, particularly for local coupling, means that it is

efficient for scientists to compose low-cost steps for a

“fine-grained workflow;” (2) the direct handling of streams

means that scientists can develop methods for live, con-

tinuously flowing observations; and (3) the load placed

on the increasingly limiting bottleneck of disk I/O is

minimized.

Determining whether we can move to a common model,

as we examine the need to converge the tools for HPC, big

data, and analytics, is worth investigating. Because work on

stream processing within HPC is somewhat untrammeled,

this would—hopefully—provide an easier path toward con-

vergence. However, there are challenges. Many existing

cloud stream processing capabilities were not designed

with HPC in mind, and developers are only more recently

starting to examine the high-performance aspects of their

runtimes (e.g. low latency). This represents a good area of

focus for convergence.

4.3.2. Strategy 2: CDNs (processing in transit). Over the past

15 years, the relentless increase in demand for rich multi-

media content has driven commercial providers to build or

buy services from sophisticated CDNs to ensure the kind of

quality of service (QoS) that their customers want and

460 The International Journal of High Performance Computing Applications 32(4)

expect (Ni and Tsang, 2005; Papagianni et al., 2013).

Unfortunately, commercial CDNs are expensive, difficult

to operate, and are practical only for implementing web and

media streaming sites that generate enough income to pay

for their service. Consequently, a myriad of noncommercial

research and education communities who need to distribute

large amounts of data to numerous receivers are unable to

make use of existing CDN services.

To see why, we need to briefly consider how CDNs

work. A CDN delivers data from a collection of servers

distributed in the wide area, either at a large number of

collocation sites—like network interchange points, Internet

service provider points of presence (e.g. Akamai,

Layer3)—or at a smaller number of cloud data centers

(e.g. Google or Amazon). While uniform resource locators

are used to name content and services in a CDN, they are

not interpreted in the same way as they are in the imple-

mentation of traditional web services. Instead of using the

domain name system (DNS) to translate the domain com-

ponent to an undifferentiated set of servers, a CDN chooses

the best server according to its own resolution algorithm.

CDNs use a proprietary resolution protocol that provides

the network interface of an uncacheable DNS server, which

is how it integrates with existing application layer clients

like web browsers.

If a CDN’s resolution algorithm is implemented using

only the abstractions provided by the Internet’s network

layer, then the CDN can be viewed as an overlay network

implemented at the application layer. However, it is diffi-

cult to obtain accurate and effective resolution using only

the abstraction provided by the Internet’s network layer.

So, commercial CDNs instead reach down past the network

layer to monitor the link layer network topology, which is

not directly observable using the abstractions provided by

the network layer. From an architectural point of view,

commercial CDNs should be characterized as an alternative

network layer that is implemented using a combination of

mechanisms from the Internet’s link, network, and appli-

cation layers.

The implication of this strategy for implementing CDNs

is that the mechanisms used to implement it as an alterna-

tive network layer are proprietary, non-interoperable, and

not particularly scalable. Monitoring and even controlling

the network at the link layer (by determining the topologi-

cal location of replica servers) and maintaining replicas of

complex application layer services are expensive and dif-

ficult engineering obstacles. This makes commercial CDNs

expensive to run and creates barriers to interoperation,

which—in any case—is not seen as congruent with CDN

business strategies. These considerations explain why com-

mercial CDN services are too expensive for large-scale use

by the scientific community, in spite of the fact that the cost

of the underlying servers and software is relatively modest.

What is missing: (1) a scalable approach to a CDN imple-

mentation (i.e. suitably designed forms of storage and pro-

cessing at the nodes of the distribution tree) and (2) the

aggregate organizational will of the scientific community.

In the HPC context, a framework for in transit process-

ing has been proposed by Bennett et al., where data gener-

ated by simulations are transferred from the supercomputer

to intermediate storage for asynchronous processing before

archiving. This method has enabled scientists who are deal-

ing with the data deluge at extreme scale to perform anal-

yses at increased temporal resolutions, mitigate I/O costs,

and significantly improve the time to insight.

4.3.3. Strategy 3: Computing at the edge (at the source). Edge

computing can be differentiated from in transit processing

in two ways: (1) it may not need to support competing

users, although it probably does need to support multiple

applications on behalf of cooperating users, and (2) there

may be fate sharing between the end user and the edge

computation, meaning that fault tolerance is not required.

In addition, the resource limitations of the node on which

edge computing is implemented may be more stringent

than the constraints on shared intermediate nodes.

Different edge scenarios may allow the constraints

imposed on shared intermediate nodes (weak, simple, gen-

eral, and limited) to be loosened in different ways. In some

cases, such as indefinite localized storage, implementation

at the edge is the only possibility.

In a network that only implements delivery of data

between end systems, all computation and storage must

be implemented at the edges of the network. However,

certain shared infrastructure can be thought of as defining

overlay networks that do support these services implemen-

ted at the application layer (e.g. CDNs). The limitation of

this approach is the inability to provision and operate

shared resources on behalf of a larger community and the

inability to locate such resources at arbitrary points within

the network topology.

5. Pathways to convergence for large,
logically centralized facilities

The examples presented in Section 3 of application-

workflow convergence, which integrate both HPC and

HDA methods, promise to open new frontiers of scientific

inquiry in almost all fields of science and engineering.

Today, scientific discovery almost universally integrates

both advanced computing and data analytics. This fusion

also strongly motivates integrating the associated software

with the hardware infrastructures and ecosystems. More-

over, there are equally strong political and economic moti-

vations for such an approach, both within countries and

across borders. Consequently, when the US National Stra-

tegic Computing Initiative Executive Office of the U.S.

President (2015a, 2015b) expresses the goal of

“ . . . [driving] the convergence of compute-intensive and

data-intensive systems,” and this goal is echoed in the stra-

tegic plans of the EU, Japan, and China (Section 2), we can

see that the question of what “convergence” might mean

has at least one clear answer in this context: at minimum,

“convergence” means a scientific software ecosystem that

Asch et al. 461

overcomes the current state of “Balkanization.” However,

this raises challenges and problem areas that include, but

are not limited to, the following.

� Differing, though converging, cultures and tools:

When the 1990s dot-com revolution began, the

underlying hardware and software infrastructure

used for e-commerce sites was strikingly similar to

those used in HPC. Software developers could and

did move readily across the two domains. Indeed,

the web and the web browser originated at scientific

computing facilities—CERN and the National Cen-

ter for Supercomputing Applications, respectively.

Today’s cloud services run atop hardware strikingly

similar to that found in HPC systems—x86 systems

with accelerators and high-performance intercon-

nects. Although the programming models and tools

and the underlying software differed markedly just a

few years ago (Figure 1), there are now signs of

convergence. Container (virtualization) technology

is now available on HPC systems, and machine

learning tools and techniques are increasingly being

integrated into HPC workflows.

� Shifting workforce skills: Over the past 20 years, the

IT industry has expanded dramatically, driven by e-

commerce, social media, cloud services, and smart-

phones, with the IoT, healthcare sensors, industrial

automation, and autonomous vehicles further

expanding the domain of big data analytics and ser-

vices. In response to seemingly insatiable workforce

demands, most students are now trained in software

tools and techniques that target these commercial

opportunities rather than scientific computing and

HPC. Few students outside of scientific domains

learn C, Fortran, or numerical methods, which could

be considered the traditional “tools of the trade” in

computational sciences and engineering. This trend

is an extension of one that began in the 1990s and is

irreversible. Consequently, the HPC community

must and is beginning to embrace new tools and

approaches while also encouraging students to learn

both HPC and data analytics tools.

� Adopting new infrastructure: The HPC community

neither can nor should attempt to replicate the

vibrant big data and machine learning infrastructure

and ecosystem. Simply put, the locus of investment

and human resources in data analytics and machine

learning now rests with the commercial sector, and it

will drive ecosystem evolution. Lest this seem an

insurmountable hurdle, it is worth remembering that

the HPC community has long been dependent on,

and a contributor to, the Linux and open-source soft-

ware communities. Likewise, as core components of

the HDA ecosystem become open source, they will

continue to create benefits for the HPC community.

In particular, the Apache software stack, R, and

other machine learning toolkits are galvanizing a

generation of faculty and students who see a multi-

tude of scientific and engineering applications for

big data and machine learning technology. Simi-

larly, science and engineering researchers are

increasingly applying machine learning technology

to their own domains.

� Stream and batch model coexistence: Leading-edge

scientific computing systems are, by definition,

scarce resources. Thus, the HPC community has

long relied on batch scheduling to maximize utiliza-

tion of limited hardware resources and to serve mul-

tiple scientific communities. By contrast, cloud

services and most sensor data, whether from small

environmental monitors or large-scale observatories,

are (soft) real-time streams that necessitate contin-

uous processing with flexible workflow systems.

Not surprisingly, these differences have profound

implications for application programming models,

software tools, and system software, as streaming

data analysis requires that at least some of the

resources be dedicated for days, months, and some-

times years. As new generations of scientific

instruments and environmental sensors produce

ever-larger streams of daily data, real-time data pro-

cessing and statistical assimilation with computational

models will drive fusion of batch and stream models

and will provide a strong motivation (as well as an

opportunity) for the emergence of a flexible common

model to meet the needs of both HPC and HDA.

� Computing at the edge: Another consequence of

real-time data streams is the need for computing and

analysis at the edge (i.e. at the data sources).

Whether for data reduction and conditioning or more

rapid response than end-to-end network delays

would permit for centralized analysis, workflows

must increasingly span a continuum of device types,

bandwidth differences, and computing capabilities.

The shift of intelligence to the edge, coupled with

central computing support, is a new model that com-

bines elements of HPC and HDA.

� Virtualization for sharing: Traditional virtual

machine (VM) environments based on hypervisors

and replicated operating systems imposed large

overheads and latencies, thereby rendering them less

suitable for tightly coupled scientific applications.

However, new technology (e.g. Linux “containers”

like Docker) has far less overhead for such work-

loads and is increasingly being deployed for scien-

tific computing. This enables developers to shape

their application’s computing environment and

enables the provider to simultaneously run many

such environments. Containerization also brings sci-

entific application portability, allowing workflows

and software to be packaged, shared, and redeployed

without complex and often arduous configuration. In

turn, this enables users and communities to evaluate

approaches and software easily and rapidly.

462 The International Journal of High Performance Computing Applications 32(4)

� Resource allocation and efficiency: The value of a

large, centralized resource rests in part on its scale.

By allocating a substantial portion of the total

resource, one can achieve results not possible with

small-scale infrastructure. This is equally true for

commercial cloud infrastructure and the largest HPC

systems. On large HPC systems, this resource man-

agement uses work queuing (i.e. batch processing).

Policies control resource allocation (e.g. to select

only the most worthwhile applications and to match

the resource funders’ priorities). Permission for use

depends on the quality of an application’s optimiza-

tion (for a given platform). Implicit in such an

approach is the need for efficiency, lest a precious

resource be consumed unnecessarily. Efficiency

may refer to application execution efficiency, sys-

tem utilization rate, and/or energy efficiency (Sec-

tion 5.1). The cloud and big data communities tend

to emphasize user experience and scalability far

more than efficiency, though this is also changing

rapidly as parallel computing techniques are being

applied to machine learning. This is an additional

convergence opportunity, as both the HPC and big

data application communities learn from each other.

