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Abstract : As one of segmentation techniques for Synthetic Aperture Radar (SAR) image with oil spill,
we applied a bimodal histogram method to discriminate oil pixels from non-oil pixels. The threshold of each
moving window was objectively determined using the two peaks in the histogram distribution of
backscattering coefficients from ENVISAT ASAR image. To reduce the effect of wind speed on oil spill
detection, we selected ASAR image which satisfied a limit of wind speeds for successful detection. Overall, a
commonly used adaptive threshold method has been applied with a subjectively-determined single threshold.
In contrast, the bimodal histogram method utilized herein produces a variety of thresholds objectively for each
moving window by considering the characteristics of statistical distribution of backscattering coefficients.
Comparison between the two methods revealed that the bimodal histogram method exhibited no significant
difference in terms of performance when compared to the adaptive threshold method, except for around the
edges of dark oil spots. Thus, we anticipate that the objective method based on the bimodality of oil slicks may
also be applicable to the detection of oil spills from other SAR imagery.
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1. Introduction receives a backscattering cross section transmitted back

to the sensor in space. The backscattering coefficient,

Synthetic Aperture Radar (SAR) sensor is one of the or sigma naught, can be used to retrieve a variety of
most important active sensors, capable of visualizing oceanic variables. Overall, these SAR sensor satellite
the surface of the earth. It sends a chirp pulse of systems can measure 50-500 km’ regions with spatial
microwaves at C-, K-, or L-bands to the sea surface and resolutions of about 10-100 m, and are frequently
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utilized to monitor oceanic phenomena.

Ever since the primitive SAR system of Seasat
launched in 1979, SAR sensors have long been used to
observe the earth accurately and precisely through
multi-polarization, multi-wave length, and multi-mode
observations. SAR satellite data has been utilized for a
wide range of marine meteorological fields, such as
monitoring of ocean waves (Alpers et al., 1981;
Kasischke et al., 1988; Hasselmann and Haselmann,
1991; Engen and Johnsen, 1995; Collard et al., 2005),
ocean currents (Shemer et al., 1993; Graber et al., 1996;
Kang and Lee, 2007), sea surface winds (Gerling, 1986;
Monaldo et al., 2001; Xu et al., 2010; Kim and Park,
2011; Kim et al., 2012), and internal waves (Rodenas
and Garello, 1997; Liu and Hsu, 2004), and ship
detection (Ouchi et al., 2004; Liao et al., 2008),
submarine detection (Liu ef al., 1996), intertidal zone
changes (Mason et al., 1995; Van der Wal et al.,2005),
and coastal soil information (Bell ef al., 2001). One
other application is oil spill detection with devastating
hazards along coastal regions.

One of the important preconditions for oil spill
detection is an appropriate wind speed at the time,
which is sufficient to generate Bragg waves. SARs
measure the backscattered radar power interacted with
Bragg waves in centimeter-long wavelengths at a
moderate incidence angle between 20 and 70 degrees
(Valenzuela, 1978). The existence of surface films
significantly dampens short gravity-capillary waves
(Lucassen, 1982; Huehnerfuss et al., 1983; Huehnerfuss
etal., 1987; Alpers and Huehnerfuss, 1989), hence the
regions covered with oil can be detected by analyzing
their backscattering contrast. At low wind speeds of
less than 2-3 m/s, backscattering from the sea surface
as a whole tends to be very weak, so that no significant
signature of oil slicks appears (Bern et al., 1992; Perez-
Marrodan, 1998). Likewise, at high wind speeds of
over 10-14 m/s, the damping effect disappears in the
background noise of wind-generated waves (Demin et
al., 1985; Bern et al., 1992; Litovchenko et al., 1999).

Therefore, oil spill detection using SAR data is only
applicable in a wind range of 2-14 m/s. Thus, we only
utilized SAR imagery which satisfies this condition.

