
The ALICE data acquisition system

F. Carena a, W. Carena a, S. Chapeland a, V. Chibante Barroso a, F. Costa a, E. Dénes b, R. Divià a,
U. Fuchs a, A. Grigore a,c, T. Kiss d, G. Simonetti e, C. Soós a, A. Telesca a, P. Vande Vyvre a,
B. von Haller a,n

a European Organization for Nuclear Research (CERN), Geneva 23, Switzerland
b Research Institute for Particle and Nuclear Physics, Wigner Research Center, Budapest, Hungary
c Politehnica Univesity of Bucharest, Bucharest, Romania
d Cerntech Ltd., Budapest, Hungary
e Dipartimento Interateneo di Fisica ‘M. Merlin’, Bari, Italy

For the ALICE Collaboration

a r t i c l e i n f o

Article history:
Received 26 November 2013
Received in revised form
4 December 2013
Accepted 4 December 2013
Available online 17 December 2013

Keywords:
Data acquisition
LHC
ALICE
CERN

a b s t r a c t

In this paper we describe the design, the construction, the commissioning and the operation of the Data
Acquisition (DAQ) and Experiment Control Systems (ECS) of the ALICE experiment at the CERN Large
Hadron Collider (LHC).

The DAQ and the ECS are the systems used respectively for the acquisition of all physics data and for
the overall control of the experiment. They are two computing systems made of hundreds of PCs and
data storage units interconnected via two networks. The collection of experimental data from the
detectors is performed by several hundreds of high-speed optical links.

We describe in detail the design considerations for these systems handling the extreme data
throughput resulting from central lead ions collisions at LHC energy. The implementation of the resulting
requirements into hardware (custom optical links and commercial computing equipment), infrastructure
(racks, cooling, power distribution, control room), and software led to many innovative solutions which
are described together with a presentation of all the major components of the systems, as currently
realized. We also report on the performance achieved during the first period of data taking (from 2009 to
2013) often exceeding those specified in the DAQ Technical Design Report.

& 2013 The Authors. Published by Elsevier B.V.

1. Introduction

The main goal of the ALICE [1,2] (A Large Ion Collider Experi-
ment) experiment at the CERN Large Hadron Collider (LHC) is a
precise characterization of the Quark-Gluon Plasma (QGP), the
state of deconfined matter produced in high-energy heavy-ion

collisions. This QGP is, in the standard Big Bang model, the state of
matter which existed in the early universe from picoseconds to
about 10 microseconds after the Big Bang. A precise determination
of its properties would be a major achievement. The study of the
QGP is performed by investigating the result of heavy ion colli-
sions at a center-of-mass energy of 5.5 TeV per nucleon pair.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nima

Nuclear Instruments and Methods in
Physics Research A

http://dx.doi.org/10.1016/j.nima.2013.12.015
0168-9002 & 2013 The Authors. Published by Elsevier B.V.

Acronyms: ACT, ALICE configuration tool; AMORE, Automatic MOnitoRing Environment; API, application programming interface; BIST, Built-In Self-Test; CASTOR, CERN
Advanced STORage manager; CTP, central trigger processor; CVS, concurrent versions system; D-RORC, DAQ Read-Out Receiver Card; DA, Detector Algorithm; DAQ, data
acquisition system; DATE, data acquisition and test environment; DB, database; DCS, detector control system; DDD, DCS Dedicated Daemon; DDL, detector data link; DIM,
distributed information system; DIU, destination interface unit; DMA, direct memory access; DQM, data quality monitoring; DSS, DAQ services servers; ECS, experiment
control system; EDD, ECS dedicated daemon; EDM, event destination manager; FEE, front-end electronics; FERO, front-end and read-out; GDC, global data collector; GUI,
graphical user interface; H-RORC, HLT Read-Out Receiver Card; HI, human interface; HLT, high level trigger; HOMER, HLT Online Monitoring Environment; HW, hardware;
LDC, local data collector; LHC, Large Hadron Collider; LTU, local trigger unit; NTP, network time protocol; NVRAM, non-volatile random access memory; PDS, permanent data
storage; QGP, Quark-Gluon plasma; RCS interface, MISSING; RCT, run control tool; RORC, Read-Out Receiver Card; SAN, storage area network; SIU, source interface unit; SL,
shift leader; SMI, state management interface; SSH, Secure SHell; SW, software; TDS, transient data storage; TDSM, transient data storage manager; TRG, trigger system; TTC,
trigger timing and control

n Corresponding author. Tel.: þ41 22 76 77259.
E-mail address: bvonhall@cern.ch (B. von Haller).

Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162

Open access under CC BY license.

Open access under CC BY license.

www.sciencedirect.com/science/journal/01689002
www.elsevier.com/locate/nima
http://dx.doi.org/10.1016/j.nima.2013.12.015
http://dx.doi.org/10.1016/j.nima.2013.12.015
http://dx.doi.org/10.1016/j.nima.2013.12.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2013.12.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2013.12.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2013.12.015&domain=pdf
mailto:bvonhall@cern.ch
http://dx.doi.org/10.1016/j.nima.2013.12.015
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Collisions of lower-mass ions will also be observed as a mean of
varying the energy density and of pp or p–nucleus to provide
reference data for the nucleus–nucleus collisions.

The LHC includes two adjacent parallel beamlines (or beam
pipes) that intersect at four points, each containing a particle
beam, which travel in opposite directions around the ring. The
particle beams are made of either protons, ion nuclei, or proton
and ion nuclei. A beam in the LHC is not a continuous string of
particles, but is divided into hundreds of bunches, each a few tens
of centimetres long. Each bunch contains more than a hundred
billion protons or tens of millions lead nuclei. The LHC has been
designed in order to maximize the chances of interaction between
the particles in the four intersection points, where the bunches of
the two beams cross each other.

Experiments have been installed at the four LHC intersection
points to observe the interactions between the particles of the two
beams. An interaction is often referred to in this paper as an event
and, by extension, the data produced by an experiment when
observing this interaction are also designated as an event.

The ALICE experiment has operated since 2008 in several
different running modes with significantly different characteris-
tics. ALICE has been primarily designed to run with heavy-ion
beams (PbPb) which are characterized by a relatively low interac-
tion rate (r10 kHz), a relatively short running time (a few weeks
per year) but with a very large event size produced by the large
number of charged particles traversing the detectors. In proton–
proton (pp) or proton–nucleus (pPb) running modes, the interac-
tion rates are much higher (up to hundreds of kHz) whereas the
event size is smaller and the running time of several months per
year in pp. These running modes and the corresponding expected
event rates and data throughput constitute the main requirements
that have been used to design the online systems as reported in
the ALICE Technical Design Report on Trigger, Data Acquisition,
High-Level Trigger and Control System [3].

1.1. ALICE online systems

The ALICE experiment includes five online systems: Trigger,
Data Acquisition, High-Level Trigger, Detector Control System and
Experiment Control System. The functions of these systems are the
following:

� The Trigger system (TRG) is combining the information from all
triggering detectors and, for every bunch-crossing of the LHC,
makes a decision within microseconds whether the resulting
data are worth being collected. For each positive decision, it
sends a sequence of trigger signals to all detectors in order to
make them read out synchronously.

� The core function of the Data Acquisition (DAQ) system is to
realize the data-flow from the detector up to the data storage.
The DAQ system also includes software packages performing
the data quality monitoring and the system performance
monitoring.

� The High-Level Trigger (HLT) reduces the volume of physics
data by selection and compression of the data.

� The Detector Control System (DCS) is in charge of controlling all
the detector services (high and low-voltage power supplies,
gas, magnet, cooling, etc.).

� The Experiment Control System (ECS) is coordinating the
activities of all the online systems to fulfil their common goal.

This paper describes the DAQ and ECS systems who are in
charge of the overall experiment data-flow and control, the
detector software, the infrastructure and the data quality
monitoring.

1.2. Data-flow

The data-flow from the detector electronics up to the data
storage in the CERN computing center is organized as a sequential
data-driven pipeline. Upon reception of a sequence of trigger
signals requesting the data collection, the selected elements of
the detectors generate data fragments that are transferred to
computers via optical links. A computing farm is used to check,
label, format and record the data. The data-flow has been
implemented as a hardware system and a set of software packages
described respectively in Sections 3 and 4.1.

1.3. Control

The ECS has several roles. It has to provide the operators with a
unified view of the experiment and a central point from where to
steer the experiment operations. Second, it also has to permit
independent concurrent activities on parts of the experiment (at
the detector level) by different operators. Finally, it has to
coordinate the operation of the control systems active on each
detector: the TRG, DCS, DAQ and HLT control. The ECS and the
other software packages used to configure and control the experi-
ment are presented in Section 4.2.

The ALICE Configuration Tool (ACT) serves as a configuration
repository to which the different ALICE systems can access to
extract their currently selected configuration. It is described in
Section 4.2.3.

1.4. Monitoring, metadata, detector software and data quality
monitoring

The ALICE DAQ and ECS are complex systems operated by a
single person. It is therefore of paramount importance to have
good services to monitor the system itself. The software packages
used for the infrastructure monitoring are presented in Section
4.3: Lemon for the fabric monitoring, the infoLogger for all the
operations related to the log messages generated by all the other
software packages and Orthos for the alarm handling.

One package is playing a special role: the electronic logbook
presented in Section 4.3.4. This package implements the book-
keeping of all the operational activities and is the only software of
the DAQ and ECS systems directly used by all the members of the
collaboration.

The DAQ system also includes two facilities to execute detector
related algorithms such as calibrating a detector or monitoring the
data quality. The Detector Algorithms package (DA) has imple-
mented a controlled and reliable environment for the execution of
detector related tasks and is presented in Section 4.4. AMORE
(Automatic MOnitoRing Environment) is the environment used by
all the detectors and systems for the monitoring of the data
quality. It is presented in Section 4.5.

1.5. The DATE software package

The coherence of the whole DAQ and ECS systems is given by a
common software framework composed of different layers of
modules. The bottom layer includes the memory handling, the
process synchronization and the communication layers. The appli-
cation layers includes the data-flow and the control applications.
This framework is called DATE (Data Acquisition and Test Environ-
ment) and has been used during all the phases of development
and operation of the ALICE experiment.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 131



2. Initial requirements

The requirements for the ALICE DAQ system have been eval-
uated and refined in several documents [1,3,4]. A few key para-
meters were essential to design the global architecture and to fix
its fundamental characteristics.

The maximum event rate handled by the DAQ system was
relatively modest and estimated to be of the order of 1 kHz. This
did not put a big constraint on the system design.

On the contrary, the requirement for what was considered at that
time the most difficult part of the system, namely the data-flow, was
considered extremely challenging. It was expressed as capacities in
terms of aggregated data throughput, which was evaluated by listing
different scenarios corresponding to the different types of physics and
estimating their event rate and event size needs. The total available
storage bandwidth was the most important boundary condition of the
ALICE DAQ. This limit was dictated by the cost of the media that is
needed to store the data and the cost of the computing resources
needed to reconstruct and analyze these data. ALICE was originally
estimating that 1.25 GBytes/s would provide adequate physics statis-
tics within the construction and exploitation budgets. The CERN
management has then agreed that a Central Data Recording facility
of the corresponding maximum bandwidth would be provided. This
has therefore been arbitrarily set as the maximum throughput that the
ALICE DAQ could produce to mass storage. However, all the efforts
have been made to reduce the data throughput below this limit
without jeopardizing the physics performance. This data throughput
was a key element to dimension the hardware architecture.

3. Hardware architecture

3.1. Overview

The overall architecture of the ALICE DAQ (as shown in Fig. 1)
was designed from the start as a data driven fully parallelized push

architecture. At each stage the content of the data stream drives
autonomously its routing through the processing chain from the
source to the destination. The throttling is implemented by a back
pressure from the destination to the source. The system is data
driven because the data flow inside the system is mostly based on
the data content themselves.

The first step of the data-flow concerns the detector read-out.
The Central Trigger Processor (CTP) forms a decision for every
bunch crossing and communicates them via several messages (L0,
L1a, L2a) to the Local Trigger Units (LTU) of all detectors which need
to be read out. The LTU broadcasts the positive decisions over the
Trigger, Timing and Control (TTC) network. Data are pushed into the
system by the detectors Front-End and Read-Out (FERO) electronics
upon reception of the corresponding sequence trigger signals. The
data produced by the detector electronics, the event fragments, are
transported by the Detector Data Links (DDL) which are point-to-
point optical links clocked at 2.1 Gb/s. Each of these DDL links has a
capacity of 200 MB/s. Of the order of 500 links transport the data
from the detector, or its vicinity, located in the experimental hall
roughly hundred meters below the ground up to a computing room
close to the surface named Counting Room 1 (CR1). The receiving
end of the DDL is performed by a PCI-X or PCIe adapter called the
DAQ Read-Out Receiver Card (D-RORC) which transfers the data
directly into the memory of PCs using a Direct-Memory Access
(DMA).

Some D-RORCs also send a copy of the data over a second DDL
to the HLT farm where the HLT Read-Out Receiver Card (H-RORC)
transfers the data directly into the memory of PCs: the Front-End
Processors (FEP). The HLT performs a first online reconstruction,
produces decisions about the data to be recorded and compresses
them.

The trigger signal used to initiate the data transfer includes a
time tag originated from the LHC clock and which has a precision
of 25 ns corresponding to one bunch crossing. This time tag which
is appended to every data fragment is used to identify it. The data

Fig. 1. Overview of the hardware architecture.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162132



are then flowing through a farm of PCs which format, check and
assemble together all the pieces of data pertaining to the same
interaction.

All the DDLs of the experiment transfer the data into 175 Local
Data Concentrators (LDCs). The LDCs realize the first step of a
process known as event-building which consists of assembling
together the data fragments belonging to the same particle
collision into a sub-event. The second step is realized by the
Global Data Collectors (GDCs) where complete events are
assembled, using the time tag mentioned earlier. The GDCs
combine the data directly transferred from the detectors with
the result of the processing performed by the HLT farm. A load-
balancing mechanism between the GDCs is provided by the Event
Destination Manager (EDM).

The GDCs write the events into data files which are stored in
the TDSs (Transient Data Storage) which is a temporary buffer
located at the experimental area and which has a capacity big
enough to store the data during several hours of continuous data
taking. The TDSMs (TDS Manager) read back the data files and
migrate them to the Permanent Data Storage (PDS) in the CERN
computing centre located a few kilometers away from the
experimental area.

Several dozens of servers are used for the Data Quality
Monitoring (DQM) and the DAs. The DAQ Services Servers (DSS)
are providing the general services for the configuration database,
the ECS and the other control functions, the system monitoring
and the metadata services.

3.2. DDL & RORC

Data flow from the ALICE detectors via optical link pairs (one
up-link and one down-link) known as DDL (see Fig. 2).

As shown in Fig. 3, the DDL consists of a Source Interface Unit
(SIU, see Fig. 4), which is attached to the front-end electronics
inside the detector and a Destination Interface Unit (DIU)
embedded in the Read-Out Receiver Card (RORC, see Fig. 5).

Two types of RORCs, each handling two DDL channels with
embedded DIUs, are currently used in the experiment:

� The dual channel PCI-X D-RORC has a 64 bit/100 MHz PCI-X bus
interface.

� The dual channel PCIe D-RORC has a x4 PCIe (Gen. 1) bus
interface.

In this chapter, these cards are commonly referred as RORC. The
SIU and the DIU are connected through a pair of optical fibres to
transmit data up to a rate of 200 MB/s with a detected bit error
rate of less than 10�15. Both the Front End Electronics (FEE) and
the SIU are remotely controlled by the RORC through the DDL,
since their placement inside the detector does not allow using any
other cabling apart from the DDL medium. Therefore, commands
and status information are also transmitted between the FEE and
the RORC. To achieve the high reliability of the experimental
apparatus, efficient tests of all the sub-systems have been pro-
vided. The DDL itself also has a powerful built-in self-test (BIST)
mode that allows the verification of the full data acquisition chain.