The raison d’être for BDEC is to help plan and create, in

a coordinated and international way, a new generation of

software infrastructure for scientific research. However,

our discussion in this section—of strategies for integrating

the infrastructures and ecosystems of large HPC computing

platforms and facilities, on the one hand, and of commer-

cial cloud facilities, on the other—can address only some of

them, and those only partially. In particular, in this section,

we largely abstract away from the large set of difficult

issues surrounding the explosive growth of data in edge

computing environments, which is discussed in Section 4.

5.1. Common context: Energy as an overarching
challenge for sustainability

One challenge probably deserves special attention: making

the scientific enterprise sustainable given current technol-

ogy would seem to demand that the total energy consump-

tion of a given investigation be minimized or at least kept

within reasonable limits. Given that information and com-

puting technology (ICT) required about 4.7% of the

world’s electricity in 201217 and continues to grow

(Gelenbe and Caseau, 2015), its role in this problem cannot

be assumed to be negligible, especially if we include all

aspects of ICT supporting a scientific endeavor. These sta-

tistics are not limited to the energy used for simulations and

statistical analyses. Data movement from the instrument to

quality assurance and integration organizations, to archival

and curation sites, to each scientific step that accesses the

data, to visualizations, to researchers’ work spaces, and

even to archives, can all represent a very significant use

of energy.

With this in mind, we identified four steps toward

energy minimization: (1) reduce computational costs by

using platforms that are well-matched to the stage within

the scientific method; (2) reduce data-movement costs by

using collocation, compression, and caching; (3) encourage

reuse of calculations and data through effective sharing,

metadata, and catalogs—a strategy that a provenance sys-

tem supports well; and (4) reduce computing system

entropy (e.g. workload interference, system jitter, tail

latency, and other noise) through on-demand isolation,

noise-resistant priority, cache QoS, and novel uncertainty

bounding techniques. The cyberinfrastructure itself has the

task of taking care of energy minimization as it has access

to the required information; leaving this burden to the

domain scientists is undesirable, since it would divert them

from their scientific goals.

Moving information is fundamentally energy-

consuming, more so if it is moved quickly. Moving it

across boundaries (e.g. from site to site, from an HPC sys-

tem to an analysis platform system within the same site,

from node to node, or from one storage medium to another)

incurs even greater costs. Avoiding unnecessary repetitious

transfers (e.g. by caching, reducing distances and boundary

crossing by collocation, reducing speed requirements by

prefetching, and reducing volume by compression) can all

help reduce these costs. Reducing data transport costs and

delays also encourages collocation of simulation platforms

with data-analysis platforms and with archival storage sites

holding reference data.

However, challenges exist because of the limits of what

can be achieved as environmental and social science obser-

vation systems are inevitably a globally distributed endea-

vor. Furthermore, the many approaches, different

timescales, and different manifest effects make for growing

diversity of primary data collection and quality assurance.

This is undertaken by a wide range of organizations, in

many locations, that are managing a wide variety of glob-

ally dispersed instruments. Data quality control also has to

be done close to the acquisition system. It is crucial that, as

methods for caching data are developed, they do not detract

from the recognition of the value of data collectors, quality

assurance teams, and data curation organizations.

Hence, a political and accounting model is needed to

ensure energy savings and to sustain the respect for the

value of contributing institutions. For example, institutions

responsible for emergency response information services

and hazard estimation, as well as research, will need to

recruit the relevant experts and have demonstrable

resources that are needed in a major emergency. Major

research universities and national research centers need to

have a sufficiently powerful computational resource acting

as a “totem” so that they can continue to attract leading

researchers, projects, contracts, and funding. Therefore,

there are pressures to maintain the visibility of independent

resources and to sustain their diversity. A cyberinfrastruc-

ture that spans autonomous resources needs to minimize

energy consumption to reduce environmental impact.

Asch et al. 463

However, due consideration for the organizational and

social issues must be given. Encouraging sharing and effi-

cient use of simulation runs and their results may have two

benefits: (1) a reduction in environmental impact and (2) an

improvement in the quality and pace of scientific discov-

ery—as has been demonstrated in cosmology and climate

modeling.

Publishing and sharing the models and the results of

simulation runs, for an appropriate period, could establish

virtual numerical laboratories (Section 3.3.5), where many

researchers could explore interpretations and comparisons

of simulation results with primary data. This amortizes the

costs of the simulation runs and data gathering over more

investigations and over time.

5.2. Common context: Data reduction as a
fundamental pattern in HPC and big data
convergence

Data reduction is a common issue for both centralized and

edge computing infrastructures and facilities. In this sec-

tion, we look at the “centralized” viewpoint; though the

examples and arguments here also apply to the outer edge,

where—as explained in Section 4—data logistics are a key

issue with the concomitant need for reduction to prevent

saturating the upstream (toward the center) communication

channels.

Scientific simulations and instruments are already gen-

erating more data than can be stored, transmitted, and ana-

lyzed. One of the most challenging issues in performing

scientific simulations, running large-scale parallel applica-

tions, or performing large-scale physics experiments today,

is the vast amount of data to store on disks, to transmit over

networks, or to process in post analysis. The Hardware/

Hybrid Accelerated Cosmology Code, for example, can

generate 20 petabytes of data for a single one trillion par-

ticle simulation. And yet a system like the “Mira” super-

computer at the Argonne Leadership Computing Facility

(ALCF) has only 26 petabytes of file storage, and a single

user cannot request 75% of the total storage capacity for a

simulation. Climate research also deals with a large volume

of data during simulation and post analysis. As indicated by

Gleckler et al. (2016), nearly 2.5 petabytes of data were

produced by the Community Earth System Model for the

Coupled Model Intercomparison Project (CMIP) Phase 5,

which further introduced 170 terabytes of postprocessing

data submitted to the ESGF (Williams et al., 2008). Esti-

mates of the raw data requirements for CMIP Phase 6

exceed 10 petabytes (Baker et al., 2014).

Scientific experiments on large-scale instruments also

require significant data reduction, and updates of these

instruments will produce orders of magnitudes more data.

For example, the National Institutes for Health’s Brain Ini-

tiative focuses on high-throughput x-ray tomography of

whole mouse brains using the upgraded APS source.

Researchers need to generate high-throughput mosaic

tomography with a total reconstruction volume of about

40 teravoxels (corresponding to 160 terabytes) per speci-

men, followed by automated transport, cataloging, analy-

sis, and comparison of a very large number of specimens in

order to understand disease-correlated changes in brain

structure. Another example is the IC imaging study under

Intelligence Advanced Research Projects Activity’s Rapid

Analysis of Various Emerging Nanoelectronics program,

still at the APS. Every IC will involve about 8 petavoxels

(corresponding to 32 petabytes) in the reconstructed image

obtained via X-ray ptychography. Today’s detector can

acquire up to 500 frames/s, and each frame is about 1000

� 1000, at 16 bits (0.98 gigabytes/s). With the APS-U,

researchers expect to acquire data at a 12-KHz frame rate

or 23 gigabytes/s, for a total volume of data reaching 70

exabytes. In these two cases, the data produced will be

transferred to a supercomputing facility for data analysis.

Even upgrading the connection between the APS and the

ALCF will not allow one to transfer the data quickly

enough to keep up with the flow produced by the instru-

ment. For example, a 20 gigabits/s connection would still

require months to move the data from the source to its

analysis location.

The communication, analysis, and storage of data from

these experiments will only be possible through aggressive

data reduction that is capable of shrinking data sets by one

or more orders of magnitude. Aggressive data reduction

techniques already exist but in a very ad hoc form. The

LHC, for example, already reduces the data produced by

the detectors and plans to reduce the data even more in Run

3 (Albrecht, 2016). The raw data per event is about 1 mega-

byte for Atlas and the Compact Muon Solenoid (CMS), and

100 kilobytes for Large Hadron Collider beauty (LHCb).

Atlas currently produces events at 100 MHz for Run 2,

CMS currently produces events at 100 MHz for Run 2, and

LHCb currently produces events at 1 GHz for Run 2. For

Run 3, Atlas will produce events at 0.4 MHz, CMS will

produce events at 0.5 MHz, and LHCb will produce events

at 40 MHz.

These detectors will produce a gigantic amount of data

at an extraordinary rate: 60 terabytes/s for ATLAS and

CMS and 2 terabytes/s for LHCb. To tackle this unprece-

dented data flow, the Alice project has defined a new com-

bined offline–online framework called “O2” that supports

data flows and processing. It performs online compression

of events to reduce the data rate of storage to approximately

20 gigabytes/s. For Run 3, the O2 framework design fea-

tures 463 FPGA detectors for readout and fast cluster find-

ing; 100,000 CPU cores to compress 1.1 terabytes/s data

streams; 5000 GPUs to speed up the reconstruction; and 50

petabytes of disk storage to enable more precise calibration.

Aggressive data reduction is already used in the con-

sumer environment, and the consumer big data domain is

preceding the scientific domain on the systematic use of

lossy data reduction. Most of the photos taken by smart-

phones or digital cameras are stored in a lossy compressed

version. This is also true for music files, and digital music is

464 The International Journal of High Performance Computing Applications 32(4)

stored in lossy compressed format on most devices. The

projection made by Cisco about future Internet traffic is

striking: in 2025, 80% of Internet traffic will be video

streaming, which means that more than 80% of the data

transiting on the Internet will be lossy compressed. Micro-

soft has already deployed FPGAs into its data center to

accelerate Lempel–Ziv–Markov chain algorithm and JPEG

compression as well as other frequent operations, such as

encryption.

An important distinction between scientific and con-

sumer big data domains is the specificity of the data reduc-

tion techniques. As mentioned previously, aggressive data

reduction techniques in the scientific domain are currently

ad hoc. Conversely, the consumer big data domain relies on

generic compressors (e.g. JPEG for images, MP3 for audio,

and MPEG4 for video). This also reveals a certain advance

of the consumer big data domain over the scientific

domain. An important push toward the use of generic lossy

compressors in scientific applications is the trend toward a

generalization of its usage. The United States’ Exascale

Computing Project helped identify and better quantify

these needs. Many scientific applications at extreme scale

already need aggressive data reduction. Spatial sampling

and decimation in time are used to reduce data, but these

techniques also significantly reduce the quality of the data

analytics performed on the sampled or decimated data sets.

Advanced lossy compression techniques provide a solution

to this problem by enabling the user to control the data

reduction error. Another important distinction between sci-

entific and consumer big data domains is the difference in

quality assessment of the reduced data set. JPEG, MP3, and

MPEG4 are not only generic, they are also universal: All

users have the same perception of images and sound. This

allows for defining compression quality criteria that corre-

spond to a very large population of users. This is not the

case in the scientific big data domain, where each combi-

nation of application and data set may lead users to define

different sets of quality criteria. One open question is the

relevant set of quality criteria for scientific data sets. Users

have already expressed the need to assess spectral altera-

tion, correlation alteration, the statistical properties of the

compression error, the alteration of the first-order and

second-order derivatives, and more. As the domain of lossy

data reduction for scientific data sets grows, the community

will learn what metrics are relevant and needed.

Although compression is critical for enabling the evolu-

tion of many scientific domains to the next stage, the tech-

nology of scientific data compression and the

understanding on how to use it are still in their infancy.

The first piece of evidence is the lack of results in this

domain: over the 26 years of the prestigious Institute of

Electrical and Electronics Engineers (IEEE) Data Com-

pression Conferences, only 12 papers identify an aspect

of scientific data in their title (e.g. floating-point data, data

from simulation, numerical data, and scientific data). The

second piece of evidence is the poor performance on some

data sets.

