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Distributed tree decomposition with privacy

Vincent Armant, Laurent Simon, and Philippe Dague

Laboratoire de Recherche en Informatique, LRI, Univ. Paris-Sud & CNRS, Orsay, F-91405

Abstract. Tree Decomposition of Graphical Models is a well known method for

mapping a graph into a tree, that is commonly used to speed up solving many

problems. However, in a distributed case, one may have to respect the privacy

rules (a subset of variables may have to be kept secret in a peer), and the initial

network architecture (no link can be dynamically added). In this context, we pro-

pose a new distributed method, based on token passing and local elections, that

shows performances (in the jointree quality) close to the state of the art Bucket

Elimination in a centralized case (i.e. when used without these two restrictions).

Until now, the state of the art in a distributed context was using a Depth-First

traversal with a clever heuristic. It is outperformed by our method on two fami-

lies of problems sharing the small-world property.

1 Introduction

Tree decomposition was introduced in [21]. It aims at mapping the graphical represen-

tation of a problem into a tree such that all linked variables in the initial graph stay

linked (directly, or indirectly) in any node (also called cluster of the new tree). Once

decomposed, the solving time of the initial problem can be bounded for a large class of

problems. This nice property explains why tree decomposition has been widely stud-

ied, in many centralized applications (graph theory [21], constraints optimization [16, 5,

15], planning [13], databases [11, 6], knowledge representation [14, 22, 10]), but also in

distributed ones (distributed constraints optimization [19, 3, 7, 17], ...). Intuitively, the

decomposition guides the reasoning mechanism through the network, and can bound

the number of messages. When dealing with distributed systems, it is indeed essen-

tial to bound the maximal number of messages, for instance to ensure some quality of

services.

When the problem is tree-decomposed, its complexity can be bounded by an expo-

nent of its width, which is the size of the largest cluster in the tree (minus 1). Many

applications rely on good tree decompositions, and many polynomial classes are based

on the existence of a good decomposition. Because of its exponential impact on the

bound, even a small improvement in the quality of the decomposition may lead to large

improvements in practice.

However, when the system is intrinsically distributed, or subject to privacy settings,

no peer can have a global view of the system, and new algorithms must be explored. For

instance, adding a link between two peers may not be feasible (only already existing

links can be allowed). In all previous approaches, the initial distributed system was

supposed to fulfil an additional strong characteristic: two peers that share a common

variable must be directly linked by the network.
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In this paper, we propose to explore the general case, i.e. when links between peers

are not forced to follow the above characteristic. In this more general case, we propose

a new distributed algorithm for distributed tree decomposition, based on local elections

with a token. Using a token was necessary to prevent concurrent decisions, which was

identified as one of the main issues for good jointree construction. We conclude this

paper by an experimental analysis of our algorithm on families of small-world net-

works, and show that the produced jointrees are significantly better than state of the art

distributed algorithms, while allowing more general networks.

2 Distributed Tree Decomposition

Introduced By Robertson and Seymour [21], the tree decomposition was applied in

many problems. It was noticeably used in circuit diagnosis in [9], in the centralized

case. In this work, Dechter and El Fattah considered a graphical model of the set of

equations describing the circuit. Each node of the graph is labelled by a variable, and

each edge models a semantic dependency between variables in the same equation.

Figure 1 shows a problem described by a conjunction of fi formulae signatures (e.g.

constraints, properties, theories). On the right we show the corresponding interaction

graph s.t. each node is labelled by a variable and there exists a link between two nodes

iff they appear in the scope of a same function. For example, in light grey, we surround

parts of the interaction graph modeling f1, f2 and f3 of the initial problem.
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Fig. 1: Left: Centralized problem description. Right: The corresponding problem inter-

action graph

The tree decomposition of an interaction graph is a tree of clusters of variables hav-

ing the running intersection property and preserving the initial dependency schema of

variables. Here we recall the definition of [21], keeping in mind that a node corresponds

to a variable.