The RORC card has a total data throughput of 400 MB/s
between the RORC and the DIU. The throughput via PCI between
the RORC and the PC is 800 MB/s for the PCI-X version and 1 GB/s
for the PCIe RORC version. Given the requirements of the ALICE
experiment a custom protocol has been developed to send data
from the SIU to the RORC. For this reason the RORC and the SIU are
custom hardware hosting a FPGA that allows firmware upgrade
adding new features. The RORC hosts ALTERA FPGA of the follow-
ing models: ALTERA STRATIX 2 or ALTERA STRATIX 2gx for the PCI-
X or PCIe respectively.

The SIU operates in radiation environment and for this devel-
opment a FLASH based FPGA, the ACTEL PROASIC3, has been
selected. Depending on the acquisition needs and on the number
of available PCI bus slots, one PC can be equipped with several
RORCs (up to 6). Each RORC has a revision number and a unique
serial number in its configuration EPROM. The RORC has built-in
test systems used to verify the correct behavior of the board,
without removing it from the host PC. By using a dedicated utility
it is possible to send predefined data patterns to the RORC and
receive them back looking for possible data mismatch. The RORC
can be operated in three different loopback levels for testing
purposes:

� RORC loopback: data is sent in through the PCI bus and sent
back immediately.

� DIU loopback: data is sent up to the DIU component and
sent back.

Fig. 2. Optical OM1 fibre for DDL with LC plugs.

Fig. 3. FEE connected to the DAQ system.

Fig. 4. SIU card.

Fig. 5. PCIe RORC card.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 133



� SIU loopback: data is sent through the optical fibre to the SIU
and sent back for checking.

The RORC has also an internal data generator used to test the
data acquisition chain, if the SIU is not available. Activating this
mode will force the card to generate data internally and to send it to
the software as it happens during the normal data taking operation.

Dual channel RORCs can be switched to splitter mode: data
arriving in one channel is sent out on the other channel in
automatic way, this feature is used to forward an exact copy of
the data to the HLT system.

The data flow from the DIU to the PC memory is driven by the
DMA engine of the RORC firmware in co-operation with the RORC
readout software. Data pages that belong to the same sub-event
are referred as fragment, which are transferred over the DDL by
one or more DDL blocks. Each block can be up to 221 bytes.

The DDL system can be operated in two directions. During the
data taking the SIU sends data to the RORC, but the RORC can be
used to send configuration information to the detector electronics
sending FEE commands to the SIU. The configuration of the detector
through the DDL happens usually before starting a new run, but if
needed it can be executed also during the normal data taking.

These packages handling the components described above are
commonly referred as readout (see Section 4.1.2 for details on this
software). The readout software initializes the RORC, DIU and SIU
before starting the data taking. Once the initialization process is
completed, the readout software provides memory page's addresses
to the RORC that moves data to the RAM of the PC autonomously. If
there are no available memory locations, the readout program enters
in a loop waiting for the next free page. In this situation the data
taking has to be paused to avoid data to be overwritten. A XOFF
mechanism has been implemented in the DDL protocol. When the
RORC cannot write data into the memory of the PC, it issues a XOFF
signal, called also back-pressure, to the SIU that blocks the data flow
coming from the FEE, that raises the busy to the trigger system
stopping the data taking. Once free memory pages are available again
the XOFF is cleared and data taking starts back normally.

3.3. The LDC and GDC

The properties of the machines used for the detector readout
(LDC) and event building (GDC) are crucial to deliver the required
data acquisition speed.

The LDCs are currently based on the X8DTNþ motherboard
from Supermicro which provides 3 PCI-X slots and 3 PCI-e slots.
With 8GB DDR3 RAM and two Xeon E5606 processors these
machines are capable to move the data from the D-RORC cards
to memory via DMA and to buffer it there while waiting for the
HLT decision.

The GDCs are mostly focused on memory buffer and CPU for
event building and data compression. They also require a fast
connection to the temporary data storage system. They are
currently based on HP Proliant DL160 servers with 24 GB DDR3
RAM, two Xeon E5520 CPUs and a 4 Gbps PCIe Fiber Channel
adapter. This configuration provides enough memory to buffer
large events and enough CPU power for event building, data
compression, rootification (see Section 4.1.5) and storage access.

Fig. 6 shows how the event building rate, in terms of MB/s,
scales with the increase of the number of concurrent streams
performing event building, data compression and rootification by
using the multiple cores available.

3.4. Servers

The distributed hardware and software components of the DAQ
system rely on several online databases for configuration and

operation. These data are stored in MySQL, running on dedicated
database (DB) servers. In this section we review them and their
performance.

The databases consists of

� The configuration DB, describing the counting room (CR1)
machines, some detector-specific electronics settings and the
DAQ and Experiment Control System runtime parameters (ACT,
CR1, DATE and ECS on Fig. 7).

� The log DB, centrally collecting reports from running processes
(LOG on Fig. 7).

� The experiment logbook, tracking the run statistics filled
automatically and the operator entries (LOGBOOK on Fig. 7).

� The online archive of constantly updated data quality monitor-
ing reports (AMORE on Fig. 7).

� The file indexing services, including the status of transient files
for permanent storage, and the calibration results for offline
export (FES on Fig. 7).

� The user's guide (Wiki).

The profiles (size, number of tables and rows) of the corre-
sponding databases are shown in Fig. 7.

Hardware benchmarks have been conducted to select the
appropriate platform. In addition to usual CPU, memory and disk
benchmarks, we measured insertion speed of a large data set in a
MySQL [5] table. We have been using this procedure since 2005,
and it proved to be a good performance metric for the applications
we run (even for those not doing bulk inserts).

We used several types of database servers. In 2006, we selected
a machine equipped with two AMD Opteron 275, which out-
performed other models in our database applications thanks to the
integrated memory controller in the CPU, feature which was not
available yet on other platforms. Storage was done on a separate
2TB RAID 6 disk array connected by Fiber Channel.

In 2010, the DB server type was upgraded to a dual Intel
Nehalem X5677 CPU (3.46 GHz) with 24 GB RAM (6x 4 GB DDR3-
1333). Tests showed that in our particular environment, it was
better to look for the highest clocking in order to reduce latency of
single threads. Some platforms showed better overall throughput
(more cores, individually slower), but this did not match so well
the database concurrency and locking models.

On this second DB platform, storage is done on two local 15 K
SAS 300GB drives (plus one cold spare) configured in RAID1 by the
on-board controller providing also a 512 MB Flash Backed Write
Cache. It is powered by two redundant power supplies. We also
added 2x2TB SATA disks for (less performant) storage space, used
e.g. for backups and archiving. The databases are also saved daily
to the CERN Advanced STORage manager (CASTOR), the perma-
nent data storage used for physics data at CERN. A fresh system
can be restored any time from scratch to continue data taking.

Fig. 6. Event building (EB) performance with and without compression for
concurrent streams.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162134



Data updated since last backup would be recovered with a delay if
hardware repair is needed, but this would not prevent data taking.

Three such servers are used: one for the main databases, one
dedicated to DQM and a spare. The cold spare system can be used
as replacement in case of system failure. No hardware problem
was observed on the servers since in production.

The system copes well with the production load. Fig. 8 shows
the I/O and CPU usage over time, in average and maximum peaks
during 2012 and 2013. The server is connected with a single 1 Gb
Ethernet. The network outbound traffic sometimes shortly satu-
rates the link, but this could easily be upgraded to 10 Gb. As
regards disk I/O, the relatively small data sets accessed at runtime
fit well in memory, and disk read access is minimal.

There are typically between 1000 and 2000 clients connected
at the same time. On average, new connections are created at the
rate of a few per second. However, a large peak occurs at start of
run when processes are launched. This corresponds both to
transient short-lived connections to retrieve processes configura-
tion, and persistent connections to update statistics during data
taking. We observe up to 1000 new connections per second
sustained during the first 10 s of a run.

A typical database query pattern with the rates of insert, delete
and update statements is shown in Fig. 9. It represents how the
system behaved during 10 days of Heavy Ion run in 2013. The data
taking periods correspond to the time ranges with update queries.
The average value is computed on 5 minutes intervals. The

maximum value represent the highest measured sustained value
(average) for any sampled 10 seconds interval.

Little tuning was done for the database server settings in order
to reach production needs. The main parameters to optimize were
the limit on maximum concurrent connections, and the InnoDb
engine parameters to make best use of available system memory.

The DAQ system also includes the following central services:

� A machine for the DAQ and ECS control. All the processes run
on a single host. There is a backup server ready to take over in
case of hardware failure.

� A machine for the web services. In particular, it hosts the
experiment logbook, the ACT, and the web version of the
infoBrowser. The machine is connected to the CERN general
purpose network, and visible from the public Internet. It is
constantly kept up to date with the latest security patches. This
server has a dedicated route to the DAQ databases.

3.5. Network

The ALICE DAQ consists of 175 LDCs, 83 GDCs and 5 TDSMs
providing the necessary services. It was decided to use a Force10
Terascale E1200 as central router that is equipped with 7 line cards
providing 48 ports of 1 Gbit each, 3 line cards providing 4 ports of
10 Gbit each and one line card providing 16 ports 10 Gbit. This port

Fig. 7. Sizes of databases.

Fig. 8. DB server CPU and I/O usage.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 135



density allowed all machines to be connected directly to the
central router thus creating a fully non-blocking fabric for all
nodes (see Fig. 10).

The LDCs are all connected by single UTP Gigabit links, except
for some data intensive detectors that required their machines to
be connected by 10 Gigabit fiber links . The 75 GDCs used in global
runs are all connected by single UTP Gigabit links, while the
5 TDSM data movers were powerful machines connected by 10
Gigabit fiber, thus being able to push more than 1GB/s to tape
each. The link to the IT tape facility is realized by 4 LR 10G fiber
links, thus giving ALICE a (theoretical) total recording capacity of
4.5 GB/sec.

3.6. Storage

To buffer the data before transferring it to the IT tape facility,
the GDCs are also connected to a Fiber Channel SAN giving them
access to the temporary storage system (see Fig. 10).

This SAN consists of two Qlogic 9000 switches with 165 4G
ports and 32 8G ports, as well as 75 disk-based storage arrays of
the type Infortrend S16F-G1440. Each disk array exports 3 LUNs of

3 TB in RAID6 for a total of 650 TB. The GDCs and disk arrays are
connected by single 4G FC links, while the data movers are
connected with dual-8G FC links, matching the 10G Ethernet
output and thus enabling a throughput of 1GB/sec per machine.

3.7. The DQM and DA nodes

The Data Quality Monitoring (see Section 4.5) and the Detector
Algorithms (see Section 4.4) are amongst the most demanding
tasks of the system in terms of CPU and memory. As a conse-
quence, and given the limited physical space available, density was
one of the main criteria to choose the machines.

Tests and benchmarks have been conducted on candidate
platforms in order to assess their performance and scalability. In
addition to standard memory and CPU stress tests, the final
software for DQM and DA has been run on the machines with
realistic as well as extreme test cases.

The final choice consisted of 64 Nehalem-based blades with
2 CPU's quad-core (Intels Xeons, E5450 at 3.00 GHz) ensuring
both performance and density.

3.8. The ALICE Control Room stations and displays

The ALICE control room is divided into 2 sections: the main
experiment control room and the working rooms used by the
detector teams to work on problems and prepare configurations.
Therefore the requirements for PCs and displays were also differ-
ent. Due to the relatively high number of PCs in the rooms we had
to choose a compromise between powerful machines and silence,
which means few and low-noise fans. For the working rooms the
PCs were equipped with dual-head video cards driving two 19”
screens to give sufficient display space to work with all control
windows. For the main control room the work places had to be
equipped with 6 screens, i.e., 3 dual-head video cards per PC.
Running X xinerama displays of this size required substantial
amounts of memory in the PCs and PCIe video cards to be able to
work smoothly. As an additional constraint we had to run RHEL5.
We chose to go for an CHIEFTEC 550W chassis, ASUS Maximus IV

Fig. 9. Database query pattern.

Fig. 10. Network schema.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162136



motherboards with i5-2500 K CPUs, 4 GB RAM with 3 x16 or x8
PCI-express slots for the handling of the three NVIDIA NVS300
graphics cards.

4. Software architecture

4.1. Dataflow

All the components of the DAQ system are based on a chain of
actors, each actor taking care of one specific function performed in
one of the components of the hardware system presented in
Section 3.1 and shown in Fig. 1. Data are stored locally on the
computing nodes in a central data buffer, shared between the
actors. Processes running on the same computing node exchange
descriptors for the data blocks via single-producer, single-consumer
lightweight FIFOs (First-In First-Out). Access to the shared resources
is done via memory references re-mapped on each process. Central
routines and macros are available to effectively support the above
data sharing model (buffer allocation, memory mapping, informa-
tion exchange, data transfer, etc.).

Well-defined protocols and data exchange models have been
defined and implemented to move data from the ALICE detectors
and to/from the HLT farm.

The data blocks exchanged are all related to a single particle
interaction but can have different scopes: an event fragment at the
output of a DDL, a sub-event inside an LDC and an event inside a
GDC. All the data exchange protocols are based on data blocks
(event fragments, sub-events and events) which are labelled so
that they are self-explanatory.

4.1.1. Detector data links
It is mandatory for the ALICE DAQ to be able to identify the data

blocks transferred by FEE over the DDL. A common data format
(see Fig. 11) has been elaborated and it is used to uniquely mark
each single event. The identification of a data block and its
processing requires the following information:

� The format version.
� The event identification.
� The trigger information.
� The block length.
� The event attributes.
� The ROI (Region Of Interest) data.

These fields must be present in each data block transferred. The
format of the raw data themselves is detector dependent.

Data transferred from the FEE to the LDCs must be formatted as
follows:

1. A header describing the associated data block(s), the trigger
conditions, the error and status conditions and other infor-
mation dependent on the readout electronics has to be
created while the raw data is collected and must be sent
first.

2. One or more data blocks described by the preceding header
belonging to the same physics or software trigger, may follow
the header.

While the header is mandatory and must be created for all data
blocks sent over the DDL, the data blocks are optional and may be
skipped in case there is no valid data associated to a given event.
All the events associated to the same trigger (physics or software)
must be sent over the DDL within the same block and preceded by
one header. It is not possible to send two headers with the same
trigger identification information.

4.1.2. Readout
The LDCs receive the raw detector data via the RORC. All the

necessary software to operate RORC devices on a PC running Linux
is included in the two following packages of DATE:

� Package rorc: it contains the Linux driver module, the library
functions, and utility programs to configure and have an inter-
face to a RORC device.

� Package readList: it contains the equipment software to read-
out data from a RORC device. The software depends on package
rorc and it runs on a LDC.

The readout process is running in all the LDCs participating in
the data taking. The readout process collects data from the front-
end electronics by executing code that is specified in a separate
software module, called readList. The readlist module consists of
the following five routines:

� ArmHw, called at each start of run to perform the initialization.
� AsynchRead, called in the main event loop to perform the

readout of the hardware that produces an asynchronous flow
of data.

� EventArrived, called in the main event loop to discover
whether a trigger has occurred.

� ReadEvent, called in the main event loop after the arrival of a
trigger to perform the readout of the hardware.

Fig. 11. Common data header format.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 137



� DisArmHw, called at each end of run to perform the hardware
rundown.

Fig. 12 shows the structure of the readout program and how
these routines are called in the main event loop.

During the execution of the main loop readout allocates
memory for one sub-event. The readout process calls the
routine AsynchRead to activate the readout of hardware that
produces an asynchronous flow of data. If no events are
arriving, the innermost main event loop is executed at max-
imum speed as long as there is no end of run request or when
the timeout to wait for events of type START OF RUN or END OF
RUN has expired. Each time an event is present in the buffer,
the readout process fills the base event header fields for which
it is responsible (including the event time stamp to tag the sub-
event), and it increments the variable number of sub-events for
all event types. Then the routine ReadEvent is called, which is
in charge of transferring the event data and for filling the base
event and equipment header fields. Afterwards the readout
process performs the following operations in the order
described in Fig. 13.