Beyond the research on compression, scientists also

need to understand how to use lossy compression. The

classic features of compressors (e.g. integer data compres-

sion, floating-point data compression, fast compression and

decompression, and error bounds for lossy compressors) do

not characterize compressors, specifically, with respect to

their integration into an HPC and HDA workflow. For

example, in the APS’s IC imaging application, assuming

a lossy compressor capable of 100� compression, can we

perform the tomography and the data analytics directly

from the compressed data? Obviously, if the subsequent

analysis steps can only work from decompressed data, large

storage and significant decompression time will be needed.

If the data needs to be decompressed, can we decompress it

only partially to allow for pipelined decompression, recon-

struction, and analytics? Note that partial decompression

requires random access to the compressed data set—a capa-

bility that is not systematically considered a priority today

in aggressive data reduction techniques. The same set of

questions applies to large-scale simulations: if we can

avoid data sampling and decimation and compress the raw

data set by a factor of 100, can the following data analytics

steps be performed on the compressed data?

5.3. Architecture

5.3.1. Radically improved resource management for next-
generation workflows. As large HPC systems become major

nodes in data-intensive workflows, which encompass not

just classical HPC applications, but also big data, analytics,

machine learning, and more, it becomes important to pro-

vide both the hardware and software support to run those

workflows as seamlessly as possible. It is certainly clear

that the diverse application communities described in Sec-

tion 3.3 would benefit from a combination of HPC, data-

intensive, and high-throughput computing resources. Many

Figure 11. Trends of speed, energy efficiency, and power con-
sumption of the world’s fastest computers (Lu et al., 2014; Xu
et al., 2016).

Asch et al. 465

of the requirements of such communities are summarized

as follows:

� Software stack: Ability to run an arbitrarily complex

software stack on demand.

� Resilience: Ability to handle failures of job streams

and ability to checkpoint/restart applications (ideally

using application-based methods) for dynamically

allocating resources to urgent computing/postpro-

cessing workloads (e.g. massive amount of data

coming from large-scale instrumentation, clinical

data from hospitals)

� Resource flexibility: Ability to run complex work-

flows with changing computational “width.”

� Centralized intelligence of the resource manager:

Knowing the behavior/request of each application, the

policies of the center, the current status of the systems,

and the number of jobs running/to be executed, with

the ability to “smart schedule” jobs on the system with

the appropriate level of resource allocation (in terms of

energy, memory, and storage placement).

� Wide-area data awareness: Ability to seamlessly

move computing resources to the data (and vice

versa where possible); ability to access remote data-

bases and ensure data consistency.

� Automated workloads: Ability to run automated pro-

duction workflows.

� End-to-end, simulation-based analyses: Ability to

run analysis workflows on simulations using a com-

bination of in situ and offline/co-scheduling

approaches.

Although the notion of being able to launch multiple

application workflows from the exemplars presented in

Section 3.3 in a converged manner is attractive, having to

launch them on a single converged hardware platform is

not. Fortunately, however, this is a place where the hour-

glass model can be beneficial. We want to be able to sup-

port workflows consisting of multiple and divergent

applications (e.g. classical HPC, machine learning, and

visualization), the top portion of the hourglass. We also

envision, as described in the hardware trends section, an

increasing proliferation of hardware—be it in processors,

accelerators, FPGAs, and so on—to target these divergent

applications. This is positive, as this hardware will best

meet (in terms of performance, power, and cost) the needs

of the different applications. This is the bottom portion of

the hourglass. However, in an ideal world, the application

would just be built and execute on the correct hardware.

Thus, the middle, narrow portion of the hourglass allows

application developers to just be concerned with their code.

Between the ideal world and what is implementable in an

early version, there is a continuum of system software

options that allow the application programmer to focus less

on how to run their workflow and more on what interac-

tions between different applications in their workflow need

to occur. Thus, the goal of this section is to describe, from a

system management perspective, the different levels we

can take to move us toward the ideal world, where the users

need only to care about their application.

We define “system management” as how a machine (or

collection of machines) is controlled via system software to

boot, execute workflows, and allow administrators or users

to interact with and control the system. The “control sys-

tem” is comprised of a set of components in the software

stack that enable this functionality. From the OpenHPC18

software stack depicted in Figure 12, we define the “control

Figure 12. The OpenHPC modular software stack, with the components of the control system, required for a flexible workflow
configuration, on the left.

466 The International Journal of High Performance Computing Applications 32(4)

system” to be those components shown on the left side in

blue. Many of these components need to be extended to

provide a converged view and operation of the machine—

especially in the face of divergent hardware. As described

earlier, there is a continuum from a manually (by applica-

tion effort) converged machine to a fully automated one.

We view the roadmap to successful convergence as

moving along this continuum, freeing the user from the

responsibility of managing the underlying machines them-

selves. This accomplishes two things. It makes the user

wishing to leverage a converged system more productive.

More importantly, it opens up such an architecture to a

much broader user base. Without system software efforts

in moving us toward the converged hourglass model, it will

be difficult to gain widespread use of the increasingly com-

plex machines.

So we can clearly describe the different capabilities

needed, we divide the continuum into the following dis-

crete points.

C1: The user workflow (via scripting) knows about

the different underlying machines and architec-

tures and launches its individual application on the

various machines, interacts with the various

resource management and monitoring compo-

nents, and collates the data coming from the dif-

ferent machines and applications. The user must

manage the individual steps in the workflow and

ensure that the data is correctly transferred and is

where it needs to be.

C2: The user workflow knows about the different

underlying machines and architectures and indi-

cates where and how different applications in the

workflow should run. The underlying control sys-

tem manages the launching of the different appli-

cations and the staging of the data before and

between the application execution. It returns to the

user when the workflow is finished.

C3: The user specifies the workflow by describing

each application. The compiler, runtimes (e.g.

MPI, partitioned global address space, and Open

Multiprocessing (OpenMP)), and control system

automatically construct the workflow, launch the

individual applications, shepherd the data to

the applications, collate the results, and present the

collated results of the workflow to the user. Note:

there is probably a reasonable point between C2

and C3, but given that C2 is a significant piece and

likely challenging enough in the short to middle

term, we leave the various aspects of moving from

C2 to C3 as good topics for advanced research

without presupposing how they would be divided.

We now describe the system software including the con-

trol system work that needs to be accomplished for each of

the points. Even though C1 appears to place all of the

burden on the user, there is still control system work that

needs to occur to obtain a reasonable C1. In particular,

today’s accelerators, FPGAs, and nonstandard core com-

puting elements are not well understood by the operating

system, resource manager, or monitoring and control sys-

tems. More work needs to be put into enhancing these

components to comprehend the new types of hardware that

will be available. Much, but probably not all, of this work

will be undertaken by vendors producing new hardware.

However, there will still be open-source work (e.g. Slurm

in the RM space or the performance API in the monitoring

space) that either the vendors would need to fund or the

community will need to contribute.

As indicated, C2 is the desired intermediate step, where

we believe efforts should be directed to achieve widespread

use of the converged system. Significant control system

work must be undertaken to achieve C2. First, high-level

architecture work should determine the best way to bring

machines together. We use resource management as an

example, but it applies for many of the other components

(e.g. provisioning and fabric management). Work should

also be done to determine whether there should be a single

resource manager that spans each of the underlying

machines or whether there should be an overarching (new)

resource manager that knows how to communicate with the

resource managers on each machine. Either path is a non-

trivial effort. It is likely the latter can be more easily

achieved because individual resource managers will be

developed to handle each machine—by the open-source

community, by the vendor producing a given machine, or

by a combination of both. However, the downside of this

overarching resource manager approach is that there will

likely be inefficiencies and potentially missing functional-

ity in each individual manager. The positive side of this

approach is that the effort to build even a single resource

manager and keep it current with the broadening architec-

ture is very large, so keeping the sum total effort reduced is

a plus. The overarching approach also has the advantage of

being able to more readily leverage particular features put

in by a particular resource manager for a given hardware

platform. A hybrid approach is also possible. There are

likely to be resource managers that work on many of the

underlying hardware platforms, and some additional capa-

bility could be added with modest cost to enable them to

recognize that they are managing a machine in a group of

machines—where another of those machines is managed

by another copy of the same resource manager.

In addition to this, the control system components must

be made aware of the different types of machines and be

able to map between the user-specific “where and how” to

the underlying machine. In this model, the components also

(given a sufficiently rich enough description) need to be

able to ensure that the data are available to a particular

application of a workflow at the right time in the right

place. This could be as simple as a single, globally shared

file system. However, given the impending memory hier-

archy architecture, it is much more likely to mean that

many of the components (e.g. provision and resource

Asch et al. 467

managers) need to be connected to a data manager that

knows in what nonvolatile memory (NVM) a particular

data set resides and also has the capability to move the data

around and pre-stage it for efficiency. In this model, the

user still needs to have knowledge of the various applica-

tions in their workflow and where they would like those

applications to run.

Third, C3 represents an ideal state, where the user writes

the applications in the workflow and describes how they are

related. During the compilation phase, information is

extracted to determine the best underlying architecture on

which to run. The various runtimes move the computations

dynamically between the different hardware types on a

given machine, and the control system components move

the computation between different machines at the appro-

priate times. Data are moved around between the NVM

connected to each of the computing components. This

removes the burden of determining the best type of hard-

ware on which to run, and it removes the burden of creating

the workflow specifying where the individual applications

need to run each application (or even subsets or phases of

applications). While there is considerable and unknown

research work that needs to be accomplished, some aspects

of this work are already underway. For example, the

OpenMP runtime manages systems with standard cores and

GPUs, or cores and accelerators, and moves computation

automatically based on monitoring information from the

application. For C3, necessary components will likely be

researched in the medium term, with the overall puzzle

being filled in based on research trends and availability

of funding.

Having described the steps for system software along

the path toward providing a converged machine, including

the different possible points along the path and the work

needed to achieve them, it is important to note that

OpenHPC is not the only implementation strategy. In par-

ticular, OpenStack19 provides a set of alternative imple-

mentations to many of the control system components

depicted in Figure 12. For example, OpenHPC provides

validated recipes using bare-metal provisioners like Ware-

wulf and xCAT, while OpenStack uses Glance and Ironic

for image management and provisioning. OpenStack has

focused on the cloud, while OpenHPC has focused on clas-

sical HPC. As this report exemplifies, there is interest from

both sides for bringing the stacks together. There are two

approaches. It is possible to use an OpenStack environment

to deploy OpenHPC runtimes and development tools across

a set of compute resources. The nodes would run with the

high performance of OpenHPC and provide HPC perfor-

mance in a cloud environment. The other approach would

be to run elements of OpenStack within an OpenHPC envi-

ronment. The former approach was demonstrated as a proof

of concept at SC16. Other work in this vein has been to run

an instance of OpenHPC in Azure. These examples demon-

strate the value of having a more unified approach for some

types of workflows.

5.3.2. Considering containerization as the new “narrow waist”.
A typical HPC application code is composed of source code

(Fortran, C, Cþþ, and Python), which is explicitly devel-

oped and managed by the application development team,

and of links to reusable component libraries. Commonly

used libraries like MPI and basic linear algebra subpro-

grams (BLASs) are often obtained from pre-built object

code that is installed and managed by a system adminis-

trator. However, other libraries like solvers, I/O tools, and

data analysis packages are often downloaded from a web-

site supported by the library development team and built

from source code.