Definition 1 (tree decomposition [21]). A tree decomposition of a graph G is a pair

(χ, T ) in which T = (CT, F ) is a tree where the nodes cti ∈ CT are clusters names
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and the edges F model the inter-dependencies between clusters, and χ = {χcti : cti ∈
CT} is a set of subsets of vertices(G) s.t. each subset χcti is the set of vertices of the

cluster cti. The tree decomposition fulfils the following properties:

1. ∪
cti∈CT

χcti = vertices(G),

All nodes in the initial graph are at least in a cluster, and the tree contains no new

variables (vertices compliance).
2. ∀{x, y} ∈ Edges(G),∃cti ∈ CT with {x, y} ∈ χcti

Each pair of variables connected by an edge in the initial graph must be found

together in a cluster (dependencies compliance).
3. ∀cti, ctj , ctk ∈ CT , if ctk is on the path from cti to ctj in T , then χcti ∩ χctj ⊆

χctk ,

Two clusters that contain the same node are connected by clusters that also contain

this node (running intersection).

The result of a tree decomposition is also called a jointree. Figure 2 represents the

tree decomposition of the interaction graph of Figure 1. In this figure, one can check that

each node labelled by a variable in the interaction graph belongs to at least one cluster of

the tree-decomposition. In addition, we can notice that clusters ct2, ct5, ct7, ct6, ct3 that

contain l1 are connected in the tree. Then, the running intersection property is satisfied

for l1. It is easy to check that the running intersection is satisfied for all variables.
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Fig. 2: Tree decomposition of the interaction graph of Figure 1

2.1 Distributed Theories and Privacy

Let us point out that, in the interaction graph, each variable is directly connected to all

other variables that appear with it in at least one formula. Now, in a distributed context,
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Fig. 3: Left: distributed problem of figure 1. Right: Its acquaintance graph

the framework is made up of peers, where each peer knows a subset of formulae and

can interact with its neighbourhood by messages in order to solve a global problem. In

that case we need to consider at the same time the network interactions between peers

defined by peers’ acquaintances and the semantic interactions between variables defined

by formulae (from a global point of view). In our approach, we model a distributed

setting of peers and formulae by the notion of acquaintance graph.

Definition 2 (acquaintance graph). Given a distributed problem setting defined on

variables V ars, an acquaintance graph G((P, V ), ACQ) is a graph defined by:

1. P = {Pi}i=1..n is the set of peers,

2. V : P → 2V ars is the node labelling function where V (pi) represents the vocabu-

lary used by pi to describe its problem.

3. ACQ ⊆ P×P defines the peers’ acquaintances i.e. the neighbourhood with which

each peer can exchange messages.

This definition of an acquaintance graph differs from [1], which represents a multi-

graph where edges are labelled by shared variables.

Figure 3 (right) shows an example of an acquaintance graph of a distributed theory

(left). We can emphasize that the acquaintance graph differs from the interaction graph.

p1 and p3 have in common the variable h, but they do not share it in the network via a

direct link like it would be the case in an interaction graph. Let us also point out that,

without loss of generality, we can assume that two peers sharing an acquaintance link

share also one or several variables. In addition, we will not allow the creation of new

acquaintance links once the acquaintance graph is given. This is a first restriction for

building a tree decomposition. One may also notice, figure 3, that a particular set of

variables (written li), are only in one peer. We will consider these variables “local”,

and the other ones “shared”. The privacy rule of our framework ensures that local vari-

ables stay local, i.e. no local variable is sent to any other peer in the network. This
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is our second restriction for building a tree decomposition. We can notice that the tree

decomposition shown in figure 4 does respect privacy while the one in figure 2 does

not.

2.2 Distributed Tree Decomposition

Because an acquaintance link between two peers may not follow the interaction graph

of variables, we need to adapt Definition 1 for the distributed context.

Definition 3 (Distributed Tree Decomposition (DTD)).