A variety of research for oil spill detection using
SAR images has been attempted, which is important
for coastal monitoring and understanding of physical
oceanographic process. In most of cases, oil spills have
been studied using single polarization, such as HH or
VV, from European Remote Sensing 1/2 (ERS-1/2),
and Environmental Satellite (ENVISAT), RADARSAT-
1. Very recently, a new method has also been
developed to utilize multi-polarization (HH/HV/
VH/VV) SAR images in the detection of oil spills at
the sea surface (Zhang et al., 2011; Migliaccio et al.,
2011). However, the full polarization observation of
SAR has been difficult to readily obtain due to its
infrequent measurement schedule and its limitations in
regards to diverse applications.

In the seas around Korea, there have been only a few
studies to detect oil spills from SAR images. In
addition, a relatively simple method, adaptive threshold
method, has been utilized (Yang et al., 2009; Park et
al., 2010; Kim et al., 2010). The adaptive threshold
method has the advantage of being able to reduce
computation time, but it also has a disadvantage in
terms of the difficulty of setting the threshold
objectively. Thus, a more robust method capable of
determining the threshold objectively and automatically
for operational purposes is necessary. Therefore, in this
study, we introduce the bimodal histogram method for
oil spill detection from SAR images with a single
polarization, and then compare this method with the
adaptive threshold method.

The objectives of this study are (1) to apply the
adaptive threshold method algorithm to detect oil spills
from an ENVISAT SAR image, (2) to develop the
bimodal histogram method based on the Gaussian
fitting method, and (3) to compare the two methods and

present some differences.
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2. Data

Since most SARs observe the sea surface with an
insufficient temporal resolution, it is hard to obtain
SAR imagery which includes the significant features
of oil spills at the seas around Korea. Therefore, we
searched European Space Agency’s (ESA) quick-look
images of the world’s oceans and seas and collected
SAR images which contained oil-covered areas.
Among them, we selected the SAR image from
ENVISAT Advanced Synthetic Aperture Radar
(ASAR) off the coast of Libya in the Mediterranean
Sea which showed obvious dark patches originated
from natural oil seeps (Fig. 1). The SAR data was
utilized to apply the oil spill detection methods and
investigate the characteristics of each detection method.
Details of the ENVISAT ASAR image used in this
study were summarized in Table 1.

The ENVISAT ASAR image was taken at 9h 7m
(UTC) on 17 September, 2006. The center of the study
area is located at 14.66°E, 32.82°N. The ASAR data
was obtained at C-band (5.331 GHz) with HH-
polarization. The coverage of the ASAR image covers
approximately 82 km in the range direction and 46 km
in the azimuthal direction. The looking angle of the
ASAR image ranges from 25.7° to 31.2° from nadir
and the spatial resolution is 12.5 m.

In order to investigate whether or not the SAR image
can be used for the detection of oil spills at the local

region, we used wind speed measurements from Quick

Scatterometer (QuikSCAT) at similar time to the
observation time of SAR. The wind speed was 7.2 m/s
for the study area in Fig. 1b, which satisfies the range
limit for oil spill detection using SAR data. Overall, the
thresholds of wind speed for detection were from 2-3
to 10-14 m/s (Demin et al., 1985; Bern et al., 1992;
Perez-Marrodan, 1998; Litovchenko et al., 1999).

3. Method

1) Estimation of backscattering coefficient

Prior to applying oil spill detection algorithms,
ENVISAT ASAR data was processed to extract the
backscattering coefficients (0o). For ENVISAT ASAR
data, a intensity of detected radar brightness was
retrieved after elevation antenna patterns and range-
spreading loss corrections without any incidence angle
correction. Thus, the Normalized Radar Cross Section
(NRCS) can be derived from detected pixel values by
correcting the effect of the incidence angle. The
relationship between the value of power at an image
pixel, Z, and NRCS is as follows:

00 =1 sin(e) (1)

where < > indicates the spatial average of the pixel
values around the target, o is the incidence angle, and
K is an absolute calibration constant. The derived
NRCS values were converted to units of dB.

