
Environmental Monitoring using Autonomous Vehicles:
A Survey of Recent Searching Techniques I

Behzad Bayata, Naveena Crastab, Alessandro Crespia, António M. Pascoalb, Auke Ijspeerta

aBiorobotics laboratory (BioRob), Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
bInstitute for Systems and Robotics (ISR), Instituto Superior Técnico (IST), University of Lisbon
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Abstract

Autonomous vehicles are becoming an essential tool in a wide range of environmental applications
that include ambient data acquisition, remote sensing, and mapping of the spatial extent of pollu-
tant spills. Among these applications, pollution source localization has drawn increasing interest
due to its scientific and commercial interest and the emergence of a new breed of robotic vehicles
capable of performing demanding tasks in harsh environments without human supervision. In this
task, the aim is to find the location of a region that is the source of a given substance of interest
(e.g. a chemical pollutant at sea or a gas leakage in air) using a group of cooperative autonomous
vehicles. Motivated by fast paced advances in this challenging area, this paper surveys recent ad-
vances in searching techniques that are at the core of environmental monitoring strategies using
autonomous vehicles.
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1. Introduction

Autonomous vehicles, such as flying, marine, and terrestrial robots, have made significant in-
roads into the area of source localization in the context of explosive and drug detection, sensing of
leaking or hazardous chemicals, pollution monitoring and, in the specific case of the marine envi-
ronment, hydrothermal vent source localization, plume tracing, and heat source seeking. Among
other, localization of toxic pollutant sources is an important as well as a challenging issue in many
environment related areas. In order to reduce the impact of pollutants on the environment, it is
imperative to localize the sources so as to devise an effective control strategy.

This problem has been approached in two distinct manners. The first approach consists of a
fixed network of sensors that collect and exchange measurements in order to estimate the location
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of the source. This localization scheme requires the use of reference nodes (nodes with known
locations), thus implying expensive and time-consuming deployment, calibration, and recovery
operations. For example, in the case of underwater applications, the nodes must be deployed
at the surface and/or on the seabed, with consequent escalating costs. Furthermore, this strategy
severely limits the coverage area, an undesirable feature that can only be overcome by the approach
described next.

The second approach involves the use of groups of vehicles equipped with appropriate sensor
suites, that move collectively towards the source location in a cooperative manner. This approach
is more dynamic, flexible, and suitable for multiple source localization, but requires resolving
many challenging technical problems such as, endurance, planning, coordination, communica-
tion, cooperation, and navigation of all the vehicles In this context, cooperative localization, with
the objective of reducing operational costs, there has been increasing interest in the development
of methods for cooperative source localization using vehicles that have limited or no position
information, thus dispensing with the need for expensive navigation systems.

This area of research is vast and defies a simple summary. Hence, in this article we focus
on the key developments witnessed in the last five years. The reader is referred to [1] and the
references therein for earlier developments in the area, with a focus on advancements and ap-
plications of robots for environmental monitoring over the period of twenty years preceding the
abovementioned publication. The presentation in [1] includes sections on marine and atmospheric
plume detection and localization, as well as adaptive sampling. Interesting references in the area
of biologically-inspired search algorithms can be found in [2], which surveys some of the strate-
gies used, from single cells to higher level organisms and animals, as a means to answer extremely
interesting questions in the fields of animal behavior, ecology, and evolution. A detailed survey
on odor tracing methods and a review of autonomous underwater vehicle (AUV) autonomy and
data-driven sample strategies can be found in [3, 4]. Sensors are obviously an essential part of the
source localization problem. However, sensing methods and platforms are a very broad field that
is out of the scope of this paper. The interested reader is referred to the review articles [5, 6] for
sensing systems in air or water.

The organization of the paper is as follows. In Section 2 we discuss various experimental set-
ups that include different robotic platforms. Section 3 provides a comprehensive discussion on
recent source localization techniques developed in the last half a decade using single and multi-
agents. Finally, in Section 4 we summarize our findings and draw attention to some future direc-
tions.

2. Robotic Platforms and Field Experiments

From a practical standpoint, the success of autonomous search methods hinges upon their
performance in field experiments, which depends strongly on the platforms used and the operating
conditions encountered. The choice of platforms depends on a number of key issues. In what
follows we briefly present recent advances in this topic, with a strong emphasis on marine robotic
platforms.

Source localization missions are lengthy and demand good maneuverabilities in order to ex-
plore a large area. Thus, in this context, endurance and maneuverability are the two decisive

2



factors in the selection of a robotic platform. Furthermore, because most pollution measurements
are taken at discrete instants of time and the sensors used require some latency time to detect
particles in air or water, the robots must have the capability of station keeping. Ground and ma-
rine vehicles have been the two types of robots of choice used in the past half a decade. In the
early stages, there have been attempts to use underground burrowing robots for underground gas
leakage tracing [7], quadcopters for plume tracing [8], and unmanned aerial vehicles (UAVs) for
microbe detection [9]. Unfortunately, the disturbance effect of drones on sensor measurements and
their short endurance have severely limited their application. In what concerns ground operations,
most robotic platforms are wheeled and in particular nonholonomic unicycle-modeled robots (two
wheel differential drive with additional passive wheels) are popular, due to their simple design and
superior maneuverability [10 •], [11, 12, 13, 14], [15 •].