Let G((P, V ), ACQ) be the acquaintance graph of a distributed system. A tree of

clusters T ((CT, χ), F ) s.t. each cluster ct ∈ CT is labelled by a set of variables χ(ct),
is a distributed tree decomposition of G iff:

1.
⋃

p∈P

V (p) =
⋃

ct∈CT

χ(ct) (compliance of the vocabulary)

2. ∀p ∈ P, ∃ct ∈ CT s.t. V (p) ⊆ χ(ct) (compliance of variables dependency)

3. ∀ct, ct′, ct” ∈ CT , if ct′ is on the path from ct to ct” in T , then χ(ct) ∩ χ(ct”) ⊆
χ(ct′) (running intersection)

4. There exists a function γ : CT → P that represents the cluster provenance s.t.

∀{ct, ct′} ∈ F :

– γ(ct) = γ(ct′) or

– {γ(ct), γ(ct′)} ∈ ACQ

Each cluster is hosted by one peer. Neighbouring clusters are hosted by the same

peer or by neighbour peers in the acquaintance graph. (compliance of acquain-

tances)

5. ∀v ∈ V (p) s.t. ∀p′ 6= p, v 6∈ V (p′), ∀ct s.t. v ∈ χ(ct): γ(ct) = p

Local variables belonging to p can only appear in a cluster hosted by p. (privacy

rule)

In the above definition, the first three properties are similar to the classical tree

decomposition. If the later preserves the initial set of nodes and their dependencies, in

our definition, the distributed tree decomposition of an acquaintance graph preserves the

set of peer variables and their dependencies. We also need to add the fourth one, to adapt

our DTD definition to the distributed case. The compliance of acquaintances also forces

DTDs to have the following property: a cluster is hosted by one (and only one) peer,

and a peer hosts at least one cluster (if its formula is not empty), and possibly many.

In addition, all interactions between clusters are following the initial peer acquaintance.

Our privacy rule, in the context of DTD is expressed by the fifth property. All clusters

hosted by one peer p can contain any shared variable from any peer, but only local

variables of p itself. If we look at figure 4, we see that all variables li stay at their initial

peer. At the opposite, shared variables h and g are sent to p4 for ensuring the running

intersection.
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2.3 Tree Decomposition: choose your father

Tree decomposition aims at directing the reasoning during search, or fixing a bound on

the reasoning task. Then, the complexity of most classical reasoning tasks is bounded

by the size of the largest obtained cluster. There is a strong link between the problem

of finding a good decomposition, a good forgetting order, and the graph triangulation

problem. However, in a distributed approach, only orders based on depth-first (DFS)

and breadth-first (BFS) searches have been proposed so far. Building a distributed de-

composition tree by BFS was first proposed by Elzahir et al. [7] for distributed CSPs.

GrunBach and Wu [12] proposed to apply the tree decomposition for software verifica-

tion, based on a BFS. However, we experimentally checked (not reported here) that the

quality of the decompositions by BFS order was significantly worse than those based

on DFS. So, we limit this section to the presentation of DFS-based orders and Bucket-

Elimination (BE) orders.

Distributed, Depth-First, Tree Decomposition In distributed constraints optimiza-

tion, Distributed DFS (DDFS) is the state of the art [19, 8]. Initially, a peer is chosen

as the root of the tree (this is a global decision). It chooses one of its neighbours and

sends it a special message. When a peer receives such a message for the first time, it

records the sender as its father. Then, it forwards this message to one of its neighbours

that have not yet been chosen by it. If all its neighbours have been visited, then it sends

the return message to its father. The DDFS algorithm sends messages through all edges

of the network of peers. Its complexity (in the number of non concurrent messages) is

2 ∗ |E|, where E is the set of edges.

Distributed Bucket Elimination Bucket Elimination is a general method that can be

used for decomposition. It builds a tree of clusters from the leaves to the root of the

tree. When applied with the DFS order, BE does not have to build the tree, it follows

the DFS one: DFS induces a total order on viewed peers s.t., for each peer, each of its

neighbours is an ancestor or a descendant. Initially, an empty cluster χctp is associated

to each peer; then, for each peer pi, if it is a descendant of some peer pj then the

vocabulary common to the two peers pi, pj is added to the cluster χctpi
. Then, the

algorithm typically proceeds bottom-up in two stages: (1) a peer pi sends to its father

pj a projection pjctpi
of the variables contained in χctpi

and belonging to one of its

ancestor; (2) when pj receives pjctpi
from pi, it adds pjctpi

in its cluster χctpi
. When

it has received a projection from all its children it projects to his father the variables of

χctpj
shared with one of its ancestors. For more details, the piece of work [3] assumes

a DTD based on Cluster Tree Elimination [4] applied to a decentralized context.