Fig. 1b shows the distribution of the derived NRCS

Table 1. Information of SAR image used in this study

Parameter ENVISAT SAR
Frequency (GHz) 5.331 (C-band)
Polarization state Single-polarization (HH)
Swath width (km) 82.83

Azimuthal range (km) 46.07
Resolution (m) 12.5x12.5
Look angle (deg) 25.74°-31.22°

Acquired time

0% 07m 18s (UTC) on 17 September, 2006,

Central location

14.66°E, 32.82°N
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Fig. 1. (a) Location of study area (marked in a small box) and (b) distribution of backscattering cross section from ENVISAT ASAR in

the ocean near Libya on 17 September 2006.

values in the study area, where the bright pixels (>-16
dB) are of larger values than dark pixels (<-20 dB). The
values of 0o ranged from -25.2 dB to -10.7 dB and the
mean of the values for the entire area amounted to-15.7
dB. The dark patches on the upper middle part of the
image have much lower values (dark) than those of the
background data (bright). These features were assumed

to be associated with the damping of Bragg resonant
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2) Adaptive threshold method

In general, pixels which demonstrate no significant
difference in terms of some environmental condition
(e.g., wind speed, sea surface temperature) tend to show
similar NRCS values, whereas pixels in regions

covered with oil tend to contain much lower NRCS
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Fig. 2. Flow chart of adaptive threshold method for oil spill detection, clustering the detected oil pixels, and the calculation of areas

filled with oil.
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values than those of the surrounding background due
to the damping effect. This suggests that oil slicks are
characterized by low backscattering under a certain
NRCS level. If we give a proper threshold, the dark
spots can be separated from the surrounding non-oil
pixels at the sea surface.

The adaptive threshold method is one of the most
widely used methods for oil spill detection from SAR
images among those techniques which employ a
threshold. Such techniques determine a threshold
within each window of size N x N with a mean and
standard deviation from each moving window (Vachon
et al., 1998; Solberg et al., 1999 ). Based on these
simple thresholds, pixels in a window whose NRCS
values are lower than the thresholds are detected as oil
spills.

Fig. 2 shows the schematic flow chart of oil spill
detection for SAR data by the adaptive threshold
method. Before applying the method, the input

parameters including the window size, minimum

|

[dB]

[dB]

Number of pixels

Number of pixels

cluster size in extent (km’), and threshold k (dB) were
given. To reduce speckle noises, NRCSs were averaged
in 5 x 5 window after land masking procedure. Using
the NRCS, the adaptive threshold in a moving window
was estimated and then low backscattering pixels
regarded as dark spots were separated according to the
threshold. To better separate the spill from its
surroundings and estimate the extent of the oil-covered
area, the detected dark spots were clustered using
connectivity in eight neighbourhood directions. Based
on the estimated extents, clusters of dark spots which
were smaller than the minimum cluster size were

assumed to be look-alikes and discriminated.

3) Bimodal histogram method

The bimodal histogram method separates oil spills
from the sea surface based on the distribution of NRCS
in a window (Skgelv and Wahl, 1993). As shown on
Figs. 3a and 3b, generally a sea surface without oil has

a form of histogram with unimodal distribution. On the
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Fig. 3. (a) Spatial distribution of backscattering coefficient at an area without any oil spill and (b) its histogram, (c) backscattering
coefficient within a window for oil spill detection based on the bimodal histogram method and (d) its histogram.
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Fig. 4. Flow chart of the bimodal histogram method for oil spill detection, clustering the detected oil pixels, and the calculation of areas

filled with oil.

contrary, a sea surface with oil slicks shows a bimodal
distribution which has two distinct peaks, since oil
slicks typically have much lower NRCS values than the
surrounding background (Figs. 3¢ and 3d). Thus, oil
spills in SAR images can be identified by analyzing the
form of histogram produced.

Fig. 4 shows the schematic flow chart of oil spill
detection for SAR data using the bimodal histogram
method. In general much of the procedure is similar to
that of the adaptive threshold method, with the
exception of histogram analysis and threshold
determination. While the threshold of the former
method was simply given based on the mean and
standard deviation, that of the latter method was
deduced from the -characteristics of statistical

distribution.