The readout process exits the main event loop, if one of the
following conditions is met:

� The maximum number of events to be collected has been
reached.

� The maximum number of bytes to be collected has been
reached.

� The arrival of an end of run request combined with the
following three cases:
○ The parameter startOfData/endOfData event enabled is not

set, hence there is no waiting for an event of type END
OF DATA.

○ The parameter startOfData/endOfData event enabled is set
and an event of type END OF DATA has been received within
the timeout.

○ The parameter startOfData/endOfData event enabled is set
and an event of type END OF DATA has not been received
within the timeout.

� An event of type START OF DATA has not been received within
the timeout when the parameter startOfData/endOfData event
enabled is set.

The readout program accesses the hardware by calling the five
routines of the readList module, which contains the code specific
to a given electronics setup. Instead of writing several of these
modules, the generic readList concept allows to group the code for

Fig. 12. Main loop executed by readout.

Fig. 13. Readout operations state machine.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162138



all the electronics setups in another library called equipmentList
(see Fig. 14).

The readout software specific to an electronics setup can be
written separately for a so-called equipment. One equipment is
responsible for generating data from an electronics board or a set
of electronics boards, depending on how the readout software is
structured. A set of equipment-handling routines deals with one
single equipment, thus the code is more modular and readable. All
the five routines must be implemented for an equipment. If one of
these functionalities is not required, a dummy routine should be
provided. The equipment configuration defines the equipments
used for each LDC. It is done with the equipment databases. An
equipment may be repeated several times in a detector; each run-
time call will be distinguished by a different set of equipment
parameters. The configuration file specifies the selection of the
active equipments and the setting of the parameters that will be
passed to the readout routines. Therefore, it is possible to modify
the readout program behavior without changing the readout
executable code. As a result of this generic readList concept, the
sub-events of an LDC are divided further into smaller parts, called
equipment data or fragments. Each equipment data block begins
with an equipment header, followed by the equipment raw data.
Various LDCs contain different fragments from the equipments,
but the LDCs have only information of the sub-events coming from
a detector. To build a complete event all the LDCs have to send
data to the GDCs, that collect all the sub-events and build the
complete event for a specific trigger. LDCs are connected to the
GDCs through a GbE network using TCP/IP protocol to exchange
data. It is important that one GDC collects all the sub-events
belonging to the same trigger to build properly one full event. A
round-robin algorithm has been implemented in readout to share
equally the data throughput from the LDCs to all the available
GDCs. By using the ORBIT NUMBER of each sub-event it is possible
to address a different GDC-ID for every trigger.

4.1.3. Recording
Data recording is performed via asynchronous, single or multi-

ple data channels. Both the LDCs and the GDCs can write the data
into one or more data files hosted on locally mounted disks in raw
DATE format. GDCs also support AliRoot (ALICE Offline software
package) [6] format. The latter is possible only on the GDCs.
Furthermore, the LDCs can send their data to one or more GDCs
via TCP/IP sockets using an optimized push protocol. A special
recording mode, used for debugging and profiling, sends the data
to a null device where it gets disposed with the minimum possible
delay. All recording modes support multiple channels served
asynchronously with a starvation-safe policy.

When the LDCs send their data to the GDCs, the destination
node is selected from the list of active GDCs solely as a function of
the content of the events.

4.1.4. Event building
Event building takes place in the GDCs. A single-threaded

process, named eventBuilder, receives the sub-events from the
LDCs, stores them in local memory and decides, as a function of
the event type, trigger classes, and detector pattern associated to
the event if this has to be built and which contributions are
expected. This procedure takes also into account a possible
decision from the HLT system that may request to drop selected
parts of the event (to be either discarded forever or replaced with
compressed data). Whenever an event is declared as complete, it is
sent to the following stage which can be either local recording or
streaming. A sample of the complete events is also duplicated to
the monitoring streams as requested by the setup of the DAQ
System.

4.1.5. Streaming
At the output of the eventBuilder is the mStreamRecorder

process which takes care of the objectification and streaming
procedures (together known as rootification). The raw events are
dispatched to a set of worker processes that create encapsulating
AliRoot objects and store them into ROOT files [7], ready to be
migrated to the PDS. The usage of multiple worker processes
maximizes the CPU occupancy of the GDC without noticeable run-
time penalties for the overall procedure.

4.1.6. Migration
The ROOT files created by the streaming processes are stored

on a pool of disks (TDS) located at the ALICE experimental area.
This pool ensures optimal writing recording throughput and
allows a discrete autonomy, about one LHC fill, in case of
temporary failures within the data migration process. Data record-
ing has full priority over all the other operations involving the TDS
and no other activity must take place on the volume(s) selected for
writing. Once all their associated files are closed, the data volumes
are queued for migration to the CERN Computer Center which is
located several kilometers away from the experimental area. The
migration takes then place between the TDS and the PDS driven by
a pool of dedicated Mover nodes.

4.1.7. Monitoring
At the LDCs and GDCs level, a sample of the data flow is

duplicated to various monitoring streams, to be used for the DQM
and to run DAs. Monitoring clients can specify which events they
have to monitor (based on parameters such as event type, trigger
patterns, event attributes, etc.) and how many events they need
(from few events requested for example by an event display, to
most of them as for the case of rare calibration events required by
specialized DAs). The selected events are then forwarded to the
active monitoring clients by actors running on the LDCs and on
the GDCs.

A pre-defined portion of the raw data stream is moved “as is”
through the data chain without taking into account the decision
coming from HLT. This allows on one side monitoring of the
original, unprocessed data from the clients that need it and on the
other hand provides on the output data files a significant sample
of the source events and the associated HLT information (decision
and replacement data) for post-run verification checks.

Fig. 14. The generic readList concept.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 139



4.2. Control

4.2.1. Run control
The ALICE DAQ system allows parallel, independent data

acquisitions: different detectors can, for example, collect calibra-
tion data at the same time.

Every data acquisition, performed for one single detector or a
group of detectors defined by the ECS (see Section 4.2.2), is
controlled by a runControl process that steers the data acquisition
according to operator commands. Several runControl processes
with different names can run at the same time and control
different data acquisitions. The architecture of the runControl
system is shown in Fig. 15.

Every runControl process has a runControl interface based on
SMIþþ Finite State Machines [8]. The interface receives all the
commands sent to the runControl process and rejects those
incompatible with the current status of the process. The interface
also guarantees that, at any time, the source of commands is
unique. It can be a runControl Human Interface or a component of
the ECS.

Many runControl Human Interfaces can coexist for the same
process, but at most one at a time can have the mastership and can
be used to send active control commands, whereas the others can
only be used to get information. When the authorized source of
commands is the ECS (see next subsection), none of the runControl
Human Interfaces can send active commands: this possibility is
restricted to the ECS.

When the list of LDCs and GDCs to be used for a given data
acquisition is defined, the runControl process spawns a Logic
Engine process. The Logic Engine contains all the logic about
starting and stopping the different processes on the different
machines. The Logic Engine translates operator commands into
sequences of commands that are then sent, in parallel, to the
remote machines.

On every remote machine a process, called rcServer, starts and
stops processes according to the commands it receives from the
Logic Engine. The rcServer also performs some local error handling
and returns various counters and information to the other DAQ
processes (e.g. to the runControl Human Interfaces). A rcServer can
be used, at different times, by different runControl processes and
can therefore receive commands from different Logic Engines in
the context of different data acquisitions.

An interface, common to all the rcServers, guarantees that
every rcServer is used at any time by at most one runControl
process and receives commands from one Logic Engine in the
context of one and only one data acquisition. The interface is called
RCS interface.

All the runControl processes, the runControl interfaces, the
Logic Engines, and the RCS interface run on a central server. The
runControl Human Interfaces are started by shifters and detector
experts on different machines of the ALICE control room. The
rcServers run on LDCs and GDCs.

4.2.2. ECS
The Experiment Control System is a layer of software on top of

the online systems operating with the particle detectors in
different domains: DCS, DAQ, TRG, and HLT.

The ECS allows parallel operations of individual detectors
operated in standalone mode and of groups of detectors called
partitions. In all the cases the ECS synchronizes the online system
getting information from them and sending commands to them
via interfaces made of SMIþþ Finite State Machines [8].

The main components of the ECS are the Detector Control
Agents (DCA), the Partition Control Agents (PCA), the DCA Human
Interfaces (DCA HI), and the PCA Human Interfaces (PCA HI).

There is one DCA per detector to control all the standalone
activities of the detector and one PCA per partition to control the
Physics and Technical data taking runs performed with the
partition. When the partition is not taking data, the PCA allows
parallel calibrations runs of its individual detectors.

DCA HIs and PCA HIs allow to get information from and send
commands to the DCAs and PCAs respectively. For a given DCA
many DCA HIs can be started at the same time but at most one can
send commands to the DCA. Similarly at most one PCA HI can send
commands to its associated PCA.

Fig. 16 illustrates the ECS architecture with an example with
three detectors, one of them being operated in standalone mode
and the other two as part of a partition.

In addition to its main activity (i.e. the synchronization of the
online systems to perform runs), the ECS interacts with other
components of the ALICE software. In particular:

� Sends to the Alice Configuration Tool (ACT, see Section 4.2.3)
requests to lock/unlock configuration items to prevent config-
uration changes during runs.

� Stores in the ALICE eLogbook information about all the
performed runs.

4.2.3. ACT
The ALICE Configuration Tool (ACT) serves as a configuration

repository to which the different ALICE systems can access to
extract their currently selected configuration. As shown in Fig. 17,
the ACT is operated both by the Run Coordination and by the
different system experts via a Web-based Graphical User Interface
(GUI). A relation database serves as a data repository and an
Application Programming Interface (API), implemented in C,
provides numerous functionalities to the different components.

A publish/subscribe mechanism, based on the Distributed
Information Management system (DIM) [9], is also available. Two
dedicated modules, running as daemon processes, use this
mechanism:

� ECS Dedicated Daemon (EDD): interacts with ECS, DAQ, CTP, and
HLT pushing the selected configurations for the online systems.

� DCS Dedicated Daemon (DDD): interacts with the Run Control
Tool (RCT) pushing the selected configurations for the differentFig. 15. Run control architecture.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162140



ALICE detectors. The RCT then makes the configurations avail-
able to each individual DCS where the configuration is applied.

The two above daemons run on a Linux server, whereas the RCT
and the DCS of all the detectors run on Windows servers.

In order to define the different systems and detector compo-
nents to configure, the ACT introduces the following concept:

� System: an ACT system represents a physical or logical element
of the ALICE experiment. Each system normally has several
configurable components. Examples of system are detectors,
online systems, and ECS partitions.

� Item: an ACT item corresponds to a configurable component of
a specific ACT system. Each item normally has several possible

defined configurations. Examples of item are ‘partition PHY-
SICS_1 HLT Mode’, ‘TPC DCS configuration’, and ‘CTP L0 inputs’.

� Instance: an ACT instance defines a possible predefined config-
uration for a specific ACT item. At any time only one instance
can be activated for each item.

A locking mechanism prevents the configuration of items that
are being configured or used by an online system (e.g. a detector
being part of a running partition). For configuration, the items are
locked by the corresponding daemon (EDD or DDD). If being used
by an online system, the items are locked by that system.

At a given time, each item is in a specific state, represented by
its activation status. There are four possible values:

� update requested: a configuration has been requested for
the item.

� applying: a configuration is being applied to the item.
� active: the item is configured as requested.
� update failed: an error occurred when configuring the item.

As seen in Fig. 18 the ACT workflow starts with the user
selecting the desired configuration via the GUI. When finished,
the user submits an update request which changes the activation
status of the selected items to update requested. This action
triggers an update of the ACT_UPDATE DIM service provided by
the ACT Update Request Server daemon.

The EDD daemon reacts to the service change and handles the
items related with ECS, DAQ, HLT, and CTP: it locks the items, sets
their activation status to applying, interacts with the systems, sets
the activation status to active or update failed and finally it
unlocks the items.

The DDD handles the items related with DCS and performs the
same steps. The main difference is the fact that DDD does not
interact directly with the DCS of the detectors but only with the
RCT that provides a standard interface for all the detectors.

Fig. 16. ECS architecture.

Fig. 17. ACT architecture.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 141



4.3. Monitoring and metadata

4.3.1. Lemon
The ALICE DAQ system used Lemon [10] to monitor the status

of its hardware and software components, to control the behavior
of the acquisition system and to provide adequate feedback to
developers and run coordinators, both for global and specific sub-
systems. A MySQL-based scheme was installed, tailored for the
ALICE-specifics requirements, and maintained throughout the
whole of LHC Run 1, across evolving hardware (HW) and software
(SW) components as driven by the natural evolution of the system
being monitored.

Metrics: The ALICE/DAQ specific Lemon sensors could monitor
very specific entities such as DDL traffic, absorbed power values,
power outlet status, and ambient temperatures. One central
machine was used to collect data from “dumb” units such as
Power Distribution Units and Hard Disks. An example of the way
these metrics were sampled and presented to the ALICE DAQ
operator is shown in Fig. 19 where we can see, for a time span of
3 weeks, the sampled values for network traffic at the level of the
LDCs. The difference between the data rates on the DDLs and the
Ethernet output traffic (the sum of eth0 out and eth2 out) is
mainly due to the data reduction achieved via the HLT: data is read
from the detectors and then dropped at the level of the LDCs, as
driven by the HLT runtime compression procedure.

Alarms: Several specific alarms could be handled by the DAQ
Lemon sensors . Checks ranged from system mis-configurations,
errors in the software installation, unresponsive daemons, hard-
ware errors and many other abnormal conditions. Full system
checks were scheduled daily (randomly distributed within a 10-
minutes wide time window, in order to avoid global overloads)
while checks on more critical or dynamic conditions were run

more often (up to several times an hour). Most of these alarms
went directly to the DAQ developers, but few of them would also
alert the ECS/DAQ operator as an assisting tool for detection and
recovery of run-time abnormal conditions. One of the most typical
alarms of the second type was raised whenever the DAQ and/or
the HLT were found blocking (via XOFF) any of the ALICE detectors
for example due to temporary peaks in the readout data rates.

Alarms were seldom removed from the DAQ lemon sensor.
Once a new alarm condition was identified, a specific check was
defined and added to the existing ones. At the end of its support
cycle, the sensor implemented about 70 ALICE/DAQ specific
alarms, many of them run in multiple instantiations (e.g. a disk
full alarm would be exercised on multiple file systems).

Experience: We were quite satisfied with the capabilities of the
Lemon suite. Although developed for monitoring of non-realtime
computer farms, the tool could be effectively used for the online
computing of an LHC experiment such as ALICE. At the end of its
lifecycle, the Lemon suite active at the ALICE/DAQ site was

Fig. 18. ACT workflow diagram.

Fig. 19. Network traffic on the LDCs as shown by Lemon.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162142



configured to monitor around 800 different entities (ranging from
single nodes to clusters of hundred of nodes) for about 100
different metrics. More than 500 GB of historical samples were
stored on local storage for the period between 2011 and 2013.

4.3.2. Infologger
The infoLogger package provides facilities to generate, trans-

port, collect, store and consult log messages from all distributed
software components running on the ALICE DAQ system.

It provides an interface to inject logs, a central repository to
store the messages, and user interfaces to display and query them.

Architecture: Fig. 20 shows the overall architecture of the
infoLogger system. A process calling a function of the infoLogger
library sends the message to the local infoLoggerReader daemon.
This process collects all the messages of the node where it runs,
and sends them to a central infoLoggerServer daemon, which
stores the received messages in a database. The infoBrowser user
interface allows to read messages, either stored in the database or
received online by the central server.