We show the jointree built by Distributed BE with DDFS and the Maximum Cardi-

nality Set (MSC) heuristic in figure 4. In the latter, privacy is preserved. One may notice

here that variables are shared among peers if needed. The notion of projection (pjctpi

in the above algorithm) will also appear in our algorithm. This notion is essential for

ensuring the running intersection property in the final jointree.
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Fig. 4: Tree Decomposition given by BE and driven by DFS and MCS heuristic

2.4 Good Properties of Centralized Methods

Centralized methods often rely on equivalent problems for tree decomposition, such as

graph triangulation. In this problem, one wants to add as few edges as possible to a

given graph in order to obtain a chordal graph (all cycles of length four or more have a

chord, which is an edge joining two non-adjacent nodes in the cycle). The triangulation

algorithm iteratively eliminates all nodes. At each iteration, (1) a variable is chosen;

(2) edges are added between pairs of nodes from its neighbours that are not already

connected (clique-fill); (3) the node is removed. The quality of a triangulation can be

trivially measured by the number of new edges. The node chosen at step (1) must add

as few edges as possible, in a short and in a long-term point of view. For instance, a

node in a clique with its entire neighbours is a very good candidate. A node with a

poorly connected neighbourhood is a bad choice. The heuristic Min-Fill-In is based on

this very simple observation. Each node is evaluated w.r.t. the number of new edges one

may have to add to fill its neighbourhood as a clique.

In order to get a global elimination order from the above algorithm, we must add

a fourth step: a cluster containing all the neighbourhood of the removed variable is

built (and memorized) at the new step. In this context, the Min-Fill-In algorithm can be

viewed as trying to reduce the size of the clusters. However, when adapting this idea

to the distributed case, it may not be possible to add links to any pair of peers. In our

formulation, the acquaintance graph is given, and no network link can be added “on the

fly”.

About concurrency, it is trivial to say that centralized methods are not concurrent.

However, we think that the non-concurrency property is essential to obtain good join-

trees. Let us consider a simple path v1 − ... − vn. One can check that the sequential

elimination of one or two variables (i.e. (v1, vn)) at ends of the path will lead to the

creation of clusters with at most two variables. Unfortunately, the concurrent elimina-

tions of at least three variables at the same time will lead to the creation of a cluster of

at least three variables. This example can easily be generalized for tree structured graph
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Fig. 5: Tree Decomposition obtained by the Token Elimination on the running example

or cyclic graph, and clearly illustrates the fact that even few concurrent decisions can

get any algorithm away from the optimal decomposition. In order to prevent those bad

decisions to be taken, we propose to use a token to limit concurrent choices.

3 Distributed Token Elimination

The idea of the algorithm is the following. Each peer votes for its best neighbour (in-

cluding itself). It has to decide, locally, which peer should be removed first. A peer that

has been chosen by all its neighbours can be removed (it is a sink node in the graph of

“best” choices). When removed, a peer builds a cluster of variables for the distributed

jointree, and memorizes it locally. This peer will be the root of a sub-jointree in the

final jointree. All the variables that are not local to this sub-tree are in its projection

(exactly in the same sense as it is used in BE, see 2.3). A removed peer remains active,

and participates to the elections until all its neighbourhood has also been removed (after

that, it will only be active for routing token messages).

In order to build a distributed jointree (DJT) at the end of the algorithm, we consider

the first removed peers as the leaves of the DJT. The final DJT is built bottom-up to

the root. This is done when all the peers have been eliminated. The algorithm has to

connect all the sub-jointrees together. Because we do not want to allow any new link in

the network, while ensuring the running intersection, this stage is a little bit tricky. Each

peer asks the network for its son by flooding its name and its projection, and when the

son answers, all peers on the path between them create new “connection” clusters with

all the variables needed for ensuring the running intersection property in the final DJT.