Before analyzing a form of distribution and
calculating a threshold, a histogram in a moving
window is fitted to multimodal Gaussian distribution

functions as follows;

by

) =I§I ae & )

where N is the total number of modes, which indicates
unimodal (1-peak) and bimodal (2-peak) Gaussian
distributions when N = 1 and N = 2, respectively, and
an, by, and ¢, are coefficients for nth mode Gaussian
fitted functions. By comparing calculated fi-3 and its
coefficient of determination R?, it was determined
which mode is the best fit to a form of histogram in a

moving window.
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4. Results

1) Adaptive threshold method

Fig. 5 presented the distribution of NRCS at the
study area and the derived results of oil spill detection
based on the adaptive threshold method. Oil slicks with
rounded shapes appeared around the upper middle part

of the image (enlarged images on Figs. 7a and 7b). In

(b) .

Fig. 5. (a) Spatial distribution of ENVISAT backscattering
coefficient (sigma naught) with oil spill and (b) the
analysis results of oil spill pixels using the adaptive
threshold method, where 1 is oil and 0 is a non-oil pixel.
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Fig. 6. An example of the bimodal histogram method by fitting

Gaussian distribution functions with two peaks, marked

as stars on the solid fitted line, onto a histogram of

backscattering coefficients denoted with a dotted gray

line.

addition, linear or dotted dark spots assumed to be
artificial structures or noises (look-alikes) were also
detected to some extent. These small dark spots can be
discriminated by setting minimum cluster size. In this
study, we set the minimum cluster size to a value of 0.1
km’ in order to remove these look-alikes. After
clustering and discrimination, the extent of the dark
spots was calculated. The extent of the dark spots
detected by the adaptive threshold method was
estimated to be 1.87 km’.

2) Bimodal histogram method

To detect oil spills the bimodal histogram method
was also applied. Fig. 6 demonstrates an example of a
threshold determined using the bimodal threshold
method. A histogram of a window shows a typical form
of bimodal distribution. The values of for Gaussian
fitted functions were 0.01 (f1),0.51 (f2),and 0.87 (f3),
respectively. We fitted the histogram to the Gaussian
function and found peaks of bimodal distribution.

A threshold in each window was set to the middle
point of two peaks. While thresholds determined by the
adaptive threshold method vary with a moving window
(i.e., a value of threshold decreases as more pixels of
oil are included in a window, and vice versa), locations
of the peaks in a bimodal histogram are rarely affected
by the size of the window. This method is not a
subjective method, but rather an objective method that
does not require any a prior knowledge of backscattering
coefficients as a threshold. It can be automatically
determined in a series of algorithms. Thus, the bimodal
histogram method is seems to yield a more consistent
result. It is known as an elaborate and efficient method
for detecting oil spills which are not too thin (Brekke
and Solberg, 2005).

For the ENVISAT ASAR image in Fig. 7a, we
applied the bimodal histogram method described herein
and obtained the analysis result of oil spill pixels in Fig.
7c. Number 1 corresponds to oil pixels. The two dark

spots seem to be relatively well detected in comparison
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to the original backscattering coefficients (Fig. 7a). The
result is similar to that obtained with the adaptive
threshold method.

3) Comparison of detection methods

In order to illustrate the differences between the two
detection methods, we compared the analysis results of
the bimodal histogram method with those of the
adaptive threshold method. First of all, we subtracted
the flag numbers of Fig. 7c from those of Fig. 7b.
Differences ranged from -1 to 1 as shown in Fig. 7d.
Dominant differences appeared at the boundaries of the
detected dark spots.

The circular pattern in Fig. 7d exhibited both positive
and negative values for both small and large oil spots.
Detailed examination of the oil flags showed that pixels
with a difference of 1 were a little larger than those of
-1. The total area of dark spots detected by the bimodal
histogram method was estimated to be 1.74 km’, which
were slightly smaller and more rounded than those
detected by the adaptive threshold method.

The distribution of differences between the two

methods indicated that the bimodal histogram method

[dB]-I\S

(a)

(©)

®
«

has a tendency to somewhat underestimate the extent
of oil spills. However, those differences were fairly
small, amounting to less than 8% of the total extent of
oil spill. Therefore, it can be inferred that there is no
substantial difference between the two methods in

terms of their results.