Among all types of vehicles, marine robots are probably the most challenging to build and
operate in the adverse conditions imposed by the water medium. Factors such as cost, ease of
deployment and recovery, energy limitations, and safety, have limited contemporary AUVs to
relatively small sizes (few meters). Current AUVs are typically powered by propellers of low
efficiency, which are driven by electric motors. The low efficiency along with the poor transient
response of the propellers have led to the low endurance of AUVs. A comparative study on the
use of underwater gliders, AUVs, and remotely operated vehicles (ROVs) for plume detection and
tracking [16 •], concludes that actively propelled AUVs are the most well suited platform for such
tasks due to their autonomy and sufficient payloads, despite their shorter endurance. The results
of field tests with AUVs for source tracing purposes can be found in [17, 18]. In this context,
it is also worth mentioning other platform such as the combination of Lagrangian drifters (an
oceanographic floating device) and AUVs that are used in the context of environment monitoring,
which is indirectly related to plume tracing. The authors in [19] have presented a combination of
a Lagrangian drifter and an AUV to map an area around it, if the drifter detects a patch of desired
substance.

To overcome their low efficiency and eliminate the disturbances caused by the propellers, there
is a new breed of autonomous bio-inspired marine robots, which do not use propellers for vehicle
thrusting. The robotic crayfish with two arms that mimics the maxillipeds of a crayfish [20],
swimming eel-like robot that uses body undulations for maneuvering [21], and robotic fishes that
use caudal swimming to provide forward thrust [22, 23] are few examples of bio-inspired robotic
platforms. In [20], the authors used the robotic crayfish for chemical source localization purposes
in a small controlled aquatic environment. The robot uses its wheels to move at the bottom of a
water reservoir and uses its two arms to improve the detection of chemical substances in water. The
robotic fish developed in [22] is used for the applications of aquatic sampling and aquatic profiling
of chemical diffusion reported in [24] and [25], respectively. The swimming eel-like robot [21] is
designed to be used for pollution localization [26 ••] with little disturbance of chemical substance
distribution in water, while in [23] the authors use the robotic fish for extremum seeking.

Setting aside the platforms, the variability of operating conditions in a field experiment may
lead to poor performance in the presence of external disturbances not taken explicitly into account
during the design phase. Notice that experimental results such as odor tracing in a wind tunnel [10
•], [11, 12, 13, 14], [15 •], underground gas leakage tracing in a and pool [7], and source tracing in
a controlled water reservoir [20, 23], were all carried out in controlled environments. On the other
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Figure 1 (adapted from [29]): Example of chemotaxis of three agents using a leader-follower approach. The brown
heat map represents expected pollution level at each location. The red, blue, and green tracks indicate movement
of corresponding agents in a group formation. The agents start from bottom right without any knowledge about the
source location. The strategy starts with a lawn mower sweeping trajectory. Whenever some intensity of the source
signal (e.g. pollution level) is detected, the agents will follow the gradient towards the source indicated by the yellow
square.

hand, the underwater plume tracing reported in [17, 18] was carried out in open waters.

3. Source Localization Methods

Some of the methods for source localization can be traced back to those described in [27],
involving the use of classic search patterns (e.g. parallel line, creeping line, square, sector, and
barrier patrol search patterns) inspired by the techniques used in the allied search for U-boats in
the Bay of Biscay during World War II. From an historical perspective, an interesting survey of
early search theory and applications can be found in [28], where the authors addressed a number
of practical problems in the areas of search and rescue, mineral exploration, surveillance, and
fishing. Each of these applications can be (in)directly related to environmental monitoring. In the
following subsections, we present a categorized but concise review of recent autonomous search
methods for environmental monitoring and/or pollution source detection.

3.1. Gradient-based (Chemotaxis) method
Intuitively, to trace a chemical plume or localize a pollutant source, one of the desirable fea-

tures of any tracing or localizing algorithm is the ability to sense the concentration of a particular
chemical. This is precisely the concept of Chemotaxis, first reported in 1881, which refers to
the movement of an organism caused by a chemical stimulus [30]. In simple words, chemotaxis
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consists of following the local gradient of a chemical concentration. In this context plume con-
centration is viewed as a scalar map with a maximum at the source location and chemotaxis yields
a procedure to solve a particular optimization problem. Since its inception, due to its simplicity,
chemotaxis has been exploited by many researchers to develop source seeking strategies for single
or multiple agents.

We start our review with the single agent framework. In [8], a pseudo gradient-based method
for the application of gas source localization was reported and validated in an open air field with
the aid of a quadcopter. Inspired by [31], the vehicle tries to find the plume by sweeping crosswind
and then switching to the pseudo gradient-based method by comparing the odor concentration with
its previous position and directing towards the larger concentration region.