So, we have the following properties: First, during the whole algorithm, each cluster

is only in one peer. Second, before this last reconnection stage, each peer can only

contains one cluster (called the “main” cluster). Third, at the end of the algorithm, each
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peer contains exactly one “main” cluster, and an unbounded number of “connection”

clusters.

An illustration of the final solution of our algorithm is shown in figure 5. One can

especially notice that privacy is preserved, and that clusters, thanks to connection clus-

ters, are connected on the top of the initial peers network (see the P2 clusters).

Additionally, as reported section 2.4, we need to carefully handle concurrent deci-

sions. For this, a single token is circulating on the network, following the current votes.

Because the directed graph of “best” choices is not guaranteed to be strongly connected,

we must add an escape strategy. For this, we suppose a cycle that goes through all nodes

exactly once. In our approach, we build this cycle by a DFS traversal of the peers.

3.1 Data Structures and Notations

The Score of a peer is the estimated size of its main cluster (the algorithm tries to

choose the next peer with minimal score). In addition, each peer maintains an array

score[] of the “cluster” score of its neighbours. This “cluster” score takes into account

the current projections of orphan sub-jointrees. More generally, this is where the heuris-

tics take place.

The Token circulating in the network is also decorated with precious information.

It contains, intuitively, the set of current orphan sub-jointrees that are being built, rooted

in removed peers so far. To allow any peer in the network to smartly choose which sub-

jointree to attach as a son, each sub-jointree also contains its projection, i.e. all the non

local variables of the sub-jointree.

neighbours∗ is the set of all the neighbours of a peer, including removed peers, and

itself. neighbours+ is the set of all the neighbours of a peer, including itself, but not

including removed peers. best is the “best” neighbour of a peer p, i.e. the peer having

the smallest value in the score[] array, including p. Children is the set of direct children

a peer has registered so far.

3.2 The Distributed Token Elimination Algorithm

DTE is given as Algorithm 1. Initially, the token is sent to one peer.

Local Elections Each time a peer ptoken receives (or initially has) the token (line 2), it

organizes local elections (line 4) and waits for the votes of all its neighbours (including

removed ones). The reception of this message is treated in line 31. The computed score

of p takes into account the size of the set of variables made up from current projections

in the token (set of non local variables of sub-jointrees built so far), local variables and

shared variables with ancestors. The underlying idea of this score is to estimate the

size of the cluster if p, the peer that received the ELEC message (line 31), would be

removed at this point. The computed score of the peer p is sent back to ptoken but also

to all its other neighbours, line 33, and received line 37. So, if we get back to the initial

peer ptoken that organized the local election, it has updated its own score[] values for

all its neighbours, taking into account the current open projections in the token, and the

local election is closed.
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One may notice here that score[] arrays have been updated only in the neighbour-

hood of ptoken, and thus the votes of the neighbours of ptoken are based only on partial

information: if p is a neighbour of ptoken, p only updates the scores of its neighbours

that are also connected to ptoken. All other peers are ranked according to an old value of

score[], that can be based on an old set of orphans sub-jointrees. At some point, we must

accept this, because this is just a heuristic, and trying to have a better estimation will

cost too much. However, one may also notice here that if no peer is elected, the token

remains the same, and follows the “best” links or the global cycle, eventually touching

all the peers at the end of the cycle. The algorithm will end because once a peer has

updated its own score according to the token, if the token does not change (no peer is

removed), then its score will remain the same. If the token touches all the peers, all

score[] values will have been updated according to the same orphan sub-jointrees (this

remark is important for termination, we have the guarantee to find a node to remove

after at most one cycle, and in any case after visiting at most two times each edge).

At this step, after line 5, the peer ptoken has now two possibilities, removing itself

(see section 3.2), or giving the token to its best neighbour/cycle (see section 3.2).

Elected and Removed When ptoken is a local minimum, i.e. all its neighbourhood,

including itself, has elected it, then it has two steps to perform before being removed

from the network. First, it needs to compute the new projection, and register itself as a

new potential orphan sub-jointree with this projection.