This model of building from source is accepted and

common in the HPC community, but unfamiliar to much

of the HDA community. Although software components

developed by the HPC community may have much to offer

the HDA community in terms of scalable computational

and data management capabilities, the build-from-source

assumption is a nonstarter.

One of the first places where this spanning layer analysis

is likely to be used is in the consideration of “container”

technology (Figure 13). Containerization has emerged as a

technology that, already used in HDA, has strong potential

to serve as a software bridge to the HPC community. Con-

tainers avoid the runtime overhead of VMs by being inte-

grated into the host kernel, thereby making execution times

within a container essentially the same as those from a

native installation on a given system. This fact has spurred

interest on the part of HPC system vendors to start support-

ing containers on leadership-computing platforms. For this

reason and others, and as shown in Figure 13, containers are

already being considered as a potential spanning layer for

cloud infrastructure (Fu et al., 2016). Since containers have

emerged as a viable delivery platform for HPC software,

and are already widely used in HDA, they have become an

attractive target for convergence between HDA and HPC.

Packaging reusable HPC software components in contain-

ers dramatically reduces the usage barrier for the HDA

community (and the HPC community), providing a large

collection of high-performance capabilities never seen

before by the HDA community. For the HPC community,

Figure 13. One vision of containerization as the narrow waist of
the system software stack. Credit: Fu et al. (2016).

468 The International Journal of High Performance Computing Applications 32(4)

containers also dramatically reduce the usage barrier,

thereby making previously challenging workflow setups

almost trivial, and providing a portable software envi-

ronment on many HPC systems. Also, once containers

are adopted by the HPC community, HDA components

become available to the HPC community. Thus, the

bidirectional benefits of containerization are very

compelling.

The HPC community is just starting its exploration of

the potential for containerization. Further HPC opportuni-

ties include isolation to reduce performance variability due

to kernel interrupts, coexistence of distinct software stacks

on the same hardware platform, launch-time detection of

special compute devices such as GPUs, and more. Issues to

be explored are listed as follows:

� The use of containers promises greater portability

and isolation. The former reduces or eliminates sen-

sitivity to differences in the underlying platform,

thereby increasing flexibility when multiple plat-

form versions are in use; and the latter provides

better protection from performance variability by

reducing interrupts in multi-kernel environments.

� The enhanced portability provided by containers

suggests that they might be used to create a spanning

layer that provides a bridge between the data center/

cloud and edge systems. In that context, two issues

will need to be explored. First, loading the entire

runtime environment of an indeterminate number

of processes on an edge system—and making avail-

able the CPU, memory, and other resources to

enable them to run to completion—is a heavy lift.

A thin edge node may not be able to support many,

or even a single large container. The second issue is

that the runtime environment in such a scenario is

indivisible. A process invoked on one processor may

be tied to that processor until it completes. A con-

tainer that has allocated, and is using, resources

within the host operating system may have to reside

on that host until its entire cohort of processes has

completed. If changing or unexpected events pre-

vent the successful completion of the container’s

execution, it may or may not be possible to check-

point and migrate the environment, depending on the

characteristics of the host operating system.

� While the HDA community’s container ecosystems

are already very valuable to the HPC community,

notable security features—essential for any effective

deployment in a multiuser environment—are cur-

rently missing. But HPC environments are always

multi-job, multiuser environments. Furthermore,

sensitive system and user data are typically present

on the system at any given time. Common container

environments such as Docker [cite] effectively per-

mit root access from the container into the host envi-

ronment, which is clearly unacceptable on an HPC

platform. Augmented environments such as Shifter

[cite] can encapsulate a standard container and

improve the security and device detection capabil-

ities needed for HPC.

5.4. Software

As the new era of big data and extreme-scale computing

continues to develop, it seems clear that both centralized

systems (i.e. HPC centers and commercial cloud systems)

and decentralized systems (i.e. any of the alternative designs

for edge/fog infrastructure) will share many common soft-

ware challenges and opportunities. For example, continued

exponential growth in data volumes will make data reduc-

tion of one form or another indispensable on all fronts. None

the less, we locate much of the discussion of software issues

and possibilities in this section on centralized infrastructure,

because—despite the recognized differences and uncertain-

ties—architectural and hardware questions for HPC and

cloud computing environments are still far clearer than they

are for edge/fog environments, where proposals, blueprints,

and promises now prevail. Thus, many of the software issues

that are discussed in this section will need to be revisited for

edge/fog environments as their platform models acquire

more definition and begin to stabilize.

5.4.1. Software libraries for common intermediate processing
tasks. One common theme in the workflow descriptions at

the BDEC workshop was the amount of “intermediate” (or

pre) processing that data require before the more substan-

tial analysis and visualization processes occur. For

instance, we describe “multi-messenger” forms of inquiry

in Section 3.3, which tend to exhibit a relatively common

set of requirements, listed as follows:

� Identify and segment trillions of multi-scale objects

from spatiotemporal data sets.

� Extract features from objects and spatiotemporal

regions.

� Support queries against ensembles of features

extracted from multiple data sets.

� Use statistical analyses and machine learning to link

features to physical and biological phenomena.

� Use feature-driven simulation; extracted features

used as simulation initial, boundary conditions, and

to assimilate data into simulations.

� Develop and enrich in situ/in transit framework with

machine/deep learning capabilities for on-the-fly

automatic pertinent structures detection/extraction

for both static and dynamic analyses.

� As a reverse loop, perform smart computational

steering of the application—also seen in Section

3.3.5.

Many of the intermediate transformations in this list are

normally described in generic terms: cleaning, subsetting,

filtering, mapping, object segmentation, feature extraction,

registration, and so on. The question is whether or not some

Asch et al. 469

of these operations are generic enough that a common set of

software tools—appropriately layered and modularized—

could be developed to serve the diverse purposes of a num-

ber of different communities at the same time. For exam-

ple, image-driven workflows from fields such as medical

imaging, microscopy, and remote (satellite) sensing, utilize

all of the operations given earlier. Although the codesign

effort that would probably be necessary to produce it would

be challenging to organize, common software infrastruc-

ture that (suitably configured) could satisfy intermediate

processing needs in a wide variety of fields would be a

boon to data-driven research.

� A common and visible data model: One major obsta-

cle to creating shared software infrastructure for

intermediate processing is the absence of interoper-

able data object models, or, just as importantly, a

way of making the object model being used visible.

The effort to develop a common model achieved

limited success when object-oriented databases were

introduced in the 1990s. However, that success was

largely restricted to tightly coupled systems, and

these tools did not succeed for many more loosely

coupled situations, which are typical of today’s

many emerging BDEC domains and workflows.

Web-based approaches (e.g. the representational

state transfer API) are likely to be viable for only a

relatively small segment of these big data applica-

tions. Common object models have been established

in some application domains (e.g. multi-physics

applications and climate modeling), but creating a

common software stack that supports more general

interoperability has proved elusive. Moreover, for

any such model to succeed, it will need to be flexible

enough to provide data layout distribution options to

support the kind of parallelism that applications and

I/O services will require.

� Shared software infrastructure for intermediate pro-

cessing: The digitization of all scientific data has

opened up a major opportunity space for research

methods that integrate or synthesize data of multiple

types and/or from multiple sources or sensor mod-

alities. This is particularly true for application areas,

now common, that utilize and combine multidimen-

sional, spatial-temporal data sets. Examples include

radioimaging and microscopy imaging combined

with “omic” data; simulation data (e.g. for oil fields,

carbon sequestration, and groundwater pollution/

remediation) combined with seismic and earth sen-

sor data; and weather prediction based on the real-

time integration of data from simulations, satellites,

ground sensors, and live video feeds. The Google

self-driving car provides a more practical consumer

illustration of real-time integrated analysis of corre-

lative data from multiple sensor modalities and

sources. The multidimensional data space that these

applications define tends to be high resolution in

each of their correlative dimensions, so that, when

even a modest number of data steps are involved,

extremely large volumes of data need to be accessed

and processed in a coordinated way.

5.5. Math libraries, software ecosystems
for application development

5.5.1. Leveraging HPC math libraries in HDA. The HPC com-

munity has a large and growing collection of high-

performance math libraries for scientific computing. Many

of these libraries have been carefully designed and imple-

mented to exploit scalable parallel systems, from multi-

core and GPU-enabled laptops to the largest computing

systems in the world. At the same time, these libraries are

typically used by the HPC community in the form of user-

compiled source code. Furthermore, the interfaces to these

libraries are complex, with many options that require sub-

stantial experience in mathematical algorithms and parallel

computing.

The advent of component-based software ecosystems

like Docker enables pre-compilation and predefined para-

meterization of HPC math libraries for dedicated problem

solving in a component software ecosystem. For example,

the Trilinos eigensolver package, “Anasazi,” has many

algorithmic and parameter options that can be adapted to

provide capabilities for a variety of problems. Furthermore,

Anasazi has a complex build environment that supports

optimized compilation on a variety of platforms. While

attractive to experts, the sheer range of choices can be a

nonstarter for someone who simply wants a solver for large

sparse eigenvalue problems.

Containers provide an opportunity to encapsulate the

complexity of a solver like Anasazi by supporting pre-

compilation of the source and a simplified interface, such

that the resulting container can be considered a filter that

takes a sparse matrix as input and produces eigenvalues

and eigenvectors as output; executes on a laptop, parallel

cluster, or supercomputer; and provides a portable work-

flow environment for the user. This capability will enable

turnkey use of sophisticated solvers for both HPC and

HDA users.

5.6. New efforts for dense linear algebra standards

The emergence of new HDA markets has created, renewed,

and expanded interest in standard functionality and inter-

faces for dense linear algebra. The so-called “batched

BLAS” is a new standards effort looking to efficiently

compute dense linear operations on a large collection of

matrices at the same time. These kernels have always been

of interest in finite element computations, part of the HPC

community, but have never had the market potential to

drive a standard. The emergence of “deep learning” algo-

rithms in HDA provides new incentives, and the linear

algebra community is now working toward a standard.

470 The International Journal of High Performance Computing Applications 32(4)

Batched BLAS and other potential standards that can ben-

efit both HPC and HDA represent a synergistic opportunity

that would not be otherwise easy to exploit.

5.7. Challenges in the HPC software ecosystem

While in many ways the HPC software ecosystem is rich,

stable, and provides a ready-made environment for attain-

ing good performance, there are some challenges that only

time, exploration, and “coopetition” can resolve. Of partic-

ular importance are standards for shared memory parallel

programming. While MPI is the ubiquitous and acknowl-

edged standard for internode (across node) parallel pro-

gramming and execution, intra-node parallel

programming and execution environments are not nearly

as stable. Presently, there are two dominant efforts,

OpenMP and Open Accelerators (OpenACC), that are tar-

geting two distinct approaches to node-level parallelism.

OpenMP and its predecessors have been available for

more than three decades, and these programming models

are particularly suitable for multi-core CPUs and many-

core parallel processors (e.g. Intel Xeon Phi or GPUs).

OpenACC started as a forked effort of OpenMP, with the

intent to focus more specifically on accelerators like NVI-

DIA GPUs. While there is resolve on the part of the HPC

community to bring OpenMP and OpenACC back together,

the obvious self-interest of specific vendors leads to com-

petitive concerns that fundamental design choices could

bias the community for or against a particular architecture.

This “coopetition” is healthy and necessary to ensure a

truly portable standard that can support the all-important

intra-node parallelism approaches. Even so, the present

state of uncertainty makes the writing of portable intra-

node parallel code particularly challenging at this time.