Log message structure: Each log message handled by the
infoLogger system is structured by an extensive set of attributes.
Some of them are provided by the client creating the log message,
others are set automatically by the infoLogger API when it is
called. Each log message consists of the following fields:

� Severity: the information level of each message. This can be
one of Information (messages concerning normal running con-
ditions), Warning (to report a condition which could be the
source of problems), Error (when an abnormal situation has
been encountered), and Fatal (when an unrecoverable situation
has been detected, usually causing the end of the current run).

� Level: an integer used to prioritize messages, essentially based
on their target audience. Typically, it allows to tag messages
(from higher level to lower level) for operators, DAQ support
team, DAQ developer, and debugging information. A range has
been defined for each of these categories, so that a finer
granularity is possible for further ordering within a category.

� Timestamp: time of the message creation, with microsecond
resolution, as provided by the local operating systemwhere the
message is created.

� Host name: host where the message was created (physical
name of the machine).

� Role name: DAQ role where the message was created (logical
name of the DAQ entity running the process, e.g. the name of a
LDC or GDC).

� Process ID: operating system identifier of the process creating
the message.

� User name: user running the process creating the message.

� System: system originating the message. For all DATE pro-
cesses, this is set to DAQ. As the infoLogger facilities are shared
with other systems, it can be also set to ECS, TRG, HLT.

� Facility: the activity family, usually the DATE package name
creating the message. This can be for example readout, recor-
der, runControl, or operator in case of a message coming from
the command line.

� Detector: the name of the detector associated to the running
process.

� Partition: the name of the global partition associated to the
running process.

� Run number: the run number associated to the message, if any.
� Error code: an error code to tag the message. This is used to

point to appropriate documentation and procedures for the
operator. This also allows to make statistics on error occur-
rences, even if the message content is different (for example
when variables are printed in the message).

� Source line: line number where the message is issued in the
source file.

� Source file: the name of the source file issuing the message. It
allows (with previous field) to easily trace which part of the
code issues the message.

� Message: the log information. It is a text string.

The client process calling the API typically provides the
severity, level, error code, and message. All other fields are usually
inferred automatically from the compiling and runtime environ-
ments. Although some of the fields are associated with specific
ALICE DAQ semantics, the infoLogger is a general purpose logging
system and can be used in other environments (with or without
modifying the list of fields). It has for example been adopted for
the HLT as well. The infoLogger is already available as a standalone
package, and it is also planned to fully decouple the infoLogger
from DATE bindings in order to ease its dissemination.

Implementation: The infoLogger is written in C, and the native
client API is provided in C. Extensions for other languages (e.g. Tcl/
Tk) are generated using SWIG [11]. The client API provides a set of
functions to send messages. They are eventually all used for the
same purpose, but differ in the calling arguments depending on
the fields being set by the client. Some functions also allow to
globally define once for all some of the fields for a running process,
in order to simplify further infoLogger calls. Finally, a few control
functions allow to define infoLogger parameters for the process,
like timeouts and message filters settings (e.g. to drop messages if
their level detail is too high). The API has a built-in protection to
detect messages flood, when a client sends too many messages
per second (which can for example occur if there is a bug in a
loop). Corresponding thresholds are adjustable, and default values
are to max 500 messages in a second, or 1000 messages in a
minute. Logs are afterwards redirected to a local file (with a
maximum size, after which they are dropped). Normal operation
resumes if the flow goes back to acceptable levels. The API
provides also the possibility to log to a file (instead of the standard
server) for verbose processes which logs do not need to be
centrally accessible. It includes auto log rotation based on file size
or number of messages, with different file formats (showing
different subsets of infoLogger fields). The client package also
provides a command line tool used to pipe to infoLogger the
output of processes (mainly shell scripts) which are not using the
infoLogger API.

The infoLoggerReader is started at boot time on all machines. If
the infoLoggerReader process is not reachable by a client process
(i.e. the initial issuer of the log message), the client process tries to
start a new instance of the infoLoggerReader. If this fails, messages
are written to a local file on disk to avoid loosing them. Connexion
between local client and reader is done through a named pipe.Fig. 20. Infologger architecture.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 143



Messages collected by infoLoggerReader processes are stored in
a persistent disk FIFO, which ensures their (delayed) delivery to
the central infoLoggerServer in case it is unavailable at a given
point in time. The infologgerReader ships data to the central server
by a TCP/IP link with custom protocol. The list of fields has
increased with time and needs. Protocol has been adapted to be
easily extended, and includes versioning to allow decoding of
different versions by the same server (e.g. when some clients still
run an older version of the infoLogger library).

The infoLoggerServer runs a thread waiting for new infoLog-
gerReader connexions and reading out the existing sockets.
Messages collected are then inserted in a common message FIFO,
for insertion in a relational database table by one or several
(number can be configured) independent threads. It also forwards
the incoming messages to a dispatch thread, which duplicates
them to online subscribers (as described later). The database is
implemented with MySQL, and the table structure follows the
message structure (i.e. one column per message field). Insertion is
done with MySQL C API and prepared statements. All fields are
indexed to optimize query performance, although it considerably
increases the database size on disk. The infoLogger message table
is partitioned by hash on the timestamp column (with a division
factor, so that there is one partition per day or so, i.e. keep less
than 1 million messages per partition) in order to speed-up query
performance: most queries being based on time, MySQL effectively
implements partition pruning and does not scan partitions outside
the time range. Otherwise, query performance may degrade as
table size grows over few millions of rows. The messages table is
manually archived every few months to keep it at a reasonable
size. The table is simply renamed, and a fresh blank ’current’
messages table created. Archived tables are still accessible for
queries.

Because of the buffers and many-to-one links in the chain, the
order of message insertion is not guaranteed, only the message
timestamp (set at earliest point in the chain by the client API) is
reliable to order messages coming from a given machine. The
accuracy of clock synchronization is critical when correlating
events from different nodes, and is ensured by a classical NTP
(Network Time Protocol) setup for all the DAQ machines.

The display of the messages is tackled by the infoBrowser
human interface. It works both in offline and online mode. In
offline mode, it queries the messages available in the database. In
online mode, the infoBrowser connects by TCP/IP directly to the
infoLoggerServer, which dispatches a copy of all incoming mes-
sages to the subscribers. In both modes, the user can define filters
based on the message fields content, in order to select or exclude
what messages should be displayed. In online mode, the filtering is
done in the browser, i.e. the server sends the full log data stream.
The infoBrowser is available as a Tcl/Tk application used in the
runtime environment, and as a web interface (PHP/HTML) to ease
remote (and secure) access to the ALICE DAQ logs. The web
interface only allows offline queries to the database. The info-
Browser has also a direct connection with the DAQ Wiki for the
resolution of problems: when an error is reported, the correspond-
ing documentation is reachable from a single click in the user
interface. The assignment of error codes is maintained with the
infoLogger source code in CVS (Concurrent Versions System). Each
DAQ package is assigned an error code range, and documents new
error codes in a central file (together with the procedures in the
Wiki, in structured pages providing for each error code: compo-
nent, description, urgency, operator and expert actions to be taken,
support procedures to be followed, who should be contacted, link
to extra documentation, etc).

Operation: In production, the infoLoggerServer receives logs
from 350 infoLoggerReader processes, and dispatches them to
around 40 online infoBrowsers. During the 2012–2013 data taking

period, it collected in average 400,000 messages per day in
average (800,000 per day during most active periods like the
heavy ion run, with daily peaks up to 1.6 million messages in the
same day). In total, more than 160 millions of messages have been
recorded, as seen in Fig. 21. This amounts to 83GB of MySQL data
files, including indexes which account for 53 percent of the log
database size.

Given the huge number of log messages received (several tens
of thousands per run), a review was done to propose solutions in
order to reduce the number of messages, at least for the shifter.
These recommendations were implemented in 2012, in particular
the improved tagging of messages in all DAQ components. This
ensures that the DAQ operator receives an acceptable number of
messages (about a hundred in a normal run) by proper filtering. In
order to allow developers to keep their debugging messages, they
are by default filtered out for standard operations.

The log API overhead has been measured around 4 microse-
conds to inject a log message from client to reader, on a standard
desktop machine. The latency for a single message log issued from
the command line to display in the infoBrowser is around 1 s, and
is the same for a burst of 1000 message (all 1000 messages are
visible in the infoBrowser within the same second).

Insertion speed in the database reaches 6000 messages
per second, with a partitioned InnoDB table and all indexes. For
comparison, the insertion speed is 9000 messages per second
without indexes, and reaches 12000 messages per second with
MyISAM storage engine and no index.

Good query performance is ensured by the multiple indexes, at
the cost of (affordable) increased disk space (and slight insertion
time overhead). Taking a random day (by defining timestamp
upper and lower limits in the SQL ‘where’ clause) with around
800,000 messages, the following performance is observed (for
uncached queries): scanning (e.g. count all rows) the full logs takes
less than 0.5 s; more complex SQL operations, like grouping by
facility or host, take less than 2 s; retrieving the full data (about
200MB) is done in 8 s (or a read speed of 100,000 rows
per second). Complex queries to extract yearly statistics on the
full log data set take more time, but results are available within
minutes.

Therefore, the system evolved since data taking started and
scales according to the needs.

4.3.3. Orthos
The ALICE DAQ system uses hundreds of hardware and soft-

ware components susceptible to fail. Abnormal situations have to
be detected, advertised, and fixed rapidly in order to maximize the

Fig. 21. Number of log messages collected over time by infoLogger.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162144



experiment data taking time. Initially (until 2012), information
about such events was available from various sources, and handled
mostly manually. Therefore, a common tool was needed to collect
and process them. Orthos is the alarm system developed to detect,
log, report, and follow-up abnormal situations on the DAQ
machines at the experimental area.

Orthos provides a unified interface to raise alarms from the
various DAQ components, and means for the DAQ actors (opera-
tors and experts) to handle them. It brings together information
and action flows. Orthos usually does not make measurements
itself, but is rather fed from existing monitoring metrics and status
reports. Orthos is a layer on top of all sources of monitoring
information to make sure that appropriate actions are taken when
needed, and following uniform procedures independently of the
source reporting an abnormal situation.

It improves the status visibility of the DAQ background com-
ponents, in comparison with those actively handled by the DAQ
control flow and for which failure feedback was already exten-
sively available through the control and log human interfaces.

Orthos integrates alarm detection and notification mechanisms
with a full-featured issues tracker, in order to prioritize, assign,
and fix system failures optimally.

We define as alarm an event to be detected and followed-up by
Orthos. It corresponds to any abnormal situation, harmless or
critical. It may (or not) require a preventive or corrective action,
immediately or at a later point in time. It might also be a simple
event notification, to be aware of if something else happens.

In Orthos, all alarms of the same kind are globally defined by an
alarm class, which describes a general behavior (alarm handling
and follow-up actions). At run time, multiple occurrences of the
same alarm class can be raised, typically by different components.
Each occurrence of the same alarm class is an alarm instance, and
is uniquely identified by its alarm class name, a source (where it
comes from, i.e. node or device name), and an optional key (which
refines the context in which it happens). For example, the alarm
class ’disk space low’ would have as key the ’disk partition name’,
and an alarm instance could be the tuple (disk space low,
mypc123, /tmp).

Fig. 22 represents the alarm workflow.
Components of the DAQ system report to Orthos metrics. A

metric is a Boolean value defining the condition of an alarm
instance at a given point in time (1¼active, 0¼ inactive). It is the
result of an external measurement of some environmental condi-
tions which summarizes if there is an abnormal situation or not.
Metrics are inserted periodically or upon status change to Orthos.
The logic engine processes each new metric measurement,
archives it, and updates the corresponding alarm state machine
accordingly in a persistent repository. Successive measurements
(in time) of the same tuple (class, source, key) trigger a status

update of the same alarm instance state machine. This state
machine describes the alarm follow-up, as shown in Fig. 23).

An alarm instance is initially in the inactive state. When a
positive alarm condition is met, it goes to active state. It goes back
to inactive only after the operator has acknowledged it in the GUI,
and the alarm condition disappeared (in any order, hence the
intermediate ‘acknowledged’ and ‘gone’ states). This ensures that
no error is left unnoticed, even if it was transient.

The operator being notified by Orthos can then take corrective
actions if necessary (which eventually will clear the ‘alarm active’
when the metric is next sampled). He will also report actions
taken or open a ticket in the tracking system, which issues are
cross-referenced in the Orthos repository for each alarm instance.

Also, Orthos can be configured to notify by e-mail or SMS
alarms which are left unacknowledged too long, in order to make
sure actions are taken if nobody is checking the status display.

The core of the repository is based on a MySQL database server.
Measurements are inserted in a table. The logic engine runs as a
trigger procedure upon reception of new metrics, and updates the
corresponding alarm states in a separate table. No additional
process is needed: the logic runs directly in the MySQL server.
The GUI interacts with the repository by means of SQL select
queries and procedure calls to update alarm states. The tracker
feature is implemented in JIRA [12], this tool being used already
for ALICE DAQ development and operation reports. The GUI inter-
face is written in PHP [13] and generates HTML code with CSS for
the layout, and published by an Apache web server [14]. PHP
interface to JIRA is done using Representational State Transfer
(REST), i.e. HTTPS/JSON POST/GET methods, to gain full read/write
access to the tickets. Authentication and corresponding access
rights are granted using Shibboleth [15] and the CERN central
single-sign-on service [16]. Fine-grain permissions are easily
defined by creating and populating corresponding E-groups [17],
which are list of users created on the CERN central services, and
for which properties (e.g. check if a user belongs to a given group)
are available through SOAP Web Services. A distributed sensor is
installed on all DAQ nodes for some basic measurements. It is
indeed sometimes more convenient to re-implement some trivial
system measurements (e.g. “disk full”) to avoid being dependent
on the existing monitoring tools in use, which were in the process
of being changed at the time Orthos was initially deployed. We
prefered to have a stable source of measurements during this
transition phase. A Cþþ class provides easy sensor implementa-
tion for custom measurements, with built-in configuration and
monitoring loop. A C API provides simple metric injection function
to insert health reports from existing running processes (e.g.
DQM). The corresponding Orthos binaries are distributed as
separate RPM [18] packages (devel, shared, www, repository, and
sensor). Documentation on alarm classes and corresponding issue-
fixing procedures are available in the DAQ wiki (implemented with
TikiWiki [19]), and information directly linked from the human
interface for easier access.

Effort has been put on simplicity of the implementation in
order to minimize development time, and validate the initial
concept. We tried to apply a maximum of existing tools andFig. 22. Orthos alarm workflow.

Fig. 23. State machine describing the life-cycle of an alarm in Orthos.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 145



technologies already used in our group. We had no down time in
production in 2012 for the 350 nodes monitored, and 108 mea-
surements received without significant system load. More details
as well as example metrics can be found in a dedicated article
about Orthos [20].

4.3.4. ALICE electronic logbook
Introduction: In large scientific experiments, it is essential to

have a bookkeeping facility that keeps a record of the experiments
operational activities. As shifters come and go, a central informa-
tion repository is needed to store reports of incidents, configura-
tion changes, achievements or planned operations. Furthermore,
an historical record of data-taking conditions and statistics is
needed not only to allow the selection of good run candidates
for prioritized offline processing but also to detect trends and
correlations, create aggregated reports and assist the run coordi-
nation in fulfilling the scientific goals. In ALICE, these requirements
are implemented through the ALICE Electronic Logbook (eLog-
book), a custom-made application developed by the ALICE Data
Acquisition team and in production since August 2007.

Architecture: The eLogbook architecture is based on a LAMP
(Linux, Apache, MySQL and PHP) software stack, with the rela-
tional database (DB) serving as a data repository and the web-
based Human Interface (HI) providing interactive access to mem-
bers of the ALICE collaboration. As shown in Fig. 24, the different
ALICE online subsystems access the DB via a C API and the shifters
and members of the collaboration via a web based graphical user
interface. A daemon process collects information published by the
DCS and the LHC and stores it in the DB. A REST API is also
provided to allow non-interactive access to the eLogbook
repository.