5. Summary and Conclusion

Oil spills in the ocean have had devastating effects
upon the environment, particularly in terms of fisheries
and biological activities. Thus, it is necessary to
develop an accurate method for detecting such spills.
Detection techniques for oil spills have long been in
development, with most of the previous literature
relying upon the adaptive threshold method, due to its
simplicity in terms of calculation. However, the
threshold determined with this method tends to be
subjective in most of cases. Therefore, it may be
somewhat less accurate and should be developed in a
more objective way.

In this study, we applied the bimodal histogram

(b)

-1

Fig. 7. (a) Spatial distribution of ENVISAT ASAR backscattering coefficient (sigma naught) with oil spill and the analysis results of oil
spill pixels using (b) the adaptive threshold method and (c) the bimodal histogram method, where 1 is oil and 0 is a non-oil

pixel, and (d) their differences, (b)-(c).
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method to an ENVISAT ASAR image with oil spills
which satisfied the limit of wind speed, and then
compared the results with those from the previous
method. Until now, most of oil spill detection from
SAR data have depended solely upon the adaptive
threshold method. Since the method is fairly subjective,
this study attempts to apply a more objective threshold
method based on the statistical characteristics of
bimodality of histogram. When compared with the
results from the adaptive threshold method, the bimodal
histogram method shows no significant difference, with
the exception of negligibly small errors at the
boundaries of dark spots. This implies that a method
utilizing an objective threshold, such as the bimodal
histogram method used in this study, has an
applicability for oil spill detection in other SAR
imagery in other oceanic regions.

In addition to the two methods introduced here, other
methods have been developed for oil detection in SAR
images, such as the neural network method,
decomposition analysis, or the conformity coefficient
method. However, these methods need more in-situ
measurements of oil and reference data, or full-
polarized SAR data to yield the results. The method
used in this study does not require any prior knowledge
of backscattering coeffecients as a threshold. In
addition, it does not require any polarization, such as
HH, VV, or HV. Thus, this study is expected to make
a contribution to the monitoring and detection of oil
spills in the ocean, in an automatic and objective

manner suitable to the use of SAR images.

Acknowledgements

This study was supported by the National
Meteorological Satellite Center (Project No. 153-3100-
3137-301-210-13). This study was also supported in
part by EAST-I project of the Ministry of Oceans and

Fisheries, Korea. We are very grateful to the unknown

reviewers for their helpful comments.

References

Alpers, W. and H. Huhnerfuss, 1989. The damping of
ocean waves by surface films: A new look at an
old problem, Journal of Geophysical Research,
94: 6251-6265.

Alpers, W.R., D.B. Ross, and C.L. Rufenach, 1981. On
the detectability of ocean surface waves by real
and synthetic aperture radar, Journal of
Geophysical Research, 86(C7): 6481-6498.

Bell, D., C. Menges, W. Ahmad, and J. Van Zyl, 2001.
The application of dielectric retrieval algorithms
for mapping soil salinity in a tropical coastal
environment using airborne polarimetric SAR,
Remote Sensing of Environment, 75(3): 375-
384.

Bern, T.-I., T. Wahl, T. Andersson, and R. Olsen, 1992.
Oil spill detection using satellite based SAR:
Experience from a field experiment, Proc. of
1st ERS-1 Symposium, Cannes, France, Nov. 4-
6, pp. 829-834.

Brekke, C. and A. H. Solberg, 2005. Oil spill detection
by satellite remote sensing, Remote Sensing of
Environment, 95(1): 1-13.

Collard, F., F. Ardhuin, and B. Chapron, 2005.
Extraction of coastal ocean wave fields from
SAR images, IEEE Journal of Oceanic
Engineering, 30(3): 526-533.

Demin, B.T., S.A. Ermakov, N.Y. Pelinovsky, T.G.
Talipova, and A.I. Sheremet’yeva, 1985. Study
of the elastic properties of sea surface-active
films, Atmospheric Oceanic Physics, 21: 312-
316.