5.7.1. Interoperability between programming models and data
formats. While HPC programming applications have tradi-

tionally been based on MPI to support parallel and distrib-

uted execution, and based on OpenMP or other alternatives

to exploit the parallelism inside the node, big data program-

ming models are based on interfaces like Hadoop, MapRe-

duce, or Spark. In addition to different programming

models, the programming languages also differ between

the two communities—with Fortran and C/Cþþ being the

most common languages in HPC applications, and Java,

Scala, or Python being the most common languages in big

data applications.

This divergence between programming models and lan-

guages poses a convergence issue, not only with regard to

interoperability of the applications but also to the intero-

perability between data formats from different program-

ming languages. In this scenario, we need to consider

how to build end-to-end workflows, providing a coordina-

tion layer that enables the management of dynamic work-

flows composed of simulations, analytics, and

visualizations—including I/O from streams. In such a sce-

nario, simulations can be MPI applications written in

Fortran or C/Cþþ, and the analytics codes can be written

in Java or Python (maybe parallelized with Spark). To

enable the efficient exchange of data between the simula-

tions and analytics parts of the workflows, other means

beyond traditional Portable Operating System Interface

(POSIX)-based (POSIX) files should be considered. Alter-

natives for implementing this are being considered, with

approaches like dataClay or Hecuba, which provide persis-

tent storage libraries and tools. However, further research

still remains to better support data interoperability between

different programming languages.

6. Conclusions and recommendations

The goal of the BDEC workshops has been to develop an

ICT planning document for science and engineering that

articulates an analysis and vision of the conjoint evolution

of data-intensive research and extreme-scale computing.

As we argued previously, however, since there is no widely

agreed upon model for the new kind of DSP that data-

intensive workflows of the big data era seem to require,

traditional technology road mapping techniques may be

inappropriate. Following the structure of the document,

we divided our findings and recommendations into three

categories: (1) global recommendations, (2) recommenda-

tions for edge environments, and (3) recommendations for

centralized facilities. However, our ultimate goal is to pre-

pare the ground for the kind of community-driven “shaping

strategy” (Hagel and Brown, 2017; Hagel et al., 2008)

approach that we believe would be both more appropriate

and more successful (Section 2.2). Consequently, the con-

clusions as they appear in the following section may have

to be refactored to serve the shaping strategy model.

6.1. Global recommendations

The major recommendation is to address the basic problem

of the two paradigm splits: the HPC/HDA software ecosys-

tem split and the wide-area data logistics split. For this to be

achieved, new standards are needed to govern the intero-

perability between data and compute. However, if we want

a new distributed infrastructure to support science and

engineering research in the era of big data—an infrastruc-

ture with the kind of openness, scalability, and flexible

resource sharing that has characterized the legacy Internet

paradigm—then we will have to define a new, common,

and open DSP, one that offers programmable access to

shared processing, storage, and communication resources,

and that can serve as a universal foundation for the compo-

nent interoperability that novel services and applications

will require. As the data revolution continues, such well-

designed DSP infrastructure will be necessary to support

such compute-intensive and/or data-intensive work that

many application areas will have to carry out between the

ingress/egress to the cloud (or data/HPC center) and

the network edge. As the history of the Internet shows, the

scientific community is, with appropriate public investment

Asch et al. 471

in basic research and development, uniquely positioned to

create and develop the kind of DSP that the emerging era of

extreme-scale data and computing requires, building on the

kind of open, consensus-driven approach that helped estab-

lish the Internet.

6.2. Recommendations for decentralized facilities for
edge and peripheral ecosystems

1. Converging on a New Hourglass Architecture for a

Common DSP: The “hourglass” represents the idea

that an appropriately designed common interface

can be implemented on an ever-increasing variety

of technology platforms (yielding a wide “lower

bell”), while at the same time supporting an equally

diverse and growing variety of applications (yield-

ing a wide “upper bell”). The common interface, or

“thin waist of the hourglass,” is called the “spanning

layer” because it bridges, through virtualization, a

heterogeneous set of resources that lie below it but

leaves the application and services above it free to

evolve independently. This point clearly ties in with

the global recommendation above. Unfortunately,

in seeking a new spanning layer to address the chal-

lenges of the big data era, the science cyberinfras-

tructure community finds itself in something of a

dilemma. On the one hand, at present, there does

seem to be at least one plausible and widely touted

candidate for the new spanning layer—operating

system–level virtualization that supports software

“containers.” Certainly, converging on a common

interface for containerization would go a long way

to achieving ecosystem convergence and do so in

way that requires something closer to evolutionary,

as opposed to revolutionary, changes to current

modes of operation.

Containerization should thus be a very active area

of research and experimentation across all contexts

that scientific cyberinfrastructure will have to

address, including commercial clouds, HPC sys-

tems, and computing resources deployed in edge

environments. At the same time, the fact that con-

tainers preserve legacy silos for storage, processing,

and communication at a low-level, and may there-

fore bring with them unexpected impediments to

interoperable convergence, suggests that other ideas

for a new spanning layer should also be aggres-

sively pursued.

2. Target Workflow Patterns for Improved Data

Logistics: There seem to be at least four nonexclu-

sive alternatives for interfacing HPC to this new

DSP paradigm, in which no strong assumptions are

made about where the data are located: (1) data

streaming, (2) in transit processing, (3) processing

at the edge of the distributed system (i.e. as close as

possible to the data sources), and (4) logically

centered cloud-like processing. These should be the

basis for new research funding with an applications-

oriented objective.

3. Cloud Stream Processing Capabilities: Stream pro-

cessing in cloud computing was not designed with

HPC in mind, and there is a need to examine the

high performance aspects of the runtimes used in

this environment.

4. Content Delivery/Distribution Networks: Commer-

cial CDNs are expensive to run and create barriers to

interoperation. To resolve, this requires (1) a scalable

approach to CDN implementation (i.e. suitably

designed forms of storage and processing at the

nodes of the distribution tree) and (2) the aggregate

organizational will of the scientific community.

5. Software Libraries for Common Intermediate

Processing Tasks: One common theme in the work-

flow descriptions is the amount of “intermediate”

(or pre-) processing that data require before the

more substantial analysis and visualization

processes can occur. Some of these operations are

generic enough that a common set of software

tools—appropriately layered and modularized—

could be developed to serve the diverse purposes

of a number of different communities at the

same time.

6.3. Recommendations for centralized facilities

1. Energy as an Overarching Challenge for Sustain-

ability: We can identify four steps toward energy

minimization: (1) reduce computational costs by

using platforms that are well-matched to the stage

within the scientific method; (2) reduce data-

movement costs by using collocation, compression,

and caching; (3) encourage reuse of calculations

and data through effective sharing, metadata, and

catalogs—a strategy that a provenance system sup-

ports well; and (4) reduce computing system

entropy (e.g. workload interference, system jitter,

tail latency, and other noise) through on-demand

isolation, noise-resistant priority, cache QoS, and

novel uncertainty bounding techniques. The cyber-

infrastructure itself has the task of taking care of

energy minimization as it has access to the required

information; leaving this burden to the domain

scientists is undesirable, since it would divert them

from their scientific goals.

2. Data Reduction as a Fundamental Pattern: The

communication, analysis, and storage of data from

large scientific experiments will only be possible

through aggressive data reduction that is capable

of shrinking data sets by one or more orders of

magnitude. Although compression is critical to

enabling the evolution of many scientific domains

to the next stage, the technology of scientific data

472 The International Journal of High Performance Computing Applications 32(4)

compression and the understanding of how to use it

are still in their infancy. Beyond the research on

compression, scientists also need to understand how

to use lossy compression. If the data need to be

decompressed, can we decompress it only partially

to allow for pipelined decompression, reconstruc-

tion, and analytics? The same set of questions

applies to large-scale simulations: If we can avoid

data sampling and decimation and compress the raw

data set by a factor of 100, can the data analytics be

performed on the compressed data?

3. Radically Improved Resource Management: As

HPC workflows start encompassing not just classi-

cal HPC applications, but also big data, analytics,

machine learning, and more, it becomes important

to provide both the hardware and software support

to run those workflows as seamlessly as possible.

We define “system management” to be how a

machine (or collection of machines) is controlled

via system software to boot, execute workflows,

and allow administrators or users to interact with

and control the system. The roadmap to successful

convergence requires freeing the user from the

responsibility of managing the underlying machines

themselves.

4. Software Issues: As the new era of big data and

extreme-scale computing continues to develop, it

seems clear that both centralized systems (e.g. HPC

centers and commercial cloud systems) and decen-

tralized systems (e.g. any of the alternative designs

for edge/fog infrastructure) will share many com-

mon software challenges and opportunities. Emi-

nent among these are the following needs.

� Leverage HPC math libraries for HDA;

� Increase efforts for dense linear algebra

standards;

� Develop new standards for shared memory

parallel processing; and

� Ensure interoperability between program-

ming models and data formats.

5. Machine Learning: Machine learning is emerging

as a general tool to augment and extend mechanistic

models in many fields and is becoming an important

component of scientific workloads. From a compu-

tational architecture standpoint, DNN-based scien-

tific applications have some unique requirements.

They require high compute density to support

matrix–matrix and matrix–vector operations, but

they rarely require 64-bit or even 32-bit precision

arithmetic, thus architects should continue to create

new instructions and new design points to acceler-

ate the training stage of the neural network. Most

current DNNs rely on dense, fully connected net-

works and convolutional networks and are thus rea-

sonably matched to current HPC accelerators (i.e.

GPUs and Xeon Phi). However, future DNNs may

rely less on dense communication patterns. In

general, DNNs do not have good strong-scaling

behavior. So, to fully exploit large-scale paralle-

lism, they rely on a combination of model, data, and

search parallelism.

Deep learning problems also require large quanti-

ties of training data to be made available or gener-

ated at each node, thus providing opportunities for

nonvolatile random access memory. Discovering

optimal deep learning models often involves a

large-scale search of hyperparameters. It is not

uncommon to search a space of tens of thousands

of model configurations. Naive searches are outper-

formed by various intelligent searching strategies,

including new approaches that use generative

neural networks to manage the search space. HPC

architectures that can support these large-scale

intelligent search methods, and also support effi-

cient model training, are needed.

Acknowledgments

The authors would like to acknowledge David Rogers for

his work on the illustrations, Sam Crawford for editing

support and the creation of the Appendix, and Piotr Luszc-

zek for technical support. They would also gratefully

acknowledge all the following sponsors who supported the

big data and exascale computing workshop series: Govern-

ment Sponsors: US Department of Energy, the National

Science Foundation, Argonne National Laboratory, Eur-

opean Exascale Software Initiative, and European Com-

mission; Academic Sponsors: University of Tennessee,

the National Institute of Advanced Industrial Science and

Technology (AIST), Barcelona Supercomputer Center,

Kyoto University, Kyushu University, Riken, The Univer-

sity of Tokyo, the Tokyo Institute of Technology, and the

University of Tsukuba Center for Computational Sciences;

Industry Sponsors: Intel, Cray, Data Direct Networks,

Fujitsu, Hitachi, Lenovo, and NEC. The authors would also

like to thank Jean-Claude André and Gabriel Antoniu for

their valuable contributions to this work.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) received no financial support for the

research, authorship, and/or publication of this article.

Notes

1. http://www.eesi-project.eu.

2. COM(2016) 178 of 19/4/2016—European Cloud Ini-

tiative—Building a competitive data and knowledge

economy in Europe.