This is done from lines 9 to line 17 in the algorithm. Pjp is the projection of p

over its alive neighbourhood. Children is the set of peers that p has chosen as sons:

all the peers that are roots in the current orphan sub-jointrees with which p shares at

least one variable (these allow one to preserve the running intersection). Newχ is the

set of variables in the projections of orphan sub-jointrees that p has to take into account

when it will be removed, in addition to its own projection variables. So, for the new

sub-jointree rooted in p, its projection χp is computed in line 12. Now, p has to update

the set of sub-jointrees attached to the token. First, it removes its sons, then it adds itself

as a new sub-jointree. At last, it is important that p tells its neighbourhood it has been

removed (sending and acknowledging ELIM messages). During this stage, it is also

important to notice that all neighbours of p update their best values (including p itself).

We postpone the explanation of lines regarding the reconnection of sub-jointrees to

the end of the section.

Sending the Token The idea of lines 24 to 29 is to let the token following the “best”

links in the graph, and rely on the static DFS order for escaping. So, if p is not its best

choice (not in a local minimum), then, if p still has alive neighbours, it sends the token

to the best of its alive neighbours. Otherwise, because neighbours+ initially contains

p itself, p has been removed with all its neighbours. In this case, we rely on the static

cycle built on the top of DFS to send the token and escape.

If p was its own best choice, we are in a local minimum, and we also need to

escape. Observing the fact that at least one of the alive neighbours is not considering

p as the best choice (if p was the best choice for all its neighbourhood, then it has just

been eliminated, and has sent the ELIM messages to its neighbourhood forcing its
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Fig. 6: Two iterations of Distributed Token Elimination on our example.

neighbours to vote for another peer), we know that there is a peer with a better local

score than p if we follow any best link from any neighbour of p that has not voted for

it. So, in our solution, we propose to use this heuristic, as shown line 29.

Running Example An example (limited to two steps) of the algorithm is given in figure

6. First, suppose that the token was in p1. According to the votes, the token is sent to

p5. Then, as shown in figure 6 (left), p5 is selected for elimination (see the scores in the

figure). It adds its own projection set {d, g} (all its variable except local ones) to the

token and removes itself. The token then goes through p1 and p2 (following elections

results), and then (Figure 6 right) p2 is removed and updates the token accordingly. In

the next step (not shown on the figure), the token will be sent to p3 which will remove

the couple (p2, {a, b, h}) from the token (p3 shares at least one variable in this set) and

will add the couple (p3, {h, c}) in the token (a and b are not anymore shared).

Final Stage: re-connecting all sub-jointrees When the above algorithm finishes, it

ends with a forest of sub-jointrees, distributed on the network. Each node has its own

main cluster, fixed when the node was removed, but all the sub-jointrees have to be

merged in one jointree, by reconnecting them while respecting the running intersection.

The first peer that detects the termination broadcasts the Reconnection message in

the network (line 20). Then, (not shown here), each non-leaf peer p that receives this

message initiates the flooding algorithm 2: each p broadcasts a new message ReqCON

to the network with the set of its children. When receiving a message ReqCON for

the first time, a peer p records the sender p′ as a father link and broadcasts the message

to all its neighbourhood (excluding p′). Of course, due to the flooding mechanism, the

message ReqCON visits all links of the network (lines 4 to 6).

Now, when a peer has received the ReqCON message from all its neighbours (line

10), it initiates the answer by sending back the message AnsCON with the list of chil-

dren of the initial peer p (noted Wanted in the algorithm, lines 12 to 14). The message

then goes bottom-up in the tree, following all the fathers links created above. Now, each
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Algorithm 1: Distributed Token Elimination

(2) p receives TOKEN(SubT ) from p′

(3) // local election

(4) ∀p′ ∈ neighbours∗, send ELEC(SubT ) to p′

(5) wait V OTE(bp′) from all p′ ∈ neighbours∗

(6)

(7) if (p has received V OTE(⊤) from all p′ ∈ neighbours∗)