Database: The DB, running on a MySQL 5.5 Community Server,
is used to store heterogeneous data related with the experiments
activities. InnoDB is used as a storage engine for its support of both
transactions and foreign keys constraints. The tables that compose
this DB can be grouped into four different categories:

� Run centric: related to a specific run.
� Fill centric: related to a specific LHC fill.
� Log entry centric: related to a specific human or automatic text

report with optional file attachment.
� User centric: related to the users of the HI.

Stored procedures are executed periodically to update the
different global counters in the eLogbook tables whose value
depends on partial counters spread throughout several tables.
Daily backups are performed to both a RAID 6 disk array and the
CERN Advanced STORage manager (CASTOR).

CAPI : The eLogbook C API allows the different ALICE subsys-
tems to access the DB in order to either store or read data. It is
ported to other languages (like Tcl) using the SWIG tool and
distributed both with the DATE software and as a standalone
package.

REST API : The eLogbook REST API is an HTTP based RESTful API
that interacts with the eLogbook via the HTTP protocol. This makes
it platform independent, allowing access to the eLogbook reposi-
tory from any platform capable of performing HTTP requests and
receiving the subsequent responses. Implemented in PHP and
based on the Zend Framework [21], it allows a limited set of
operations:

� POST fill-luminosity-scan: insert an LHC Fill Luminosity Scan
image. Since it is used to insert a binary file, the request content
type must be multipart/form-data.

� POST log-entry: insert a Log Entry (including file attachments).
Since it can be used to insert one or more binary files (the Log
Entry attachments), the request content type must be multi-
part/form-data.

Authentication and authorization are operation and HTTP
method dependent. Some operations are only allowed from
predefined IP addresses. Others require HTTP Basic Authentication
over SSL.

Logbook Daemon: The Logbook Daemon is a daemon program
that runs constantly on the background and, at start of run,
extracts data concerning the ALICE magnets and the LHC config-
uration published by the DCS using the DIM system and inserts it
in the DB. Additionally, it also provides a publish mechanism (via
DIM) to notify run events (Start Of Run/End Of Run for partitions
and sub-detectors), thus avoiding the need from the different
online subsystems processes to constantly poll the DB.

LHC client: The LHC publishes multiple operational parameters
that are extremely relevant for the data taking conditions book-
keeping. Therefore, a dedicated program called LHC Client was
developed to collect these parameters and publish them in the
DCS DIM Name Server, fromwhere they are extracted and inserted
in the DB by the Logbook Daemon process. Additionally, certain
parameters (especially for the LHC fills) are inserted directly by the
LHC Client. More details can be found in Section 4.3.6.

Logbook reports: To support the daily operations of the Run
Coordination and the follow-up of the EOR Reasons stopping runs,
a reporting tool was introduced that not only provides an over-
view of the data taking activities but also improves the dissemina-
tion of the information through email notifications and
presentations in daily meetings. Implemented in PHP and based
on the Zend Framework, this tool runs daily, collecting the
necessary information from the eLogbook database, generating
the report and sending it via email to a predefined mailing list. An
example of such a report is shown in Fig. 25.

4.3.5. ALICE electronic logbook human interface
Introduction: The eLogbook web-based HI was developed using

modern web technologies, including PHP5, Javascript and Cascad-
ing Style Sheets (CSS). It is hosted on an Apache web server and it
can be accessed from the Internet. Charts are generated using the
PHP JpGraph library and several components of the dhtmlxSuite
javascript framework [22] are used for improved usability.Fig. 24. eLogbook architecture.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162146



Authentication and authorization: Authentication is implemen-
ted via the CERN Authentication central service, providing Single
Sign On (SSO) and removing the effort of authenticating the users
from the eLogbook software. This way, when a user tries to access
the HI, he is redirected to the CERN Login page where it has to
provide his credentials. If successful, he is then redirected back to
the HI. Authorization is implemented in the HI with five different
levels of privileges:

1. NONE: no access to the HI.
2. READ: read-only access.
3. WRITE: read/write access (e.g. can write reports).
4. ADMIN: same as WRITE þ can change privileges of users

(except ADMIN and SUPER).
5. SUPER: same as WRITE þ can change privileges of users

(except SUPER).

Run Statistics: The Run Statistics pages give users access to
several parameters and statistics of each individual run in a
tabular format. Multiple ALICE and LHC parameters and statistics
fields are available, providing users with a complete view of both
the conditions during which data taking occurred and how the
ALICE online system performed. Examples of such fields are
magnetic field currents, LHC beam energy and data and event
rates. Extensive information is also available regarding both the
Trigger and HLT systems, including Trigger Clusters definition,
Trigger Classes rates and counters and HLT compression factors.
Introduced in 2011 and extensively used ever since, the reason
(s) responsible for the end of the runs (EOR Reasons) provide users
with a clear identification of what caused each run to stop.

Additional information concerning the quality of data taking and
the Offline pre-processing status is also available.

In total, there are 152 available fields grouped into 10 different
tabs. Users can order the runs, select the list of fields to be
displayed or export the results in XML, ASCII or Microsoft
ExcelTMformat. Some fields have extra information made available
through onMouseOver boxes.

Run Overview: The Run Overview page, accessible via the Run
Statistics page, displays aggregated counters in a tabular and/or
graphical format. This allows users to have a global view of the
experiments data-taking statistics over multiple runs (see Fig. 26),
serving as a source for management reports, conference papers
and presentations.

Users can access multiple counters at different stages of the
data flow aggregated per detector, per number of detectors and
per partition. Aggregation of Trigger Classes counters are also
available, with users being able to choose which Trigger Classes to
display (given the high number of available Trigger Classes).

Although not related to data taking counters, two more
aggregated views exist providing users with an overview of
operational values. The first one displays the duration of the
different SOR and EOR phases in a summary table with minimum,
maximum and average duration for each phase. Users can also plot
the duration of a specific phase as a function of time. The second
one aggregates the EOR Reasons, displaying a summary table and
several pie charts grouping the reasons by type, subsystem and
most common individual reasons.

In total, there are 7 summary tables and 21 charts grouped into
8 different tabs. All tables are displayed using the dhtmlxGrid
component of the dhtmlxSuite javascript framework, providing
features such as inline ordering, automatic totals footer and export

Fig. 25. Example of an LHC Fill summary report.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 147



to PDF or Microsoft Excel™. All charts are implemented using the
JpGraph library and allow users to select between linear and
logarithmic scale and bar or time-series chart. For this last option,
users also have the possibility to select which series to display and
stack or integrate series.

Run Details: The Run Details page, presented in Fig. 27, provides
a detailed view of the available information concerning a
specific run.

In the General Info section users have access to the conditions
during which data taking took place, the high level configuration

of the ECS and multiple timestamps, counters and rates. Once the
run is finished, the respective EOR Reasons also become available.

In the Trigger Info section, extensive information concerning
Trigger Clusters, Trigger Classes, Trigger Aliases and Trigger Inputs
is available. Additionally, a graphical representation of the ALICE
Collision Schedule allows users to see in which slots the LHC is
colliding particles. A dedicated view for Trigger experts allows for
remote access to the Trigger system configuration used in the run.

The DAQ Info section displays the duration of the different SOR
and EOR phases, multiple counters for each of the DAQ system

Fig. 26. Run Overview page snapshot.

Fig. 27. Run Details page snapshot.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162148



nodes, a list of which readout links were active and the status and
log messages of the Detector Algorithms executed during the run.

The HLT Info section provides different configuration para-
meters and counters related with the High Level Trigger system.

In the DQM Info section, users have access to Data Quality
Monitoring and run quality information. It includes, for each active
DQM agent, some overview (including a summary image) and a
list of Monitoring Objects either temporarily stored via a sampling
mechanism or permanently stored via an explicit action from a
shifter or an expert.

The Migration and Offline section provides details concerning
the status of the migration of the data from the experimental area
to the permanent data storage location in the CERN Computer
Center.

Finally, in the Logs section, users have access to the Log Entries
inserted for this run by automatic processes, shifters and experts.
Additionally, users also have access to a subset of the log messages
generated by the online systems.

Fill Statistics: The Fill Statistics page provides a view per LHC fill,
providing users with information such as the duration of stable
beams, the number of runs and most importantly, the data taking
efficiency of each fill (as seen in Fig. 28).

Fill Overview: The Fill Overview page provides an overview of
the LHC Fill statistics, including charts of the data taking efficiency
distribution and of each fill.

Fill Details: The Fill Details page provides a detailed view of the
available data concerning a specific LHC Fill. In this page, users
have access to the general configuration of the fill, the global and
per-detector data taking efficiency and an overview of the runs
executed during the fill.

The Collision Rates section displays a plot with the variation of
the collision rates as seen by ALICE during the fill (see Fig. 29).

Extensive information concerning the EOR Reasons that
occurred during the fill is also available, including several charts
grouping the reasons by type, subsystem and most common
individual reasons.

Log Entries: The Log Entries pages allow users to either read
existing reports or (if they have the necessary privileges) write
new reports. Any type of file can be attached to a report, with
thumbnails being created for images. Users can choose between
Compact, Extended or Detailed view mode for different detail
levels. Dedicated sections display all file attachments and aggre-
gated summaries.

Each report can be assigned to one or more subsystem (ranging
from individual sub-detectors to services such as Safety or Run
Coordination). Each of these subsystems can be configured to
allow users to receive automatic email notifications each time a
new Log Entry is inserted.

Search Filters: To allow the possibility to search for runs or log
entries that match a given set of criteria, column based filters were
implemented in the Run Statistics, Fill Statistics and Log Entries
pages. Using either predefined or user-defined values, users can
combine several filters to restrict the displayed set (see Fig. 30).
These filters are also active in the Overview pages, allowing users
to only aggregate runs, fills or log entries that match the specified
criteria.

Operations: In production since 2007, the eLogbook repository
has been growing steadily both in number of runs and of Log
Entries. As shown in Fig. 31, the number of runs stored reached
100,000 in the end of 2009 and is currently very close to 200,000.
The small slowdown since 2010 is justified by the ALICE move
from commissioning to operations.

The number of Log Entries, as shown in Fig. 32, reached 50,000
in the end of 2010 and is currently more than 100 000, evenly
distributed between human and process generated. The high
increase in Log Entries seen in October 2009 was due to a bulk
fix in the eLogbook repository to properly close runs which did not
have an end timestamp.

The eLogbook has been extremely well received by the ALICE
collaboration and is now the main entry point to follow the
activities in the experimental cavern. As shown in Fig. 33, the
number of unique visitors (based on IP address) has stabilized

Fig. 28. LHC Fill Statistics page snapshot.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 149



around 1500 per month and the number of visits follows a well-
defined pattern of a peak during the Heavy Ion run followed by a
sharp drop during Christmas and a ramp-up to a plateau once the
proton–proton run starts.

4.3.6. LHC interface
Many kinds of information about run conditions are stored in

the ALICE electronic logbook during data taking. Among these, the
information on the configuration of the two beams (energy,
collision scheme, intensities, etc.) delivered by the LHC plays an
especially important role. Two tools have been developed to
collect and check this data: the online DIP client and the offline
cross-check application.

Fig. 29. LHC Fill Details page snapshot.

Fig. 31. Temporal evolution of the number of runs stored in the eLogbook.

Fig. 32. Temporal evolution of the number of Log Entries stored in the eLogbook.

Fig. 30. Example of a Search Filter window.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162150



Online DIP client: The LHC values are published via DIP (Data
Interchange Protocol) [23], which allows real-time data to be
exchanged between very loosely heterogeneous systems. It is an
information distribution service, which may contain event based
data updated as and when the event(s) occur. A general architec-
ture is presented in Fig. 34.

A DIP client has been developed to subscribe to the LHC
information of interest and, after a processing step, to publish
the corresponding information in the ALICE DIM [24] server. It can
then be read and stored by DAQ logbook daemon in the Electronic
Logbook at start/end of each run and fill (Fig. 35). The logbook
daemon runs constantly on the background and, at start of run,
stores run-related values. Values that are related to a fill, such as
the STABLE BEAM time and duration, are stored by the DIP client
directly in the logbook database using the logbook C API. Finally,
all the values without distinction are continuously sent to the
infoLogger.

Offline cross-check application: The beam values stored during
data taking period are sometimes corrected afterward. Therefore it
is necessary to perform an offline cross-check of these values with
the ones stored in the LHC Logging Database [25]. This database is
part of the LHC Logging Service at CERN to permanently store and
manage the measured values of the most important parameters,
configurations, and working characteristics of the accelerator parts
and experiments.

An ALICE custom application has been developed to perform
the offline cross-check between the beam information provided
online by the DIP client and the values stored by the LHC Logging
Service. Amongst the three available methods to extract data from
the LHC Logging Database [26,27] we chose the Java API.

The Java application runs every 8 hours. It connects to both the
LHC Logging Database and the ALICE logbook in order to extract
the information stored since the last execution. If discrepancies are
found, an update of the ALICE logbook values is made with the LHC
Logging ones.

4.3.7. IPMI
IPMI introduction: IPMI is an acronym that stands for Intelligent

Platform Management Interface, promoted by Intel, HP, NEC, Dell
and having 179 hardware manufacturers adopters in 2005 [28].
The schematics in Fig. 36 is intentionally simplified, as to the usage
in our environment.

Connections to the IPMI card are done via RMCPþ protocol and
in our setup we use the out-of-band communication to the
Baseboard Management Controller that accesses the various sen-
sors on the system and stores Sensor Data Records (SDR), System
Event Logs (SEL) and Field Replaceable Unit (FRU) information in
the local NVRAM. The IPMI provides Chassis Power Control,
Sensors information on temperature, voltage, fans speed, alerting
abilities via Platform Event Trap (PET) Alert and Platform Event
Filtering (PEF) Filter, System Event Log (SEL) messages, watchdog
timer that could be configured to reset the system if communica-
tion to Operating System stops, Serial over LAN, possibility to send
non-maskable interrupts to OS kernel.

There are specific vendor implementations for example DELL
implemented Dell Remote Access Card (DRAC) and HP has the
Integrated Lights-Out (iLO).

Rationals and use: We have several hundreds PCs in the DAQ
system therefore the possibility of the OS being stuck and the
incidence of non-responsive HW is high. The usual intervention
recipe in case of non-responsive machines was to go to the servers
site and do a complete power cycle then put the machine back in
production. While being very effective, the downside of this recipe
is that, in the best case scenario, the onsite intervention would
take about 40 min which represents an important loss of data
taking time.

Fig. 33. Temporal evolution of the eLogbook HI usage.

Fig. 34. DIP architecture.

Fig. 35. Full scheme of the ALICE LHC Interface to store and cross-check the beam
information in the eLogbook.

Fig. 36. IPMI schematics.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 151



In order to reduce the intervention and investigation time, we
have decided to configure the IPMI cards and make use of the
possibility of out-of-band power control, system event log and
sensors reading. The network interface associated with the IPMI
card and the authentication have been configured via shell
commands based on the ipmitool provided by net-snmp-utils
package.

Command line interface. To allow for command line access and
host range execution a command line tool has been developed
based on Python and net-snmp-utils. The execution is threaded,
additional switches for debug and logging are available.

Here follow the main categories of the commands implemen-
ted by the command line interface:

1. Show information on the IPMI card configuration.
2. Identify a PC in a rack by flashing the identification led.
3. Show/clear the events registered in the NVRAM of the

IPMI card.
4. Show temperature, voltage, and fan sensors information.
5. Control power/show power status/set boot-up parameters.