3. The system and application software of the original dot.

com revolution had much in common with

Asch et al. 473

http://www.eesi-project.eu

contemporary high-performance computing infrastruc-

ture. That is far less true today.

4. One early exception was data from the Large Hadron

Collider experiments in CERN; the global high-

energy physics community had both the organization

and the clout to command sufficient government fund-

ing to support a content distribution network and dis-

tributed computing infrastructure, purpose built to

meet their needs. Astronomy and astrophysics is

another example. The International Virtual Observa-

tory Alliance provides a good example of an interna-

tional organization that nurtured web-services

standards; data representation standards like the flex-

ible image transport system; and other standards for

accessing astronomic data, exchanging data between

virtual observatories, tools to communicate, and anal-

ysis software. The result is that 90% of the world’s

astronomy data is reachable, and real science can be

done by using the tools and software that are being

built all around the world. The same is true for seis-

mology with the international federated digital seis-

mic network organization.

5. Please see http://www.exascale.org/bdec/ for a list and

descriptions.

6. Adapted from illustration in Abduction and Induction:

Essays on their relation and integration (Flach and

Hadjiantonis, 2013).

7. Summarized version of Feynman’s account provided

by Victor Baker in “The pragmatic roots of American

Quaternary geology and geomorphology” (Baker,

1996).

8. http://dsc.soic.indiana.edu/publications/NISTUseCase.

pdf.

9. http://www.andrewng.org/portfolio/map-reduce-for-

machine-learning-on-multicore/.

10. Just as multi-messenger astronomy is “the coordinated

observation and interpretation of disparate ‘messenger’

signals” from the same astronomical objects (Wikipe-

dia, 2017c), multi-messenger scientific inquiry com-

bines observations and interpretations of disparate

streams of sensor or instrument data of the same objects

in an integrated, inferential process.

11. https://www.cancer.gov/research/key-initiatives/moon

shot-cancer-initiative.

12. Between 2009 and 2013, the United States’ Food and

Drug Administration approved 20 new oncologic

drugs, having a treatment costs of US$100,000 per year

and an average progression-free survival improvement

of less than 6 months.

13. http://candle.cels.anl.gov.

14. A family of proteins whose over activity can ultimately

lead to cancer.

15. In the 6th Annual Earth System Grid Federation con-

ference report (see http://esgf.llnl.gov/media/pdf/

2017http://-ESGFF2FConferenceReport.pdf), a major

concern expressed was to minimize the time spent find-

ing, using, and storing data.

16. This point reminds one of Ken Batcher’s well-known

quip that, “A supercomputer is a device for turning

compute-bound problems into I/O-bound problems”

(Wikipedia, 2017a), the consequential truth of which

is destined to be reinforced by emerging exascale

systems.

17. Recent estimates place this as high as 10%.

18. http://www.openhpc.community/.

19. https://www.openstack.org/.

References

Abraham A, Michael P, Milham A, et al. (2017) Deriving repro-

ducible biomarkers from multi-site resting-state data: an

autism-based example. NeuroImage 147: 736–745.

Albrecht J (2016) Challenges for the LHC Run 3: computing and

algorithms. Presentation at International workshop on

Advanced Computing and Analysis Techniques in physics

research, January 2016, UTFSM, Valparaso, Chile.

Anderson T, Peterson L, Shenker S, et al. (2005) Overcoming the

Internet impasse through virtualization. Computer 38(4):

34–41.

Asch M, Bocquet M and Nodet M (2017) Data Assimilation:

Methods, Algorithms and Applications. Philadelphia, PA:

SIAM.

Attig N, Gibbon P and Lippert T (2011) Trends in supercomput-

ing: the European path to exascale. Computer Physics Com-

munications 182(9): 2041–2046.

Baker VR (1996) The pragmatic roots of American quaternary

geology and geomorphology. Geomorphology, 16(3):

197–215.

Baker AH, Xu H, Dennis JM, et al. (2014) A methodology for

evaluating the impact of data compression on climate simula-

tion data. In: Proceedings of the 23rd international symposium

on high-performance parallel and distributed computing,

HPDC ‘14, pp. 203–214. New York: ACM. ISBN 978-1-

4503-2749-7.

Banerjee S and Wu DO (2013) Final report from the NSF work-

shop on future directions in wireless networking. Washington,

USA : National Science Foundation.

Bassi A, Beck M, Fagg G, et al. (2002) The Internet backplane

protocol: a study in resource sharing. In: Cluster computing

and the grid, 2nd IEEE/ACM international symposium on, pp.

194–194, May 2002.

Bastug E, Bennis M and Debbah M (2014) Living on the edge: the

role of proactive caching in 5G wireless networks. IEEE Com-

munications Magazine, 52(8):82–89.

Beck M (2016) On the hourglass model, the end-to-end principle

and deployment scalability. Available at: http://philsci-

archive.pitt.edu/12626/ (accessed march)

Beck M, Moore T and Luszczek P (2017) Interoperable conver-

gence of storage, networking and computation. arXiv preprint

arXiv:1706.07519 03 July 2017. https://dblp.org/rec/bib/jour

nals/corr/BeckML17 (accessed 01 March 2018).

Bellucci F and Pietarinen AV (2017) Charles Sanders Peirce:

Logic, chapter Charles Sanders Peirce: Logic. Internet Ency-

clopedia of Philosophy. Internet Encyclopedia of Philosophy,

474 The International Journal of High Performance Computing Applications 32(4)

http://www.exascale.org/bdec/
http://dsc.soic.indiana.edu/publications/NISTUseCase.pdf
http://dsc.soic.indiana.edu/publications/NISTUseCase.pdf
http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/
http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/
https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative
https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative
http://candle.cels.anl.gov
http://-ESGFF2FConferenceReport.pdf
http://www.openhpc.community/
https://www.openstack.org/
http://philsci-archive.pitt.edu/12626/
http://philsci-archive.pitt.edu/12626/
https://dblp.org/rec/bib/journals/corr/BeckML17
https://dblp.org/rec/bib/journals/corr/BeckML17

s.v. “Charles Sanders Peirce,” by Francesco Bellucci and Ahti-

Veikko Pietarinen, http://www.iep.utm.edu/peir-log/.

Bennett JC, Abbasi H, Bremer P-T, et al. (2012) Combining in-

situ and in-transit processing to enable extreme-scale scientific

analysis. In: Proceedings of the international conference on

high performance computing, networking, storage and analy-

sis (SC ‘12), pp. 1–9. Salt Lake City, UT, USA: IEEE Com-

puter Society Press.

Bethel EW, Greenwald M, van Dam KK, et al. (2016) Manage-

ment, analysis, and visualization of experimental and observa-

tional data—the convergence of data and computing. In:

e-Science (e-Science), 2016 IEEE 12th international confer-

ence on, Baltimore, MD, USA, 23–27 October 2016. pp.

213–222. Piscataway: IEEE.

Bonomi F, Milito R, Zhu J, et al. (2012) Fog computing and its

role in the Internet of things. In: Proceedings of the first edi-

tion of the MCC workshop on mobile cloud computing, Hel-

sinki, Finland, pp. 13–16. New York: ACM.

Calyam P and Ricart G (2016) In: NSF Workshop on Applications

and Services in the Year 2021. Washington, DC, 2016. Avail-

able at: https://asw2016.wordpress.com/

Cao VH, Chu KX, Le-Khac NA, et al. (2015) Toward a new

approach for massive LiDAR data processing. In: Spatial data

mining and geographical knowledge services (ICSDM), 2015

2nd IEEE international conference on, Fuzhou, China, pp.

135–140. Piscataway: IEEE.

Chang WL (2015) NIST Big Data Interoperability Framework:

Volume 5, Architectures White Paper Survey. Gaithersburg:

Special Publication NIST SP-1500-5.

Chard K, Caton S, Rana O, et al. (2012) A social content delivery

network for scientific cooperation: vision, design, and archi-

tecture. In: High performance computing, networking, storage

and analysis (SCC), 2012 SC companion, Salt Lake City, UT,

pp. 1058–1067. Piscataway: IEEE.

Chen M, Mao S and Liu Y (2014) Big data: a survey. Mobile

Networks and Applications 19(2): 171–209.

Cisco Global Cloud Index (2015) Forecast and methodology,

2014-2019. Cisco White Paper.

Clark D (1988) The design philosophy of the DARPA Internet

protocols. ACM SIGCOMM Computer Communication

Review 18(4): 106–114.

Clark DD (1997) The unpredictable certainty: Information infra-

structure through 2000. Washington, DC: National Academy

Press.

Dennard RH, Gaensslen F, Yu H-N, et al. (1974) Design of ion-

implanted MOSFET’s with very small physical dimensions.

IEEE Journal of Solid State Circuits 9(5): 38–50.

Desprez F and Lebre A (2016) Research issues for future cloud

infrastructures: Inria position paper. Available at: https://fde

sprez.github.io/research/papers/PDF/2016/report-cloud-2016.

pdf (accessed 01 March 2018).

Dinov ID, Petrosyan P, Liu Z, et al. (2014) The perfect

neuroimaging-genetics-computation storm: collision of peta-

bytes of data, millions of hardware devices and thousands of

software tools. Brain Imaging and Behavior 8(2): 311.

Dongarra J, Beckman P, Moore T, et al. (2011) The international

exascale software project roadmap. International Journal of

High Performance Computing Applications 25(1): 3–60. ISSN

1094-3420.

Duranton M, Bosschere KD, Gamrat C, et al. (2017) HiPEAC

Vision 2017. Technical Report, H2020 HiPEAC CSA. ISBN

978-90-9030182-2. HiPEAC network of excellence, pp.138.

Executive Office of the U.S. President (2015a) National strategic

computing initiative executive order. Available at: https://

www.whitehouse.gov/the-press-office/2015/07/29/executive-

order-creating-national-strategic-computing-initiative.

(accessed 01 March 2018)

Executive Office of the U.S. President (2015b) National strategic

computing initiative fact sheet. Available at: https://www.

whitehouse.gov/sites/default/files/microsites/ostp/nsc_fact_

sheet.pdf (accessed 01 March 2018).

Eyink G, Vishniac E, Lalescu C, et al. (2013) Flux-freezing break-

down in high-conductivity magnetohydrodynamic turbulence.

Nature 0(497): 466–469.

Fälström P (2016, May) Market-Driven Challenges to Open Inter-

net Standards. Online. GCIG Paper No. 33, Global Commis-

sion on Internet Governance Paper Series.

Feynman RP (1967) The Character of Physical Law, Vol. 66.

Cambridge, UK: MIT press.

Flach PA and Hadjiantonis AM (2013) Abduction and Induction:

Essays on their Relation and Integration, Vol. 18. Berlin,

Germany: Springer Science & Business Media.

Foster I, Kesselman C and Tuecke S (2001) The anatomy of the

grid: enabling scalable virtual organizations. The International

Journal of High Performance Computing Applications 15(3):

200–222.

Fox G, Qiu J, Jha S, et al. (2016) White paper: Big data, simula-

tions and HPC convergence. Online. Available at: http://dsc.

soic.indiana.edu/publications/HPCBigDataConvergence.Sum

mary_IURutgers.pdf (accessed 01 March 2018).

Fox G, Shantenu J and Ramakrishnan L (2016) Final report: first

workshop on streaming and steering applications: Require-

ments and infrastructure. Available at: http://streamingsys

tems.org/finalreport.pdf (accessed 01 March 2018).