(8) // Eliminate p (see section 3.2)

(9) Pjp ← ∪
p′∈neighbours+

Vp ∩ Vp′

(10) Children← ∪
(p′,V ′)∈SubT

p′ s.t. V ′ ∩ Vp 6= ∅

(11) Newχ ← ∪
(p′,V ′)∈SubT

V ′ s.t. p′ ∈ Children

(12) χp ← Pjp ∪Newχ \ ∪
v∈Vp

s.t. v /∈ Pjp

(13) // Update Orphan Sub-Jointrees

(14) SubT ← SubT \ ∪
(p′,V ′)∈SubT

(p′, V ′) s.t. p′ ∈ Children

(15) SubT ← SubT ∪ (p, χp)
(16) send ELIM to all p′ ∈ neighbours∗

(17) wait AckELIM from all p′ ∈ neighbours∗

(18) if (Pjct = {{}})
(19) // re-connecting sub-jointrees (see section 3.2)

(20) broadcasts the Reconnection message in the network.

(21)

(22) // sending the token(see section 3.2)

(23) if (best 6= p)

(24) if (neighbours+ 6= ∅) // token passing

(25) send TOKEN(SubT ) to best
(26) else

(27) send TOKEN(SubT ) to succDFS(p
′)

(28) else

(29) send TOKEN(SubT ) to p” s.t. p as received V OTE(⊥) from p”

(31) p receives ELEC(SubT ) from p′

(32) score[p]← eval(SubT )
(33) send SCORE(score[p]) to its neighbours and wait AckSCORE
(34) best← min(score[])
(35) send V OTE(best == p′) to p′

(37) p receives SCORE(i) from p′

(38) score[p′]← i
(39) send AckSCORE to p′

(41) p receives ELIM from p′

(42) remove p′ from score and neighbours+

(43) best← min(score[])
(44) send AckELIM to p′
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Algorithm 2: Sub-jointrees reconnection

(2) p receives ReqCON(Wanted) from p′

(3) // top-down flooding

(4) if (father(Wanted) 6= ∅)
(5) father(Wanted)← p′

(6) send ReqCON(Wanted) to neighbours− p′

(7)

(8) // bottom up connections

(9) nbMsg(Wanted) + +
(10) if (nbMsg(Wanted) == |neighbours|)
(11) if (p ∈ Children)

(12) send AnsCON(Wanted, {Pjp}) to father(Wanted)
(13) else

(14) send AnsCON(Wanted, {}) to father(Wanted)

(16) p receives AnsCON(Wanted, projChild) from p′

(17)

(18) if (Wanted == Children)

(19) sonLinks← sonLinks ∪ p′ //for future use

(20) else

(21) foreach V ′ ∈ projChild
(22) conClusters(Wanted)← conClusters(Wanted) ∪ V ′

(23) nbMsg(Wanted) + +
(24) if (nbMsg(Wanted) == |neighbours|)
(25) if (p ∈Wanted)

(26) send AnsCON(Wanted, conClusters(Wanted) ∪ Pjp) to father(Wanted)
(27) else

(28) send AnsCON(Wanted, conClusters(Wanted)) to father(Wanted)

peer that recognizes itself in the list attached to AnsCON when the message goes up

adds its own shared variables to the list of new shared variables (noted ProjChild in

the algorithm, lines 25 to 26). Those variables need to be added along the path to en-

sure the running intersection property. They are shared between the peer and its direct

neighbourhood. In addition, each time a peer receives AnsCON with a non empty list

projChild, it creates a new “connection” cluster containing all variables of projChild

(named conClusters(Wanted) in the algorithm for simplicity, lines 21 to 22).

Complexity Analysis At the end of the Distributed Token Elimination n peers have

been eliminated. For each elimination the token will potentially visit all edges in both

directions (in the worst case) making a local election at each step. Afterwards, during

the sub jointree reconnection phase, each peer will be required. Since the local election

requires a constant number of non concurrent messages and the time complexity of the

sub-jointrees connection is bound by the diameter of the graph, the time complexity of

the whole algorithm is in O(N ∗E). In addition, the algorithm is complete and correct

as soon as the initial graph respects the running intersection. The correctness and the

completeness of our algorithm can be ensured by the following remark: the execution of
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Fig. 7: Width of obtained jointrees, average values over 10 experiments per point

our algorithm can be easily reduced to a particular execution of a centralized, classical,

decomposition tree algorithm.