Web interface for system administration: As using the above IPMI
Command Line Interface would imply connecting through several
gateways via SSH, to further increase the reachability of the
commands, a web interface has been developed that integrates
Linux syslogd messages, IPMI functionalities and PDU ports con-
trol. The language and libraries used in the development process
are PHP, javascript and JQuery for the frontend, MySQL for storing
the syslog messages, syslog-ng for centralizing the messages
forwarded from every Linux host via syslogd, python for the
backend.

Once authorized, the user has to ping the IPMI card and if the
card is reachable, subsequent IPMI functions will be enabled in the
web interface as shown in Fig. 37.

To improve and complete the investigation process, syslogd
messages are one-click away. PDU ports control is also available,
being useful for remote control of a machine whose IPMI card
stopped responding.

4.4. Detector software

The 18 ALICE sub-detectors need to be calibrated regularly in
order to deliver accurate physics measurements. This involves
analyzing events in different experimental conditions, which
produce results used at different stages of the data flow, from
electronics configuration (e.g. zero-suppression from pedestal
values) to online data quality monitoring, and offline events
processing. It is important to generate calibration data in the
shortest delays in order to have minimal latency in the data-
taking/monitoring/analysis loop, and hence detect problems as
early as possible.

To achieve these goals, a framework was developed to run
calibration tasks online in the DAQ farm. It consists of two types of
operations:

� Running a dedicated standalone run with a detector configured
specifically for this calibration task, record data locally, and
generate calibration results by analysis of the recorded data.
This is typically the scenario for a pedestal run.

� Running calibration task in the background of physics data
taking. Events are sampled from the main data stream without
interfering with the normal DAQ flow, and analyzed on the fly
on dedicated machines. Results are available at end of run, and

Fig. 37. The IPMI web interface for system administration.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162152



partial results may be exported during the run to DQM for
visualization and checks. This is the scenario for example for
dead pixel or noisy channels detection.

The Detector Algorithm (DA) framework provides means for
the detector experts to execute their code online. The framework
takes care of the I/O interfaces (retrieve configuration, sample
events, export results), ensures runtime control (launch, monitor
and terminate processes) and checks that all follow common
packaging guidelines. Procedures are defined for a unified testing,
validation, and deployment in production.

In practice, writing a DA mainly consists of adding event-
processing code to a common empty-loop skeleton. Once the code
is committed in the Offline software repository, the corresponding
binary executable can be built on a reference system and validated
with simulation or experience data. When performance, interfaces
and stability are fine, the DA is deployed in production and
controlled at runtime by the DAQ system. It receives as input data
recorded locally or sampled from the main stream (depending on
the scenarios described previously). Results produced are exported
Offline (where they are further processed by a system called the
Shuttle [29]) and/or used locally at the experimental area.

Detailed description of the DA framework architecture and
features can be found in Refs. [30,31].

We can raise the following points from our experience in the
past years:

� Static binary building was an effective way to decouple detector
code from mainstream Offline software releases. It provided
stability, at the cost of more work on the rare occasions when
dependencies needed to be updated. The static building allowed
easy cohabitation of different versions on the same hosts.

� Control, logging and accounting are key features to be able to run
the code, check errors, and follow them up with the correspond-
ing developers. Runtime encapsulation is done by a specific
launcher tracing and reporting the behavior of each DA. It redirect
logs, detect crashes or exit errors, and gather statistics on
performance and resource usage. It also ensures limits are
respected (system settings were sometime not enough, or would
not allow a fine granularity), and if necessary terminates pro-
cesses taking too much time or memory. Statistical analysis of the
collected runtime information was very helpful to detect, repro-
duce, and fix problems in the detector code.

4.5. Data quality monitoring

4.5.1. Introduction
Data quality monitoring is an important aspect of every High-

Energy Physics experiment, especially in the era of LHC where the
detectors are extremely sophisticated devices. In order to use the
data taking time and the precious bandwidth in an optimal way,
one needs an online feedback on the quality of the data being
recorded. DQM software provides this feedback and helps shifters
and experts to identify potential issues early. DQM involves the
online gathering of data, their analysis by user-defined algorithm
and the storage and visualization of the produced monitoring
information.

4.5.2. Design and architecture
AMORE (Automatic MOnitoRing Environment) is the DQM

framework developed and used in ALICE [32,33]. It is a flexible
and modular software framework which is used to analyze data
samples and produce and visualize monitoring results. It is mainly
written in Cþþ and founded on the widely used data analysis

framework ROOT (see Fig. 38) ; it uses the DATE monitoring library
(see Section 4.3) to collect data from files, LDCs or GDCs. In case
the same analysis is needed online and offline, the use of the ALICE
Offline framework for simulation, AliRoot [6], is encouraged.

AMORE is based on a publisher-subscriber paradigm (see
Fig. 39) where a large number of processes, called agents, execute
detector-specific decoding and analysis on raw data samples and
publish their results in a pool. Clients can then connect to the pool
and visualize the monitoring results through a dedicated user
interface. The serialization of the published objects, which occurs
on the publisher side before the actual storage in the database, is
handled by the facilities provided by ROOT. The only direct
communication between publishers and clients consists of notifi-
cations by means of DIM. The notifications coming from the
outside world, especially from the ECS (see Section 4.2.2) and
the DCS, use the same technology (see Section 4.5.7 for details on
integration with other systems).

The data samples feeding the agents might come from the DAQ
nodes, from other agents or from files. The resulting quantities,
often histograms, although there is no restriction on their type, are
published encapsulated in MonitorObjects that essentially contain
metadata allowing a proper and coherent handling by the frame-
work. In addition they include extra details about the objects such
as their quality or their target “audience”. The target audience
gives the possibility to distinguish between objects that can be
easily interpreted and others which need a more thorough knowl-
edge and experience to be of use.

4.5.3. Pluggable architecture
AMORE uses a plug-in architecture to avoid any framework's

dependency on users’ code. The plug-in mechanism is implemen-
ted through the ROOT reflection feature. Users, usually detectors
teams, develop specific code that is built into dynamic libraries
called modules that are loaded at runtime by the framework if, and
when, it is needed and following the “Strategy” design pattern.

Modules are typically split into two parts corresponding to the
publishing and the subscribing sides of the framework (see
Fig. 40). There are typically 4 libraries produced (stacked boxes
on the left on the figure), one for each package (the 4 items at the
bottom): Common, Publisher, Subscriber and UI. The module's
publisher can be instantiated several times, to collect more
statistics per instance, each instance corresponding to an agent.
The same is true for the UI part of the module; we call these
instances clients or GUI. Note that a module can contain several
publisher and subscriber classes (not shown on the figure).

An AMORE agent is a finite state machine, executing custom
user code in a well defined time sequence depending on the DAQ
environment status. For example, a tight analysis loop is executed
during data taking while special functions are called at start and

Fig. 38. General schema of AMORE.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 153



end of run effectively implementing the “template method” design
pattern.

4.5.4. Database
The data pool is implemented as a database. The MySQL system

was chosen because it is light-weight and freely distributable and
our experience proved it to be reliable and performant. Fig. 41
shows a schema of the database main tables.

The database is used not only to keep the data published by the
agents (in the table named after the agent) but also to store
configuration of AMORE as a system. The table amoreconfig lists
the agents and their details (main class to load, detector they
belong to and default running options). Nodes where the agents
can run are listed in the table Roleswhich maps the real name with
a role name. This indirection allows for a quick and transparent
move of agents from one physical machine to another. The tables
Users and Agents_access provides basic security: only the owner of
an agent and the DQM operator can start and stop it. Finally
amoreref contains the optional configuration files for the agents.

4.5.5. Archives
Users often need to check and study an object even though the

run is over, sometimes since days, or to compare the evolution of
metrics. Therefore, snapshots of the MonitorObjects must be
saved, if not permanently at least for some time.

The archives are stored for a couple of weeks in a table whose
name ends with “_archives” which is very similar to the agent's
data table (see Fig. 41). The objects can be marked as permanent in
order to avoid their deletion.

A special process called “archiver” is meant to give a way to create
archives and recover interesting MonitorObjects for further study.
The archiver must always be running and available to receive
requests. It also performs a clean up every night to erase archives
older than the age limit and to optimize the database. The archiver
uses plug-ins as the publishers and subscribers do. It uses DIM to
receive users’ requests and notifications at start and end of run.
Archives can also be created by calling stored procedures in the
database.

In addition to these mid- and long-term archives, it might also
be interesting to keep a very detailed short-term history to

discover when a problem occurred or started. This is done through
the so-called FIFO, which is directly implemented within the
database. It consists in keeping former versions of the objects in
a FIFO queue (see Fig. 42) in the data table of an agent. The
maximum size of the table is set in the AmoreConfig table and
versions of the objects are kept as long as the table does not
exceed it.

4.5.6. Generic GUI
The subscriber part of the users' modules consists mainly in GUIs

capable of handling the objects produced by the publishing part.
As the basic needs and requirements of most of the detector

teams are very similar, a generic GUI has been developed to avoid
code duplication and to minimize users development. It allows to
browse and visualize any object of any running agent. The
thousands of objects published by the detector agents are dis-
played as a tree (see left panel in Fig. 43). The right panel of the
window displays the MonitorObjects selected by the user, auto-
matically fitting them on the available space by splitting the tab in
a grid. Finally, the layout can be saved as XML files in the database
or in the local file system for future reuse. Different buttons
permit, for instance, to filter agents by name or status (idle vs
running), or to show only certain objects.

Custom user interfaces have also been developed by the
detector teams. They help experts to commission, test and

Fig. 39. The publisher–subscriber paradigm in AMORE.

Fig. 40. Description of a module.

Fig. 41. Database schema.

Fig. 42. The archiving system in AMORE.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162154



investigate their detectors in greater details. Moreover custom
user interface gives the possibility to use custom objects types that
could not be handled in a meaningful way by the generic GUI.

4.5.7. Interaction and integration with other systems
Publishers as bridges to other systems and libraries: The publish-

ers are meant to analyze the raw data they receive and to publish
their results for future visualization or post-processing. However,

not all publishers directly do the number crunching. Indeed, one
should avoid, if possible, to duplicate code but rather choose to
delegate the processing to existing frameworks and libraries. As a
consequence some modules use external data providers and either
transmit directly their data to the data pool or post-process it first.

Fig. 44 shows the interactions of AMORE with other systems.
The Quality Assurance (QA) module, for instance, delegates the
processing to the AliRoot QA framework. The HLT module retrieves
the objects from a private network (HOMER, see [34]) and

Fig. 43. The AMORE Generic GUI.

Fig. 44. Data providers feeding the AMORE agents or directly the AMORE data pool.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 155



publishes them in the pool. This is particularly interesting in terms
of data quality evaluation because the HLT is able to reconstruct
data on the fly and thus provides complex results. The CTP and
DCS exchange values with the DQM. DAs (see Section 4.4) publish
in the AMORE data pool histograms and results of their computa-
tion. Even the images of the Event Display 3D reconstruction are
made available to the ALICE Live website via the AMORE data pool.

Web access via eLogbook: The ALICE Electronic Logbook (see
Section 4.3.4) gives access to the monitoring data as a web client.
Besides to information about data acquisition runs, the Electronic
Logbook provides information about the DQM agents running
during every data acquisition run. Fig. 45 shows the information
available in the logbook when selecting a particular agent. The
DQM tab contains configuration parameters, information about
number of archived objects and gives the possibility to save the
object image as well as to download the objects and manipulate
them afterwards.

4.5.8. Tools
A number of tools have been designed and created to ease the

configuration of AMORE as well as the operation of the DQM sub-
system. They have been written using the Tcl scripting language in
combination with the Tk GUI toolkit in order to get easy access to
the AMORE database and provide user-friendly interfaces. In
particular, there are two main categories of tools available to the
AMORE users: the amoreAgentsManager, which is meant to be
used by both shifters and experts; the amoreConfigFileBrowser
and amoreEditDb which are exclusive to expert usage.

The amoreAgentsManager GUI (see Fig. 46) provides an over-
view of all the available agents as well as an easy way to check
their status and launch their execution. It is mainly composed by
two areas that respectively list the running and the available (non
running) agents. The interface allows the user to start, restart and
stop the agents and to check the parameters with which the
agents are running. From the bottom part of the interface it is
possible to start/restart/stop the archiver and to access the log
messages that it generates.

The amoreConfigFileBrowser and the amoreEditDb are very
similar to each other and they mainly operate on the AMORE
configuration database. The amoreConfigFileBrowser allows the
user to browse the configuration files associated with each
detector, to modify them and/or to add new ones. The amoreE-
ditDb provides an interface to change the execution parameters of
the agents, the machines where the agents run as well as global
parameters.

4.5.9. Benchmarks and optimizations
Database: As the data pool is the backbone of the systemwhere

all data transit, it is important to guarantee good performance and
reliability even at peak time. The database benchmark consists of
several tests; some, hereafter called stress tests, check extreme
conditions by running agents and clients continuously publishing
and retrieving data; other tests called validation tests correspond
to more standard and typical usages and consist of agents running
on predefined data, the same way we do for continuous integra-
tion. Our benchmarks proved that the pool can sustain high loads
and thus that the database within the current design scale well

Fig. 45. ALICE electronic logbook interface to the DQM data.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162156



and is capable of handling the increasing number of agents and
clients.

The benchmarks helped improving the way the database is
accessed. For example, stress tests showed that the results were
far better when small queries were concatenated into very large
queries of 2 MB as shown in Fig. 47. Findings also concerned the
configuration of the database itself. The difference between MySQL
storage engines proved to be very important. InnoDB engine
supports ACID-compliant transaction features and row-level locks
whereas MyISAM is much simpler and only have table-level locks
and no transactions. Even in simple cases with a single running
agent, InnoDB is twice slower than MyISAM. When running 10
agents concurrently, the execution time with InnoDB becomes 10
times larger than the one with MyISAM (see Fig. 47). The
improvement comes at the cost of possible loss of data integrity
but it was decided that being able to publish more often data
counter-balanced this drawback. It also required a new archiver
module (see Section 4.5.5) to optimize the data and archives table.
It reorganizes the physical storage of MyISAM tables and index
data to reduce storage space and improve I/O efficiency.

As discussed in Section 4.5.5, many versions of a MonitorObject are
stored in the data tables. Adding an index to it improved the time of
retrieval of objects by the clients but increased the time of inserting
data. The write being more frequent than read, the index was
discarded. However, the same has been achieved by using an in-
memory table storing the list of the last version of each objects. These
objects are the ones retrieved by most of the clients rather than the
past version. By using this table when querying for objects, and by
populating the in-memory table with triggers on insertions, the
performance of the clients improved without pejorating the agents.

Compilers and computer architectures: Validation tests were
carried out to test new servers, new platforms and new computer

architectures. They showed an important improvement in perfor-
mance when moving from 32 to 64 bits architecture and when
upgrading the hardware. They also showed important differences
when using different compilers (icc, gcc, clang) and different
compilation options.

Multithreaded image generation: Nowadays parallel computing
has become the dominant solution in performance improvement
and, at a computer architecture level, it has been translated in the
use of multicore technologies. As a first step for a complete
parallelization of AMORE, a dual thread logic has been implemen-
ted by delegating what was a single process operation to two
independent threads, one for the analysis and one for the objects

Fig. 46. amoreAgentsManager GUI.

Fig. 47. Execution time of insertions queries vs number of concurrent agents.
When queries are grouped, the blocks are of size 2 MB. In production we use
grouped queries with MyISAM storage engine.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 157



image generation. This solution provides the performance shown
in Fig. 48 for different monitor cycle duration that is the period
during which events are processed in order to obtain the results
and at the end of which the updated objects are published into the
database. The y-axis represents the processing rate calculated in
events per second. As we can see, a multithread solution with
images creation provides performance very similar to the one
shown by a single thread approach in which the images creation is
disabled. The heaviness of the image creation process is confirmed
by the bar representing the single thread approach with images
creation. The results clearly show that the images generation
dramatically affects the event processing rate whereas having a
dedicated thread produces performance similar to the case when
no images are created. To be noted that this approach implies that
images might not be generated for all objects at every cycle.