Fu S, Liu J, Chu X, et al. (2016) Toward a standard interface for

cloud providers: the container as the narrow waist. IEEE Inter-

net Computing 20(2): 66–71.

Gelenbe E and Caseau Y (June 2015) The impact of information

technology on energy consumption and carbon emissions.

Ubiquity New York: ACM. ISSN 1530-2180.

Gleckler PJ, Durack PJ, Stouffer RJ, et al. (2016) Industrial-era

global ocean heat uptake doubles in recent decades. Nature

Climate Change 6: 394–398.

Gorenberg M, Schmidt E and Mundie C (2016) Report to the

President: Technology and the Future of Cities. Washington,

DC, USA: President’s Council of Science and Technology

Advisors, pp. 1–99.

Grady NW, Underwood M, Roy A, et al. (2014) Big data:

challenges, practices and technologies: NIST big data public

working group workshop at IEEE big data 2014. In: Big data

(big data), 2014 IEEE international conference on, Washing-

ton, DC, USA, pp. 11–15. Piscataway: IEEE.

Hagel J and Brown JS (2017) Shaping strategies for the IoT.

Computer 50(8):64–68.

Asch et al. 475

http://www.iep.utm.edu/peir-log/
https://asw2016.wordpress.com/
https://fdesprez.github.io/research/papers/PDF/2016/report-cloud-2016.pdf
https://fdesprez.github.io/research/papers/PDF/2016/report-cloud-2016.pdf
https://fdesprez.github.io/research/papers/PDF/2016/report-cloud-2016.pdf
https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
https://www.whitehouse.gov/sites/default/files/microsites/ostp/nsc_fact_sheet.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/nsc_fact_sheet.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/nsc_fact_sheet.pdf
http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.Summary_IURutgers.pdf
http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.Summary_IURutgers.pdf
http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.Summary_IURutgers.pdf
http://streamingsystems.org/finalreport.pdf
http://streamingsystems.org/finalreport.pdf

Hagel J, Brown JS and Davison L (2008) Shaping strategy in a

world of constant disruption. Harvard Business Review

86(10): 80–89.

Hashem IAT, Yaqoob I, Anuar NB, et al. (2015) The rise of “big

data” on cloud computing: review and open research issues.

Information Systems 47: 98–115.

Hey T and Trefethen A (2003) The data deluge: an e-Science

perspective. In: Berman F, Fox GC and Hey AJG (eds) Grid

Computing: Making the Global Infrastructure a Reality.

Hoboken: Wiley and Sons, pp. 809–824.

Hey T, Tansley S and Tolle KM (2007) Jim Gray on

eScience: a transformed scientific method. Online. Avail-

able at: https://www.semanticscholar.org/paper/Jim-Gray-

on-eScience-a-transformed-scientific-meth-Hey-Tansley/

b71ce8fa2d7795acc4b03df8691184ff722fc7a1 (accessed 01

March 2018).

Honavar VG, Hill MD and Yelick K (2016) Accelerating science:

a computing research agenda. arXiv preprint arXiv:1604.

02006.

Hu YC, Patel M, Sabella D, et al. (2015) Mobile edge computing?

A key technology towards 5G. ETSI White Paper 11(11): 1–16.

Karpatne A, Atluri G, Faghmous J, et al. (2016) Theory-guided

data science: a new paradigm for scientific discovery. IEEE

Transactions on Knowledge and Data Engineering, 29(10):

2318–2331.

Kavassalis P, Solomon RJ and Benghozi PJ (1996) The Internet: a

paradigmatic rupture in cumulative telecom evolution. Indus-

trial and Corporate Change 5(4): 1097–1126.

Kuntschke R, Scholl T, Huber S, et al. (2006) Grid-based data

stream processing in e-Science. In: Second international con-

ference on e-Science and grid technologies (e-Science 2006),

pp. 4–6 December 2006, Amsterdam, The Netherlands, pp. 30.

Leiner BM, Cerf VG, Clark DD, et al. (2009) A brief history of the

Internet. SIGCOMM Computer Communication Review 39(5):

22–31.

Li Y, Perlman E, Wan M, et al. (2008) A public turbulence database

cluster and applications to study Lagrangian evolution of velo-

city increments in turbulence. Journal of Turbulence 9: N31.

Lu XY, Liang F and Wang B (2014) DataMPI: extending MPI to

Hadoop-like big data computing. In: International parallel

and distributed processing symposium, Phoenix, AZ, USA,

19–23 May 2014, pp. 829–838.

Luu H, Winslett M, Gropp W, et al. (2015) A multiplatform study

of I/O behavior on petascale supercomputers. In Proceedings

of HPDC’15, 15-19 June, 2015. DOI: 10.1145/2749246.

2749269http://.

McGeer R, Berman M, Elliott C, et al. (eds) (2016) The GENI

Book. Berlin, Germany: Springer. ISBN 978-3-319-33767-8.

Messerschmitt DG and Szyperski C (2005) Software Ecosystem:

Understanding an Indispensable Technology and Industry.

Cambridge, UK: MIT Press. ISBN 9780262633314. Available

at: https://books.google.com/books?id¼6ipSHAAACAAJ.

(accessed 01 March 2018)

Miyoshi T, Kunii M, Ruiz J, et al. (2016) Big data assimilation

revolutionizing severe weather prediction. Bulletin of the

American Meteorological Society 97(8): 1347–1354.

Nahrstedt K, Cassandras C and Catlett C (2017a) City-scale intel-

ligent systems and platforms. Online. Available at: http://cra.

org/ccc/wp-content/uploads/sites/2/2017/03/City-Scale-Intelli

gent-Systems-and-Platforms.pdf (accessed 01 March 2018).

Ni J and Tsang DHK (2005) Large-scale cooperative caching and

application-level multicast in multimedia content delivery net-

works. Communications Magazine, IEEE 43(5): 98–105.

Papagianni C, Leivadeas A and Papavassiliou S (2013) A cloud-

oriented content delivery network paradigm: modeling and

assessment. Dependable and Secure Computing, IEEE Trans-

actions on 10(5): 287–300.

Reed DA and Dongarra J (2015) Exascale computing and big

data. Communication. ACM 58(7): 56–68.

Satyanarayanan M (2017) The emergence of edge computing.

Computer 50(1): 30–39.

Satyanarayanan M, Bahl P, Caceres R, et al. (2009) The case for

VM-based cloudlets in mobile computing. IEEE Pervasive

Computing 8(4): 14–23.

Shi W, Cao J, Zhang Q, et al. (2016) Edge computing: vision and

challenges. IEEE Internet of Things Journal 3(5): 637–646.

Tennenhouse DL and Wetherall DJ (1996) Towards an active

network architecture. Computer Communication Review 26:

5–18.

ur Rehman MH, Liew CS, Abbas A, et al. (2016) Big data reduc-

tion methods: a survey. Data Science and Engineering 1(4):

265–284.

Wang S, Zhang X, Zhang Y, et al. (2017) A survey on mobile

edge networks: convergence of computing, caching and com-

munications. IEEE Access 5: 6757–6779.

Wikipedia (2017a) Ken batcher — Wikipedia, the free encyclo-

pedia. Available at: https://en.wikipedia.org/wiki/Ken_

Batcher (accessed 16 October 2017).

Wikipedia (2017b) Lidar — Wikipedia, the free encyclopedia.

Available at: https://https://en.wikipedia.org/wiki/Lidar

(accessed 07 July 2017).

Wikipedia (2017c) Multi-messenger astronomy — Wikipedia, the

free encyclopedia. Available at: https://en.wikipedia.org/wiki/

Ken_Batcher (accessed 16 October 2017).

Williams DN, Ananthakrishnan R, Bernholdt DE, et al. (2008)

Data management and analysis for the earth system grid. Jour-

nal of Physics: Conference Series 1250(1): 012072. Available

at: http://stacks.iop.org/1742-6596/125/i¼1/a¼012072

(accessed 01 March 2018).

Xu ZW, Chi XB and Xiao N (2016) High-performance computing

environment: a review of twenty years of experiments in

China. National Science Review 3(1): 36–48.

Author biographies

M. Asch is full professor of Applied Mathematics at the

University of Picardy Jules Verne (France) and is currently

on secondment to Total, where he coordinates group-level

research programs on Uncertainty and Data Science.

T. Moore is the Associate Director of the Innovative Com-

puting Laboratory in the Tickle College of Engineering at

476 The International Journal of High Performance Computing Applications 32(4)

https://www.semanticscholar.org/paper/Jim-Gray-on-eScience-a-transformed-scientific-meth-Hey-Tansley/b71ce8fa2d7795acc4b03df8691184ff722fc7a1
https://www.semanticscholar.org/paper/Jim-Gray-on-eScience-a-transformed-scientific-meth-Hey-Tansley/b71ce8fa2d7795acc4b03df8691184ff722fc7a1
https://www.semanticscholar.org/paper/Jim-Gray-on-eScience-a-transformed-scientific-meth-Hey-Tansley/b71ce8fa2d7795acc4b03df8691184ff722fc7a1
http://.
https://books.google.com/books?id=6ipSHAAACAAJ
https://books.google.com/books?id=6ipSHAAACAAJ
http://cra.org/ccc/wp-content/uploads/sites/2/2017/03/City-Scale-Intelligent-Systems-and-Platforms.pdf
http://cra.org/ccc/wp-content/uploads/sites/2/2017/03/City-Scale-Intelligent-Systems-and-Platforms.pdf
http://cra.org/ccc/wp-content/uploads/sites/2/2017/03/City-Scale-Intelligent-Systems-and-Platforms.pdf
https://en.wikipedia.org/wiki/Ken_Batcher
https://en.wikipedia.org/wiki/Ken_Batcher
https://https://en.wikipedia.org/wiki/Lidar
https://en.wikipedia.org/wiki/Ken_Batcher
https://en.wikipedia.org/wiki/Ken_Batcher
http://stacks.iop.org/1742-6596/125/i=1/a=012072
http://stacks.iop.org/1742-6596/125/i=1/a=012072
http://stacks.iop.org/1742-6596/125/i=1/a=012072

the University of Tennessee. He earned his PhD in Philo-

sophy from the University of North Carolina, Chapel Hill.

His research interests include collaboration technologies,

distributed computing, logistical networking, and the his-

tory and philosophy of science.

R. Badia leads the Workflows and Distributed Computing

research group at the Barcelona Supercomputing Center.

The group focuses its research on the development of

PyCOMPSs/COMPSs, a task-based programming model

for distributed computing that is used in several European

projects.

M. Beck began his research career in distributed operating

systems at Bell Laboratories and received his PhD in Com-

puter Science from Cornell University (1992) in the area of

parallelizing compilers. He then joined the faculty of the

Computer Science Department at the University of Tennes-

see, where he is currently an Associate Professor working

in distributed and high-performance computing, network-

ing, and storage.

P. Beckman is the co-director of the Northwestern Univer-

sity / Argonne National Laboratory Institute for Science

and Engineering. As a Senior Computer Scientist at

Argonne, he leads research into exascale system software

and intelligent sensor networks. He received his PhD in

Computer Science from Indiana University in 1993.

T. Bidot is a consultant in high-performance computing for

Neovia Innovation. He has an MS in Numerical Analysis

from the University Pierre et Marie Curie (Paris VI) and

has been teaching Numerical Analysis in France and

abroad. He has over 30 years of experience within Eur-

opean and US companies and has been involved in more

than 50 European funded research projects.