Engen, G. and H. Johnsen, 1995. SAR-ocean wave
inversion using image cross spectra, /EEE
Transactions on Geoscience and Remote
Sensing, 33(4): 1047-1056.

—-653-



Korean Journal of Remote Sensing, Vol.29, No.6, 2013

Gerling, T., 1986. Structure of the surface wind field
from the Seasat SAR, Journal of Geophysical
Research, 91(C2): 2308-2320.

Graber, H.C., D.R. Thompson, and R.E. Carande, 1996.
Ocean surface features and currents measured
with synthetic aperture radar interferometry and
HF radar, Journal of Geophysical Research,
101(C11): 25813-25832.

Hasselmann, K. and S. Hasselmann, 1991. On the
nonlinear mapping of an ocean wave spectrum
into a synthetic aperture radar image spectrum
and its inversion, Journal of Geophysical
Research, 96(C6): 10713-10729.

Huehnerfuss, H., W. Walter, P.A. Lange, and W. Alpers,
1987. Attenuation of wind waves by
monomolecular sea slicks and the Marangoni
effect, Journal of Geophysical Research, 92:
3961-3963.

Huehnerfuss, H., W. Alpers, W.D. Garrett, P.A. Lange,
and S. Stolte, 1983. Attenuation of capillary and
gravity waves at sea by monomolecular organic
surface films, Journal of Geophysical Research,
88: 9809-9816.

Kasischke, E.S., D.R. Lyzenga, R.A. Shuchman, and
C.C. Wackerman, 1988. Contrast ratios of
internal waves in synthetic aperture radar
imagery: A comparison of SAR internal wave
signature experiment observations with theory,
Journal of Geophysical Research, 93(C10):
12355-12369.

Kang, M.K. and H. Lee, 2007. Estimation of ocean
current velocity near Incheon using Radarsat-1
SAR and HF-radar data, Korean Journal of
Remote Sensing, 23(5): 421-430.

Kim, D.-J., WM. Moon, and Y.-S. Kim, 2010.
Application of TerraSAR-X data for emergent
oil-spill monitoring, IEEE Transactions on
Geoscience and Remote Sensing, 48(2): 852-
863.

Kim, T.S. and K.A. Park, 2011. Estimation of

polarization ratio for sea surface wind retrieval
from SIR-C SAR Data, Korean Journal of
Remote Sensing, 27(6): 729-740.

Kim, T.S., K.A. Park, WM. Choi, S. Hong, B.C. Choi,
1. Shin, and K.R. Kim, 2012. L-band SAR-
derived sea surface wind retrieval off the east
coast of Korea and error characteristics, Korean
Journal of Remote Sensing, 28(5): 477-487.

Liao, M., C. Wang, Y. Wang, and L. Jiang, 2008. Using
SAR images to detect ships from sea clutter,
IEEE Geoscience and Remote Sensing Letters,
5(2): 194-198.

Litovchenko, K., A. Ivanov, and S. Ermakov, 1999.
Detection of oil slicks parameters from
ALMAZ-1 and ERS-1 SAR imagery, Proc. of
1999 [EEE International Geoscience and
Remote Sensing Symposium(IGARSS’99),
Hamburg, Germany, Jun. 28-Jul. 02, vol. 3, pp.
1484-1486.

Liu, A., C. Peng, and Y.-S. Chang, 1996. Mystery ship
detected in SAR image, Eos, Transactions
American Geophysical Union, 77(3): 17.

Liu, A.K. and M.-K. Hsu, 2004. Internal wave study in
the South China Sea using synthetic aperture
radar (SAR), International Journal of Remote
Sensing, 25(7-8): 1261-1264.

Lucassen, J., 1982. Effect of surface-active material on
the damping of gravity waves: A reappraisal,
Journal of Colloid Interface Science, 85: 52-
58.

Mason, D., I. Davenport, G. Robinson, R. Flather, and
B. McCartney, 1995. Construction of an inter-
tidal digital elevation model by the ‘Water-
Line’ Method, Geophysical Research Letters,
22(23): 3187-3190.