4.5.10. Experience and results in production
During the past 3 years of data taking with LHC beam, AMORE has

been intensively used in a real and challenging environment. More
than 40 agents ran continuously, publishing an average of more than
10,000 objects updated every minute making a total of 10 MB/s of
data published during a typical run.1 In the past years, the system
experienced peaks with more than 3000 objects per second factually
saturating the link at 1 Gb/s. A tuning of the parameters of the agents
and a better understanding of the detectors needs made it possible to
avoid such peaks in 2012. In general, the architecture proved to be
extremely stable and capable of scaling seamlessly with the growing
number of agents and clients.

5. System operations and global performance

The history of the ALICE DAQ system operations started with its
first installation at test beams in several CERN sites, then moved
on to R&D, validation, and commissioning setups for the ALICE
teams (detectors and facilities) to finally settle with its current
configuration at the LHC Interaction Point 2, where it has been in
continuous operation since 2008.

The ALICE experiment needs multiple and different running
scenarios as required by the work-plan of the experiment. We can
group these scenarios into four separate categories:

1. Technical: used for testing and validation, this activity can
include a highly variable number of detectors and may adopt
varying profiles (trigger, compression, recording) as required by
the specific target of the requester(s).

2. Cosmic: used mainly for calibration and validation purposes,
these runs have a specific trigger setup and can include a
variable number of detectors. Trigger and data rates are
extremely low (of the order of a few Hz and MB/s), events
are very small (no pileup), and it is not unusual to sustain non-
stop running periods of 6 hours or more.

3. pp Physics: the most frequent ALICE activity, its characteristics
are high trigger rate (few KHz input to the DAQ) for data rates
of the order of several hundreds of MB/s.

4. Heavy ion physics: the main target of the ALICE experiment, it is
the most challenging of all the running modes as it produces, due
to the high multiplicity of the events, the peak sustained record-
ing data rates – up to several GB/s – during relatively short time
periods (about 30 days per year). It is in this running mode that
all the actors of ALICE (hardware, software, and human) have to
ensure their top efficiency and therefore withstand the highest
stress. The DAQ of the ALICE experiment has been designed with
the main target of exploiting at the best this running mode,
maximizing the so-called running efficiency (the percentage of
the LHC stable beam time that is effectively used for Data
Acquisition purposes) while recording data having the best
possible quality from the physics point of view.

The ALICE DAQ must be able to cope with all of the above
scenarios, even when operated by personnel with little or no
knowledge of data acquisition techniques and of the insight of the
DAQ system itself. A particular emphasis has therefore been
imposed on the following features:

� Easy and safe re-configuration of all components as required by
specific activities in function of the ALICE program of work.

� Simple and modular operation of the ALICE experiment with a
minimum quorum of on-site operators.

� Easy to follow error detection and recovery procedures, to be
executed by the operators on shift either in person or with the
assistance of experts always available for On-Call and/or On-
Site support.

From the day of its first runs, the ALICE DAQ system has considerably
evolved to satisfy the above requirements, using direct experience
from the developers, the evolution of the other components (Detec-
tors, Detector Control System, High Level Trigger System, and Central
Trigger Processor System), and the valuable feedback provided by the
ALICE Run Coordination and by the On-Site operators.

In its final configuration for LHC Run 1 – which ended in
February 2013 – the ALICE Control Room was attended by a
quorum of 4 persons:

1. The Shift Leader, who acted as the interface between the ALICE
Run Coordination, the LHC Controls, and the various ALICE
Systems (detectors, systems, and services).

2. The ECS/DAQ þ CTP þ HLT operator, handling all issues related
to the Data Taking procedures.

3. The DCS operator, in charge of controlling the services for the
ALICE Experiment (power, cooling, gasses, access, etc.).

4. The DQM operator, who took care of live quality assurance for
the data acquired by the detectors.

These 4 persons alone were enough to take care of the ordinary
operation of the ALICE Experiment and of all its detectors and
services 24 hours on 24 during several consecutive months.

5.1. Operating procedures

The operation of the ALICE DAQ System was ensured by a
dedicated role in the ALICE Control Room (ACR). This person took

Fig. 48. Comparison between single-threaded and multi-threaded AMORE image
creation. The bar on the left corresponds to the base case when no image is created.
The middle bar represents the performance when images are generated. Finally the
bar on the right shows the performance once we introduce parallelism.

1 2012 global runs with beam and with at least 16 detectors.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162158



care of the ECS, the DAQ, the CTP and the HLT. This role also
assisted the ALICE Shift Leader (SL) to respect and fulfil the ALICE
plan of work (for example by ensuring an adequate status of all the
active ALICE Detectors at key phases of the LHC fill). The prepara-
tion for this role was ensured by a strict procedure where a
theoretical training had to be taken by all the candidates (either
on-site or remotely), followed by an on-site hands-on training
period of minimum 3 days, and completed by an online ques-
tionnaire. The preparation of each candidate was evaluated via the
outcome of the questionnaire and by personal supervision at the
end of the training period. As operators often came at CERN for
just few weeks a year, a refresh training period was proposed after
long absences in order to get them re-acquainted with the work-
ing environment and to familiarize with all the new features
deployed at the ALICE controls.

ALICE is a very complex experiment; up to 18 detectors must be
synchronized and configured to work in unison as defined by the
experiment's program. This job, performed by the SL, can be rather
challenging and error-prone. The ACT has therefore been designed
and adopted to control and verify the configuration of all the
active ALICE partitions. The SL selects via the ACT the configura-
tions that has to be used by the various ALICE components (e.g.
detectors settings and triggers classes) and then hands over the
operation to the DAQ shifter.

The operation of the ALICE Experiment is organized into
partitions, groups of detectors running all together using a
common trigger configuration. It is allowed to have multiple
partitions running simultaneously, as long as all the detectors
belong at most to one partition at a time. It is possible, for
example, to have two parallel runs having different Physics targets
and using their own set of trigger classes. The ALICE SL and DAQ
operator have been given the means to easily handle multiple
partitions simultaneously without explicit synchronization and
with a clear separation of commands and statuses for each
partition.

It is possible to operate any of the ALICE detectors standalone,
for example to perform a specific operation such as a calibration
procedure. The ALICE DAQ operator has the capability to either
perform these standalone runs directly from the main control
panel – for example to prepare the detectors at the beginning of an
LHC fill – or by handing over the detectors to the Detector experts.
Standalone runs include one and only one detector and do not use
the Central Trigger Processor: the trigger signals are delivered to
the detector front-end electronics via an emulator which is local to
the detector itself and which follows a fixed pre-programmed
sequence. A standalone run for a given target can be prepared,
tested, and validated in advance by the Detector experts and then
be used “as is” by the DAQ operator. Each ALICE Detector provides
its own set of dedicated standalone run types, to be executed at
well-defined moments outside, before, during, and after every LHC
fill. Multiple parallel runs can be performed simultaneously: this
feature is used, for example, during ramp-up of the LHC Beam
where many detectors must all get ready for the approaching
stable beam condition. Adequate tools are given to the shifter in
order to easily check in one central point the outcome of multiple
standalone runs.

One of the central facilities for the ALICE operations is
undoubtedly the ALICE Electronic Logbook. Operational events
are systematically reported in the ALICE logbook. The full opera-
tional history of the ALICE experiment can be retrieved at any time
thanks to this key facility.

5.2. HW and SW operational experience

The ALICE DAQ as installed at the LHC Interaction Point 2 is the
result of several years of on-the-field evaluation and testing

exercises. Both HW and SW components proved to fulfil the
requirements and to behave as expected.

On the HW side, certain components proved to be surprisingly
resistant; for example, we did not experience a single disk failure
during the whole operation period. On the other hand, three major
problems did arise during this period (see Fig. 49 for numbers):

� HW aging: Observed on equipments with more than 5 years of
intensive usage, aging has triggered the unforecasted upgrade
of components such as the Disk Array supporting the Transient
Data Storage system.

� Hostile environment: The running conditions at the experimen-
tal area were not easy to cope with and imposed a heavy
burden on the HW installed at Point 2. Power cuts, cooling
system failures, and the heat generated by the densely packed
hardware in the Counting Room required multiple on-site
interventions to resuscitate unresponsive components such as
computers and Power Distribution Units.

� Wrongly dimensioned power supplies: In the second year of data
taking, power supplies started breaking down one after the
other. It was traced down to the fact that they had been under-
dimensioned by the PC manufacturer, not matching the mother
board needs when all PCI slots were loaded.

The original ALICE DAQ HW infrastructure, as used during LHC
Run 1, was based upon the infrastructure installed by the previous
users of LHC Point 2 (the L3 experience at LEP). This infrastructure
proved to be rather inadequate for the material in use by the ALICE
DAQ (not enough air flow, non-standard dimensions, and insuffi-
cient cabling space). For this reason, the ALICE DAQ Project
decided to replace all the HW infrastructure during LHC Long
Shutdown 1 (LS1, in the course of 2013). The ALICE DAQ Counting
Room will be ready again in early 2014, to be used to support the
recommissioning of the ALICE experiment before LHC Run 2.

For what concerns the SW, the LHC Run 1 period saw the
upgrade of the ALICE DAQ SW from CERN Scientific Linux 4 32 bit
to CERN Scientific Linux 5 64 bit. The transition, which took place
during the 2011 Winter shutdown, was eventful and brought
considerable improvements in the efficiency of the overall system.
Extra buffer memory, better scheduling, more efficient usage of
the system resources: all these improvements gave the expected
results during the last 2 years of the LHC Run 1 operations. The
adoption by the ALICE DAQ of commercial off-the-shelf (COTS)
solutions for most of its SW components (networking, memory
management, inter-process communication libraries, etc.) sub-
stantially contributed to a smooth and easy transition. All the
detector-specific software could be pre-tested in validation sites
and their migration to the new environment was practically event-
less.

Fig. 49. Number of hardware failures.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 159



Overall, both HW and SW behaved very well. Runs were stable,
performances were sustained without particular effort and the
requirements could easily be satisfied. The DAQ system proved to
be able to sustain 13 GB/s from the detectors (without event
building) and 7 GB/s to the TDS. These figures gave enough
headroom to the ALICE DAQ in order to absorb transient peaks
in the data flow, for example whenever the trigger setup would
create short overloads in the event rates.

5.3. Evolution of software components

The DAQ software in operation at ALICE saw very few changes
during the LHC Run 1 period.

The major event during the first 5 years of operation was the
usage in production of the HLT as a source of highly compressed
data. This operational choice, which took place in 2011, required
few important modifications to the flow of monitoring data used
for some of the DAs and DQM modules (in order to keep a pre-
defined portion of the original, uncompressed data available for a
detailed analysis of the original payloads). All the other data
streams worked un-modified as expected and could easily sustain
the modified data flow.

Another main improvement, made in the course of 2012, was
the implementation of an in-run detector recovery capability, the
so-called Pause-And-Configure (PAC) procedure. The target of this
new feature was the reset of the FEE triggered by the detection of
an otherwise non-recoverable failure in the readout equipments
(e.g. a Single Event Upset – SEU – in a FPGA). This procedure was
eventually implemented and validated for the Time Projection
Chamber (TPC), the Muon Chamber (MCH), and the Photon Multi-
plicity Detector (PMD). It proved its efficiency during the 2013 p–
Pb run period, where the ALICE detectors had to confront a very
hostile environment due to the high level of background radiation.
The PAC procedure will be further enhanced and adopted by other
ALICE detectors in the course of the LHC LS1.

As the ALICE data flow follows a 100% data-push architecture,
the requirement emerged for a validation checkpoint in the course
of a run. This checkpoint would be used to validate the status of all
detectors and to probe their status after a major event such as a
reconfiguration request. This checkpoint was implemented using a
special trigger, the so-called SYNC event. Proposed in late 2011, the
SYNC event was quickly adopted by all systems (Detectors, CTP,
ECS, DAQ, and HLT) and was activated in 2012, when it became
integral part of the PAC procedure.

From the Detectors' side, a continuous evolution took place
throughout the whole of the LHC Run 1 period. This caused
frequent updates in the detector-specific software installed on
the LDCs, of the DAs, and of the DQM modules. Strict pre-
validation and run-time checking procedures were put in place
to ease up the updates. The DQM and DA frameworks saw several
improvements to provide a better work environment and to
perform run-time checks on the module themselves, in order to
avoid system failures due, for example, to memory leaks in the
Detectors' code.

The ECS also followed the evolution of the ALICE systems (CTP,
DCS, and HLT) and detectors. New procedures were introduced to
allow, for example, the recovery of tripped TPC chambers on the
fly without having to stop the run. Contrary to the procedures
followed for DAs and DQMs, the ECS could not easily pre-validate
its updates and most of the changes had to be tested on the real
ALICE environment, usually during Technical stops of the LHC.
Valuable input was provided by the ALICE Run Coordination, by
the ALICE operators, and by the ALICE Detector Teams to the ECS
project to improve efficiency and functionality of the ECS system.

Seen the capabilities of the ALICE trigger system (50 fine-
configurable trigger classes which evolved as required by the

ALICE work plan), a new scheme was proposed and adopted in
order to simplify the Offline processing of ALICE events. The
concept of trigger aliases was introduced to allow the reference
to sets of trigger classes using abstract entities. A set of pre-
defined trigger aliases has been associated to each new trigger
setup, allowing the reference of equivalent trigger conditions
using a standard abstract layer.

5.4. Periodic validations

The ALICE DAQ project made intensive use of periodic practical
exercises for evaluation and validation purposes.

Already in 1998, a collaboration between ALICE Online, ALICE
Offline, and CERN/IT was started within the LCG project Fabric
area, which had direct responsibility for prototyping the Tier0/1
center at CERN. Milestones were set and plans drawn for a series of
periodic exercises having as main objective the evaluation of the
proposed technologies for the implementation of the ALICE DAQ
system. This activity led to the so-called ALICE Data Challenges
(ADCs) that took place periodically between 1999 and 2007. Each
of the ADCs culminated in non-stop simulated run periods of 1 or
2 weeks duration, each targeting an increasingly rate of sustained
data-transfer. The last of these challenges [35] used the hardware
and the software installed at Point 2 for the LHC start-up and gave
results equivalent to the targets that had been defined for the final
ALICE DAQ system.

At LHC Point 2, the installation of the ALICE Detectors were
followed by the ALICE DAQ by means of dedicated “Feuille de
Routes” (FDRs), a series of validation exercises having as target the
proof of the capability for each system to properly integrate within
the ALICE environment. These FDRs assisted the ALICE collabora-
tion to follow and validate the evolution of all the ALICE Detectors
during the installation and development stages up to the day of
the first LHC Beam.

During the LHC Run 1, series of mid-run technical runs were
performed, usually during the end-of-year break and the LHC
machine development periods, to exercise all components and re-
validate all the data paths. An example of these tests was a
simulation of Heavy-Ion data traffic made right before the PbPb
and pPb beams, when real events were loaded in the Front End of
the TPC Detector, to be injected as live data in the actual data
acquisition chain. All the data streams of the ALICE DAQ could
therefore be thoroughly tested in order to ensure a maximum
efficiency right before each LHC critical fill.

5.5. Increasing requirements

The original ALICE DAQ Technical Proposal (TP) [1] quoted a
peak throughput of 2.5 GB/s before compression and 1.25 GB/s
sustained after compression. The first installation of the ALICE DAQ
at LHC Point 2 was designed around these requirements.