F. Bodin is a Professor at the University of Rennes I. He

was the founder and CTO of Caps-Enterprise, which spe-

cialized in programming tools for high-performance

computing.

F. Cappello is a Senior Computer Scientist at Argonne

National Laboratory and an Adjunct Associate Professor in

the Department of Computer Science at the University of

Illinois at Urbana Champaign. He is the Director of the Joint-

Laboratory on Extreme Scale Computing, which brings

together seven of the leading high-performance computing

institutions in the world: ANL, NCSA, Inria, BSC, JSC,

Riken CCS, and UTK-ICL. He is a fellow of the IEEE.

A. Choudhary is a Henry and Isabel Dever Professor of

Electrical Engineering and Computer Science at

Northwestern University. He is a fellow of IEEE, ACM,

and AAAS.

B. de Supinski Supinski is CTO for Livermore Computing

at Lawrence Livermore National Laboratory (LLNL),

where he formulates LLNL’s large-scale computing strat-

egy and oversees its implementation. In addition to his

work with LLNL, Bronis is also a Professor of Exascale

Computing at Queen’s University of Belfast and an

Adjunct Associate Professor in the Department of Com-

puter Science and Engineering at Texas A&M University.

E. Deelman is a Research Professor at the USC Computer

Science Department and a Research Director at the USC

Information Sciences Institute. Dr. Deelman’s research

interests include the design and exploration of collabora-

tive, distributed scientific environments, with particular

emphasis on automation of scientific workflow and man-

agement of computing resources, as well as the manage-

ment of scientific data.

J. Dongarra holds appointments at the University of Ten-

nessee, Oak Ridge National Laboratory, and the University

of Manchester. He specializes in numerical algorithms in

linear algebra, parallel computing, use of advanced com-

puter architectures, programming methodology, and tools

for parallel computers. He was awarded the IEEE Sid Fern-

bach Award in 2004; in 2008 he was the recipient of the

first IEEE Medal of Excellence in Scalable Computing; in

2010 he was the first recipient of the SIAM Special Interest

Group on Supercomputing’s award for Career Achieve-

ment; in 2011 he was the recipient of the IEEE Charles

Babbage Award; and in 2013 he received the ACM/IEEE

Ken Kennedy Award. He is a Fellow of the AAAS, ACM,

IEEE, and SIAM, a foreign member of the Russian Acad-

emy of Science, and a member of the US National Acad-

emy of Engineering.

A. Dubey is a Computer Scientist in the Mathematics and

Computer Science Division at Argonne National Labora-

tory. She also holds a joint appointment in Astronomy and

Astrophysics at the University of Chicago. Her primary

research interests are design, architecture, and productivity

issues related to multicomponent scientific software.

G. Fox is a Distinguished Professor of Engineering, Com-

puting, and Physics at Indiana University, where he is

director of the Digital Science Center and Department

Chair for Intelligent Systems Engineering at the School

of Informatics, Computing, and Engineering.

H. Fu is the Deputy Director of the National Supercomput-

ing Center in Wuxi and an Associate Professor in the

Asch et al. 477

Ministry of Education’s Key Laboratory for Earth System

Modeling and Department of Earth System Science at Tsin-

ghua University. Dr. Fu works on computational solutions

for geoscience problems. His research has led to two con-

secutive ACM Gordon Bell Prizes (fully-implicit atmo-

spheric dynamic solver in 2016 and non-linear

earthquake simulation in 2017), Significant Papers of FPL

(27 out of 1,765 publications in 25 years of FPL), and Best

Paper Award (3 out of 278 submissions) of ICTAI 2015.

S. Girona, PhD in Computer Science, has been the Director

of the Barcelona Supercomputing Center’s Operations

Department since 2004 and is the manager of the Spanish

Supercomputing Network (RES). He has also held several

managing positions in PRACE since its creation.

W. Gropp is Director of the National Center for Supercom-

puting Applications at the University of Illinois at Urbana-

Champaign and holds the Thomas M. Siebel Chair in the

Department of Computer Science. He is a Fellow of ACM,

IEEE, and SIAM and an elected member of the National

Academy of Engineering.

M. Heroux is a Senior Scientist at Sandia National Labora-

tories, Director of SW Technologies for the US Department

of Energy’s Exascale Computing Project, and Scientist in

Residence at St. John’s University, MN. His research inter-

ests include all aspects of scalable scientific and engineer-

ing software for new and emerging parallel computing

architectures.

Y. Ishikawa leads the FLAGSHIP 2020 project at the Riken

Center for Computational Science.

K. Keahey is one of the pioneers of infrastructure for cloud

computing. She created the Nimbus project, recognized as

the first open-source Infrastructure-as-a-Service implemen-

tation. Kate also leads the Chameleon project, a deeply

reconfigurable, large-scale, and open experimental plat-

form for computer science research. Kate is a scientist at

Argonne National Laboratory and a Senior Fellow at the

Computation Institute at the University of Chicago.

D. Keyes is a Professor of Applied Mathematics and Com-

putational Science and Director of the Extreme Comput-

ing Research Center at the King Abdullah University of

Science and Technology (KAUST). He is also an Adjunct

Professor and former Fu Foundation Chair in Applied

Physics and Applied Mathematics at Columbia Univer-

sity. He has co-authored over a dozen reports on aspects

of high-performance computing and computational sci-

ence and engineering for the US DOE, NSF, NASA, and

SIAM.

W. Kramer leads the National Center for Supercomputing

Applications’ (NCSA’s) @Scale Science & Technologies

program and is the principal investigator for NCSA’s Blue

Waters project, which deployed and supports the highest

sustained-performance computational and data analysis

system available to the nation’s open research community.

Bill is also a Research Professor in the Computer Science

Department at the University of Illinois at Urbana-

Champaign.

J.-F. Lavignon now CEO of Technology Strategy, is

involved in the development of high-performance com-

puting in Europe. He managed high-performance comput-

ing at Bull/Atos from 2001 to 2007 and was the chairman

of the European Technology Platform for High Perfor-

mance Computing (ETP4HPC) from its creation until

2016.

Y. Lu is a Professor of Computer Science at both Sun Yat-

sen University and the National University of Defense

Technology (NUDT). She is also Director of the National

Supercomputing Center in Guangzhou. She received her

BS, MS, and PhD from NUDT. Her extensive R&D expe-

rience has spanned several generations of domestic super-

computers in China, and she is deputy chief designer of the

Tianhe-2 system. Her continuing research interests include

parallel operating systems, high-speed communications,

global file systems, and advanced programming environ-

ments converging high-performance computing and big

data.

S. Matsuoka is the director of the RIKEN Center for Com-

putational Science, the organization that oversees the K

Computer and its upcoming exascale successor, the Post-

K supercomputer.

B. Mohr is a Senior Scientist at Forschungszentrum Juelich,

Germany, serving since 1996. Starting in 2007, he also

serves as deputy head for the Juelich Supercomputing Cen-

tre’s division of Application Support.

D. Reed is the Senior Vice President for Academic Affairs

as well as a Professor of Computer Science and Electrical

& Computer Engineering at the University of Utah.

S. Requena is Chief Technology Officer of GENCI and the

French HPC agency. She is in charge of formulating GEN-

CI’s HPC, HPDA, and AI converged facilities/services

strategy and implementing it with the support of the three

national centers. In addition, Stù̂phane is also a member of

the PRACE Board of Directors and has past expertise in

HPC applications development and optimization for the oil

and gas, energy, and automotive industries.

478 The International Journal of High Performance Computing Applications 32(4)

J. Saltz is a Digital Pathology pioneer having worked for

the past twenty years in the development of digital Pathol-

ogy whole slide image software, algorithms, and tools. He

has also made substantial contributions to high-end com-

puting system software, having developed the inspector/

executor framework and the innovative filter/stream mid-

dleware with concepts that found their way into many com-

mercial systems. He is a boarded Clinical Pathologist,

holds an MD-PhD in Computer Science from Duke, com-

pleted a Clinical Pathology residency from Hopkins, and

has founded Biomedical Informatics departments at Stony

Brook, Emory, and Ohio State. Dr. Saltz is Chair and Pro-

fessor of Biomedical Informatics at SUNY Stony Brook, is

Vice President for Clinical Informatics, Stony Brook Med-

icine, Associate Director for Informatics at Stony Brook

Cancer Center, and holds the Cherith endowed chair.

T. Schulthess is Director of the Swiss National Supercom-

puting Centre (CSCS) at Manno. As CSCS director, he is

also a full Professor of Computational Physics at ETH

Zurich.

R. Stevens is a professor at the University of Chicago and an

Associate Laboratory Director at Argonne National Labora-

tory. He is internationally known for work in high-perfor-

mance computing, collaboration and visualization

technology, and for building computational tools and web

infrastructures to support large-scale genome and metagen-

ome analysis for basic science and infectious disease research.

He is also recognized for his role in developing the national

initiative for exascale computing, and for AI-based cancer

research that is defining exascale computing requirements.

M. Swany is Associate Chair and Professor in the Intelligent

Systems Engineering Department in the School of Infor-

matics and Computing at Indiana University. His research

interests include high-performance parallel and distributed

computing and networking.

A. Szalay is the Bloomberg Distinguished Professor at

Johns Hopkins University. He has been the Architect of the

science archive for the Sloan Digital Sky Survey. His

research interests include scalable data-intensive architec-

tures and algorithms.

W. Tang is the Principal Research Physicist at the Princeton

University Plasma Physics Laboratory, Lecturer with Rank

& Title of Professor in the University’s Department of

Astrophysical Sciences, member of the Executive Board,

and PI for the Intel Parallel Computing Center at the Uni-

versity’s interdisciplinary Princeton Institute for Computa-

tional Science and Engineering. He has an “h-index” or

“impact factor” of 45 on the Web of Science, including

over 8,000 total citations, and was recently named recipient

of the NVIDIA 2018 Global Impact Award.

G. Varoquaux is a tenured computer science researcher at

INRIA. He works on statistical machine learning and is a

core contributor to the scikit-learn, joblib, Mayavi, and

nilearn software. Varoquaux has a PhD in quantum physics

and is a graduate of Ecole Normale Superieure, Paris.

J.-P. Vilotte (res.id H-1552-2017) is Professor at the Insti-

tut de Physique du Globe de Paris (IPGP), and is Director of

the High-performance Computer and Data Analysis Centre

(S-CAPAD) of IPGP. He is part of the External Advisory

board of the European project AENEAS for designing the

distributed, federated European Science Data Centre

(ESDC) to support the astronomical community in achiev-

ing the scientific goals of the Square Kilometre Array

(SKA).

R. Wisniewski is an ACM Distinguished Scientist, the Chief

Software Architect for Extreme Scale Computing, and a

Senior Principal Engineer at Intel Corporation. He has pub-

lished over 74 papers, filed over 56 patents, and given over

53 invited presentations. Prior to working at Intel, he was

the chief software architect for Blue Gene Research.

Z. Xu is a Professor and CTO at the Institute of Computing

Technology, Chinese Academy of Sciences and holds a

PhD degree from the University of Southern California.

I. Zacharov occupied leading positions in industry as a

Senior Solution Architect specializing in energy-efficient,

high-performance computers. Before joining Skoltech, Igor

worked at Eurotech designing liquid-cooled computers. He

served on the European ETP4HPC industry panel leading

the Energy Efficiency & Resiliency track.

Asch et al. 479

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