4 Experimental evaluation

We implemented a java-based simulator of a distributed system for analysing the perfor-

mance of our Distributed Token Elimination algorithm. We used a generator of small-

world networks, following the model generation of Barabassi and Albert [2] (called

BA Graphs) and Watts and Strogatz [24] (called WS Graphs). Let us point out that

BA Graphs are extremely heterogeneous. The degree of nodes follows a power law, a

strong characteristic of many real world problems (World Wide Web, email exchanges,

scientific citations, ...) [18]. WS Graphs are more homogeneous and have been used for

modelling diagnosis circuits [20] or various CSP instances [23]. On this kind of net-

works, we were able to scale up to more than thousands of variables. Before analyzing

the results, let us also point out that we do not consider the privacy characteristics of

our algorithms in this experiment: all variables are shared; and we consider that each

peer has exactly one and only one variable for simplicity. However, as shown in the

algorithm, line 12, private variables are treated apart. They are automatically removed

from any projection the peer can send away. Thus, our experiment does not necessarily

have to take privacy into account.

We report in figure 7 the quality of the jointrees produced by our algorithm, Dis-

tributed Token Elimination, with a set of selected state of the art algorithms. Bucket

Elimination with the MinFill heuristic (BE-MinFill) is well known and represents the

current state of the art for centralized methods. We also report two DFS variants (Max-

imum Cardinality Set and no heuristic). The first one is certainly the most used in dis-

tributed systems. We report the Token Elimination algorithm with two variants. The first

one is the MinCluster (the one previously reported), and the second one MinProjection

(instead of scoring the peers with their potential cluster size, we score them according

to the size of the set of projection variables).



15

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 0  200  400  600  800  1000  1200  1400

a
v
g
T

im
e

nbVertices

(WSGraph step: 100 nbInstances 10)

BE-DFS
BE-DFS-MCS

BE-MinFill
TE-MinCluster

TE-MinProj

(a) WS Graph

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  200  400  600  800  1000  1200  1400

a
v
g
T

im
e

nbVertices

(BAGraph step: 100 nbInstances 10)

BE-DFS
BE-DFS-MCS

BE-MinFill
TE-MinCluster

TE-MinProj

(b) BA Graph

Fig. 8: Average CPU time for compilation of jointrees over 10 experiments per point

The reported results show a significant improvement of Token Elimination over

DFS. The obtained results, with the MinCluster variant, are now very close to BE on

BA Graph. Surprisingly, after 700 nodes TE-Minproj gives better decompositions than

BE on WS-Graph. Let us recall here that the jointrees built by Token Elimination are

forced to follow the original links in the initial graph, which is not the case of BE.

The above results must be nuanced by the cost of the distributed compilation itself.

As shown in figure 8, if DFS does not produce very good jointrees, it can produce

them very quickly. BE needs more time, but produces the best jointrees. The total time

needed by Token Elimination is clearly the worst on BA Graph figure, and quickly

increasing. However, let us point out that for WS Graph TE is faster than BE. Given

the improvement in the quality of the obtained jointrees, we strongly believe Token

Elimination is a good solution, particularly suited to a distributed compilation approach

of the network.

5 Conclusion

In this paper, we proposed a new distributed method for building distributed jointrees.

Our method can handle privacy rules by keeping secrets secret (local variables stay lo-

cal), and allow the jointree to be built only on the top of existing links between nodes.

We show that this method can handle large structured instances and, even if the com-

pilation cost is clearly above the simple Distributed DFS algorithm, the quality of the

obtained jointree clearly outperforms DFS, even with a clever heuristic, and can even

surpass the quality of Bucket Elimination in its centralized version. We believe that our

algorithm can improved previous results in many distributed applications.
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