In 2011 it became obvious that the setup of the ALICE experi-
ment would create a data flow by far exceeding the above
requirements. At the same time, the data compression achievable
online via the HLT system on the data coming from the TPC
detector – the main contributor for the DAQ input links – reached
an unprecedented ratio of 1-to-4, meaning that 75% of the data
could be effectively discarded at the output of the LDCs. Following
these new features, the DAQ and the HLT were upgraded to allow a
sustained data flow of 3.8 GB/s at the output of the HLT farm
towards the DAQ system. More powerful LDCs equipped with
higher quantities of memory and with 10 GB Ethernet output links
were installed together with an equivalent increase in the number
of data links between DAQ and HLT. The new configuration proved
to be able to sustain an output stream of 14 GB/s coming from the
detectors for an equivalent compressed flow of about 4 GB/s into

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162160



the GDCs. In practice, the overall throughput sustained during the
Pb–Pb production period in 2011 gave a peak sustained rate of
2.2 GB/s after compression while achieving the forecasted reduc-
tion factor of 1-to-4.

The p–Pb production period in 2013 created an equivalent
challenge for the DAQ and HLT system, only this time the emphasis
was on the event rates rather than on the data flow. A new
upgrade was performed on both systems: the DAQ was equipped
with much more buffer memory at the LDCs/GDCs and the HLT
online algorithms were optimized to reduce the latencies as much
possible regardless of the pileup in the ALICE TPC. The result was a
system that proved to be able to handle data at 2 kHz (the double
of what was described in the ALICE Technical Proposal) for a data
rate of about 2 GB/s after the HLT compression. In production, the
peak typical sustained rate observed in ALICE was of 1.2 kHz which
corresponded to a data flow of 1.4 GB/s.

5.6. Statistics

What follows are a few statistics extracted from the ALICE
logbook relative to the last three years of operations.

Fig. 50 shows the trend of the number of physics runs split by
run type (cosmic runs, pp physics run, and Heavy Ion
physics runs).

In Fig. 51 we can see the number of bytes read into the LDCs
(before the HLT compression) split into pp physics runs and Heavy
Ion (PbPb and pPb) runs.

The bytes recorded (after HLT compression) are shown in
Fig. 52, split into pp physics runs and Heavy Ion (PbPb and pPb)
runs. Note how in 2012–2013, despite having 1 month more of pp
physics compared to 2011 as well as a higher pp luminosity, the
quantity of recorded data was less than the previous year. This
effect is mainly due to the HLT compression.

Fig. 53 shows the summaries by physics type (pp physics,
Heavy Ion physics and cosmics). The reduction factor achieved by

the HLT online compression is very well visible for the 2011 and
2012–2013 run periods. Note that in 2011 the compression was
enabled only near the end of the pp production (which was
therefore mainly performed without this key feature). Further-
more, the pp physics program in 2012–2013 lasted 1 month more
and saw higher luminosity compared to the previous year.

6. Conclusion

The R&D work on the ALICE DAQ system has started in 1995.
The system has been designed and implemented in the years 1996
till 2005. The system has been successfully used during the phase
of development, tests and commissioning of all the ALICE detec-
tors. Two of these tests were particularly important: in 2004, there
was the first test of the 3 detectors of the Inner Tracking System
(ITS) and in 2006 the tests of the TPC made on the surface before
its transport in the underground cavern.

The first elements of the DAQ system have been installed and
commissioned at the experimental area in 2005. In September
2008, the ALICE DAQ was ready for the first pp collisions and is in
full operation mode since then. During its operation with LHC
beams, the system performance has been increased by a factor
4 above the original requirements and has collected more than
6 PB of physics data during the LHC Run 1 (2010–2013) [36].

During the LHC LS1 (LS1) in 2013–2014, the system is presently
prepared for the Run 2 (2015-2017) with an adaptation of the
software and a replacement of the obsolete computing hardware.

Since 1997, the system has also been used by several experi-
ments at CERN (Compass [37], NA57 [38]) or in other labs such as
the MICE experiment at the Rutherford Appleton Laboratory (RAL)
in the UK [39] or the developments for the detection and imaging
of High-Z Materials with a Muon Tomography [40].

Fig. 50. Number of physics runs.

Fig. 51. Bytes readout (in MB).

Fig. 52. Bytes recorded (in MB).

Fig. 53. Bytes readout and recorded (in MB).

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162 161



References

[1] ALICE Collaboration, Technical Proposal for a Large Ion Collider Experiment at
the CERN LHC, Technical Report LHCC 95-71, CERN, 1995.

[2] ALICE Collaboration, The ALICE experiment at the CERN LHC, Journal of
Instrumentation 3(08) (2008) S08002. http://dx.doi.org/10.1088/1748-0221/
3/08/S08002.

[3] ALICE Collaboration, ALICE Technical Design Report on Trigger, Data Acquisi-
tion, High-Level Trigger and Control System, Technical Report LHCC 2003-062,
CERN, 2004.

[4] P. Vande Vyvre, Physics Requirements for the ALICE DAQ System—ALICE
Internal Note 2000-030, Technical Report, CERN, 2000.

[5] Mysql, 〈http://www.mysql.com〉.
[6] AliRoot: ALICE Off-Line Framework for Simulation, Reconstruction and Analy-

sis, 〈http://aliceinfo.cern.ch/Offline〉.
[7] R. Brun, Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 389 (1–2)
(1997) 81, http://dx.doi.org/10.1016/S0168-9002(97)00048-X.

[8] B. Franek, C. Gaspar, IEEE Transactions on Nuclear Science NS-045 (1998) 1946.
[9] C. Gaspar, A distributed information management system for the Delphi

experiment at CERN, in: Proceedings of the IEEE Real Time Conference,
Vancouver, Canada, 1993.

[10] I. Fedorko, V. Lefebure, D. Lenkes, M.O. Pera, Journal of Physics: Conference
Series 396 (4) (2012) 042019 〈http://stacks.iop.org/1742-6596/396/i=4/
a=042019〉.

[11] Swig, Simplified Wrapper and Interface Generator, 〈http://www.swig.org〉.
[12] Jira, 〈http://www.atlassian.com/jira〉.
[13] Php, 〈http://www.php.net/〉.
[14] Apache web server, 〈http://httpd.apache.org/〉.
[15] Shibboleth, 〈http://shibboleth.net/〉.
[16] E. Ormancey, Journal of Physics: Conference Series 119 (8) (2008) 082008

〈http://iopscience.iop.org/1742-6596/119/8/082008/〉.
[17] Cern e-groups, 〈https://espace.cern.ch/e-groups-help〉.
[18] Rpm, 〈http://www.rpm.org/〉.
[19] Tiki wiki cms groupware, 〈http://info.tiki.org〉.
[20] S. Chapeland, F. Carena, W. Carena, V.C. Barroso, F. Costa, E. Dénes, R. Divià,

U. Fuchs, A. Grigore, G. Simonetti, C. Soós, A. Telesca, P.V. Vyvre, B. von Haller,
Journal of Physics: Conference Series 396 (1) (2012) 012013 〈http://stacks.iop.
org/1742-6596/396/i=1/a=012013〉.

[21] dhtmlxsuite javascript framework, 〈http://dhtmlx.com/〉.
[22] Zend framework, 〈http://framework.zend.com〉.
[23] Dip and dim, 〈http://j2eeps.cern.ch/wikis/display/EN/DIPþandþDIM〉,

(accessed 1-November-2013), 2013.
[24] C. Gaspar, M. Dönszelmann, P. Charpentier, Computer Physics Communica-

tions 140 (1–2) (2001) 102, http://dx.doi.org/10.1016/S0010-4655(01)00260-0,
cHEP2000.

[25] What is the CERN Accelerator Logging Service? 〈https://espace.cern.ch/
be-dep/CO/DA/Services/CERN%20Accelerator%20Logging%20Service.aspx〉.

[26] Measurement Service, 〈https://espace.cern.ch/be-dep/OP/LHC/projects/mea
surement_database/index.aspx〉.

[27] Lhc Logging Project, 〈http://lhc-logging.web.cern.ch/lhc-logging/software/〉.
[28] Ipmi, 〈http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.

html〉.
[29] C. Zampolli, F. Carminati, A. Colla, The shuttle: the ALICE framework for the

extraction of the conditions data, in: PoS ACAT2010, 2010, p. 66.
[30] S. Chapeland, V. Altini, F. Carena, W. Carena, V.C. Barroso, F. Costa, R. Divià,

U. Fuchs, I. Makhlyueva, F. Roukoutakis, K. Schossmaier, C. Soós, P.V. Vyvre,
B. von Haller, The Alice collaboration, Journal of Physics: Conference Series
219 (2) (2010) 022004 〈http://stacks.iop.org/1742-6596/219/i=2/a=022004〉.

[31] S. Chapeland, F. Carena, W. Carena, V.C. Barroso, F. Costa, E. Dénes, R. Divià,
U. Fuchs, A. Grigore, G. Simonetti, C. Soós, A. Telesca, P.V. Vyvre, B. von Haller,
Journal of Physics: Conference Series 396 (1) (2012) 012012 〈http://stacks.iop.
org/1742-6596/396/i=1/a=012012〉.

[32] A. Telesca, B. von Haller, S. Chapeland, F. Carena, W. Carena, V. Barroso, F.
Costa, R. Divià, E. Dénes, U. Fuchs, G. Simonetti, P. Vande Vyvre, The ALICE data
quality monitoring system, in: Real Time Conference (RT), 2010 17th IEEE-
NPSS, 2010, pp. 1–6. http://dx.doi.org/10.1109/RTC.2010.5750364.

[33] B. von Haller, A. Telesca, S. Chapeland, F. Carena, W. Carena, V. Chibante
Barroso, F. Costa, E. Dénes, R. Divià, U. Fuchs, G. Simonetti, C. Sos, P. Vande
Vyvre, The ALICE collaboration, Journal of Physics: Conference Series 331 (2)
(2011) 022030 〈http://stacks.iop.org/1742-6596/331/i=2/a=022030〉.

[34] M. Richter, K. Aamodt, T. Alt, S. Bablok, C. Cheshkov, P. Hille, V. Lindenstruth,
G. Ovrebekk, M. Ploskon, S. Popescu, D. Rohrich, T. Steinbeck, J. Thader, IEEE
Transactions on Nuclear Science NS-55 (1) (2008) 133, http://dx.doi.org/
10.1109/TNS.2007.913469.

[35] Alice Tests Its Digital Chain. ALICE Teste sa Chane Numrique (BUL-NA-2007-
012. 08/2007. 09/2007. 08/2007), 2007, p. 3.

[36] F. Carena, W. Carena, S. Chapeland, V.C. Barroso, F. Costa, E. Dénes, R. Divià,
U. Fuchs, G. Simonetti, C. Sos, A. Telesca, P.V. Vyvre, B. von Haller, The ALICE
collaboration, Journal of Physics: Conference Series 331 (2) (2011) 022028,
URL 〈http://stacks.iop.org/1742-6596/331/i=2/a=022028〉.

[37] Compass Experiment at CERN, 〈http://wwwcompass.cern.ch/〉.
[38] Na57 Experiment at CERN, 〈http://wa97.web.cern.ch/WA97/〉.
[39] M. Bonesini (On Behalf of the MICE Collaboration), Progress of the Mice

Experiment at ral, arxiv:1303.7363.
[40] K. Gnanvo, B. Benson, W. Bittner, F. Costa, L. Grasso, M. Hohlmann, J.B. Locke, S.

Martoiu, H. Muller, M. Staib, A. Tarazona, J. Toledo, Detection and imaging of
high-Z materials with a muon tomography station using GEM detectors, in:
Proceedings of 2010 IEEE, Nuclear Science Symposium Conference Record
(NSS/MIC), October 30 2010–November 6 2010, p. 552, 559. 〈http://dx.doi.org/
10.1109/NSSMIC.2010.5873822〉.

F. Carena et al. / Nuclear Instruments and Methods in Physics Research A 741 (2014) 130–162162

dx.doi.org/10.1088/1748-0221/3/08/S08002
dx.doi.org/10.1088/1748-0221/3/08/S08002
http://www.mysql.com
http://aliceinfo.cern.ch/Offline
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://refhub.elsevier.com/S0168-9002(13)01698-7/sbref8
http://stacks.iop.org/1742-6596/396/i=4/a=042019
http://stacks.iop.org/1742-6596/396/i=4/a=042019
http://www.swig.org
http://www.atlassian.com/jira
http://www.php.net/
http://httpd.apache.org/
http://shibboleth.net/
http://iopscience.iop.org/1742-6596/119/8/082008/
https://espace.cern.ch/e-groups-help
http://www.rpm.org/
http://info.tiki.org
http://stacks.iop.org/1742-6596/396/i=1/a=012013
http://stacks.iop.org/1742-6596/396/i=1/a=012013
http://dhtmlx.com/
http://framework.zend.com
http://j2eeps.cern.ch/wikis/display/EN/DIP&plus;and&plus;DIM
http://j2eeps.cern.ch/wikis/display/EN/DIP&plus;and&plus;DIM
http://j2eeps.cern.ch/wikis/display/EN/DIP&plus;and&plus;DIM
http://j2eeps.cern.ch/wikis/display/EN/DIP&plus;and&plus;DIM
http://j2eeps.cern.ch/wikis/display/EN/DIP&plus;and&plus;DIM
http://j2eeps.cern.ch/wikis/display/EN/DIP&plus;and&plus;DIM
http://j2eeps.cern.ch/wikis/display/EN/DIP&plus;and&plus;DIM
http://dx.doi.org/10.1016/S0010-4655(01)00260-0
http://dx.doi.org/10.1016/S0010-4655(01)00260-0
http://dx.doi.org/10.1016/S0010-4655(01)00260-0
https://espace.cern.ch/be-dep/CO/DA/Services/CERN%20Accelerator%20Logging%20Service.aspx
https://espace.cern.ch/be-dep/CO/DA/Services/CERN%20Accelerator%20Logging%20Service.aspx
https://espace.cern.ch/be-dep/OP/LHC/projects/measurement_database/index.aspx
https://espace.cern.ch/be-dep/OP/LHC/projects/measurement_database/index.aspx
http://lhc-logging.web.cern.ch/lhc-logging/software/
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://stacks.iop.org/1742-6596/219/i=2/a=022004
http://stacks.iop.org/1742-6596/396/i=1/a=012012
http://stacks.iop.org/1742-6596/396/i=1/a=012012
dx.doi.org/10.1109/RTC.2010.5750364
http://stacks.iop.org/1742-6596/331/i=2/a=022030
http://dx.doi.org/10.1109/TNS.2007.913469
http://dx.doi.org/10.1109/TNS.2007.913469
http://dx.doi.org/10.1109/TNS.2007.913469
http://dx.doi.org/10.1109/TNS.2007.913469
http://stacks.iop.org/1742-6596/331/i=2/a=022028
http://wwwcompass.cern.ch/
http://wa97.web.cern.ch/WA97/
arxiv:1303.7363
http://dx.doi.org/10.1109/NSSMIC.2010.5873822
http://dx.doi.org/10.1109/NSSMIC.2010.5873822

	The ALICE data acquisition system
	Introduction
	ALICE online systems
	Data-flow
	Control
	Monitoring, metadata, detector software and data quality monitoring
	The DATE software package

	Initial requirements
	Hardware architecture
	Overview
	DDL & RORC
	The LDC and GDC
	Servers
	Network
	Storage
	The DQM and DA nodes
	The ALICE Control Room stations and displays

	Software architecture
	Dataflow
	Detector data links
	Readout
	Recording
	Event building
	Streaming
	Migration
	Monitoring

	Control
	Run control
	ECS
	ACT

	Monitoring and metadata
	Lemon
	Infologger
	Orthos
	ALICE electronic logbook
	ALICE electronic logbook human interface
	LHC interface
	IPMI

	Detector software
	Data quality monitoring
	Introduction
	Design and architecture
	Pluggable architecture
	Database
	Archives
	Generic GUI
	Interaction and integration with other systems
	Tools
	Benchmarks and optimizations
	Experience and results in production


	System operations and global performance
	Operating procedures
	HW and SW operational experience
	Evolution of software components
	Periodic validations
	Increasing requirements
	Statistics

	Conclusion
	References