Migliaccio, M., F. Nunziata, A. Montuori, X. Li, and
W.G. Pichel, 2011. A multifrequency
polarimetric SAR processing chain to observe
oil fields in the Gulf of Mexico, [EEE

Transactions on Geoscience and Remote

—654-



Comparison of carbon dioxide volume mixing ratios measured by GOSAT TANSO-FTS and TCCON over two sites in East Asia

Sensing, 49(12): 4729-4737.

Monaldo, F.M., D.R. Thompson, R.C. Beal, W.G.
Pichel, and P. Clemente-Colon, 2001.
Comparison of SAR-derived wind speed with
model predictions and ocean buoy
measurements, /EEE Transactions on Geoscience
and Remote Sensing, 39(12): 2587-2600.

Ouchi, K., S. Tamaki, H. Yaguchi, and M. Iehara, 2004.
Ship detection based on coherence images
derived from cross correlation of multilook
SAR images, IEEE Geoscience and Remote
Sensing Letters, 1(3): 184-187.

Park, S.M., C.S. Yang, and Y.S. Oh, 2010. Numerical
simulation of radar backscattering from oil
spills on sea surface for L-band SAR, Korean
Journal of Remote Sensing, 26(1): 21-27(in
Korean with Engilsh abstract).

Perez-Marrodan, M., 1998. ENVISYS environmental
monitoring warning and emergency management
system, Proc. of the AFCEA Kiev Seminar,
Kiev, Ukraine, May 28-29, pp. 122-132.

Rodenas, J.A. and R. Garello, 1997. Wavelet analysis
in SAR ocean image profiles for internal wave
detection and wavelength estimation, /EEE
Transactions on Geoscience and Remote
Sensing, 35(4): 933-945.

Shemer, L., M. Marom, and D. Markman, 1993.
Estimates of currents in the nearshore ocean
region using interferometric synthetic aperture
radar, Journal of Geophysical Research,
98(C4): 7001-7010.

Skeelv, A. and T. Wahl, 1993. Ol spill detection using
satellite based SAR, Phase 1B competition

report, Technical report, Norwegian Defence

Research Establishment, Kjeller, Norway.

Solberg, A.H.S., G. Storvik, R. Solberg, and E. Volden,
1999. Automatic detection of oil spills in ERS
SAR images, IEEE Transactions on Geoscience
and Remote Sensing, 37(4): 1916-1924.

Vachon, PW.,, S.J. Thomas, J.A. Cranton, C.
Bjerkelund, F.W. Dobson, and R.B. Olsen,
1998. Monitoring the coastal zone with the
RADARSAT satellite, Oceanology International
98, Brighton, UK, Mar. 10-13, pp. 29-38.

Valenzuela, G.R., 1978. Theories for the interaction of
electromagnetic and ocean waves-A review,
Boundary-Layer Meteorology, 13: 61-85.

Van der Wal, D., PM.J. Herman, and A. Wielemaker-
van den Dool, 2005. Characterisation of surface
roughness and sediment texture of intertidal
flats using ERS SAR imagery, Remote Sensing
of Environment, 98(1): 96-109.

Xu, Q., H. Lin, X. Li, J. Zuo, Q. Zheng, W.G. Pichel,
and Y. Liu, 2010. Assessment of an analytical
model for sea surface wind speed retrieval from
spaceborne SAR, International Journal of
Remote Sensing, 31(4): 993-1008.

Yang, C.S., D.Y. Kim, and J.H. Oh, 2009. Study on
improvement of oil spill prediction using
satellite data and oil-spill model: Hebei Spirit
oil spill, Korean Journal of Remote Sensing,
25(5): 435-444(in Korean with Engilsh abstract).

Zhang, B., W. Perrie, X. Li, and W.G. Pichel, 2011.
Mapping sea surface oil slicks using
RADARSAT-2 quad-polarization SAR image,
Geophysical Research Letters, 38(L10602):
doi:10.1029/2011GL047013.

—-655-