Comparative studies reported in [13] and [7] described experimental results of different chemo-
taxis algorithms in an in-air and underground source seeking scenarios, respectively. In both sce-
narios, the algorithm inspired by Escherichia coli movement resulted in variable and inefficient
source seeking performance, due to its nature of random change of direction of movement and
sensitivity to added measurement noise. In [13], algorithms inspired by the motion of silkworm
moths and dung beetles achieved a better success rate compared to a purely gradient-based method,
but at the expense of traveling for a longer distance. In [7], the presented Hex-path algorithm (dis-
cretizing the search area by hexagonal cells and move along edges) outperformed the bio-inspired
planarian (changing direction of movement based on consecutive measured concentrations) in a
scenario of underground chemical leak localization using a burrowing robot.

An interesting approach to three dimensional (3D) environmental extremum seeking naviga-
tion of a mobile robot is described in [32]. This study is complemented by experiments using a
wheeled ground robot for a smooth scalar field, reported in [33]. The strategy proposed for ex-
tremum seeking does not require the direct computation of gradients. However, it is not evident
from simulations or experiments if the proposed method can be applied to the localization of a
pollution source with a diffusion process in a turbulent medium, e.g. pollution sources modeled in
[26 ••] and [34 ••]. In spite of the progress done on the use of single agents for source localization,
the latter have a number of limitations. For this reason, there has been a flurry of activity on the
use of multiple agents, as explained in the sequel.

Moving to a multi-agent framework, there are two possibilities; fixed and flexible formations
of group of agents. In [35] the authors proposed a fixed formation of mobile sensor platform
for in-air chemical plume tracing in the presence of a time-varying airflow environment. For
a given formation speed, the desired formation heading is given by a function of the estimated
plume direction. The algorithm was validated through simulations in a large-scale advection-
diffusion airflow environment with an achieved success rate of 80%. In [36], the authors proposed
a plume tracking and localization algorithm in a turbulent flow using a fleet of agents. The key
idea of this algorithm was to transform the detected turbulent flow field into a smooth scalar
field in order to make the gradient well defined. The transformation is derived by thresholding
the high concentration scalar field values and considering the occurrence of high concentrations
that is a function of distance to the source. The derived control law was such that the direction
of the movement of the agents converges to the gradient direction of the smooth scalar field,
thereby moving towards the source. However, the required sampling interval is high and choosing
smaller sampling intervals leads to longer or unsuccessful source tracing. Further, the results were
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Figure 2 (adapted from [10 •]): Example of source localization and tracing with a triangular formation of three agents
against the wind direction that is from left to right. The brown heat map represents expected pollution level at each
location. Agents start from the bottom right without any knowledge of the source location. The green, red, and blue
tracks represent movements of the agents, and the corresponding circles show a time lapse of their location as the
mission unfolds. Black lines represent the formation of the agents at each time lapse, and the black yellow shows the
location of the source.

demonstrated through simulations only.
In order to avoid the local maxima issues of gradient algorithms, [37] proposed an adaptive

searching scheme called theseus gradient search (TGS) for localizing an unknown radio trans-
mitter in indoor environments using received signal strength (RSS). The strategy combines the
gradient of the RSS and exploration of regions that are not traveled in order to ensure that the
robot will not get stuck in the local maxima.

A simulated leader-follower approach was presented in [29] for source localization using au-
tonomous surface vehicles (ASVs) and AUVs based on gradient information from a scalar field
of interest (see figure 1). The control law that is applied to the agents is determined by an
approximation to the gradient of the particular scalar field of interest obtained by collecting mea-
surements taken by the agents. The strategy starts with a predefined search pattern, for instance,
a lawn mower sweeping trajectory. Whenever the measured intensity of the scalar field is above a
certain threshold, the agents will follow the gradient towards the source.

3.2. Wind Detection (Anemotaxis)
Anemotaxis is the response of an organism to wind. Many insects show a positive anemotactic

response (turning or flying into the wind) upon exposure to an airborne stimulus cue from a food
source. In simple words, anemotaxis-driven agents focus on the advection portion of the flow.
The agents navigate upstream within the plume by measuring the direction of the fluid’s velocity.
Moths are fascinating examples of anemotaxis agents. As early as 1983, a review of zigzagging
and casting as a programmed response to follow wind-borne odor was presented [38]. Later, a
study [39] investigated the search strategies of male moths to find female ones by following their
scent. More specifically, the authors showed that the male moths balance counterturning and
flying upwind depending on the plume structure and frequency of odor encounters, which yields
to moving upwind faster and/or straighter.

Inspired by search methods taken from male moths flying upwind, similar control laws based
on a behavior-based state machine have been developed on Remote Environmental Monitoring
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UnitS (REMUS) AUV [40] to trace, reacquire, and localize a plume [17]. Further on a different
study [41], the authors used the same idea to install a pair of separated chemical sensors on an
AUV for plume tracing in a marine simulated environment. In [42], the authors extended the
moth-inspired plume tracing via a single vehicle to multiple vehicles which were validated through
simulations and experimental results with a single vehicle in [18].

Recently, in [10 •], [11] a formation control scheme based on ranges from other agents was
employed for odor source localization and tracing in a two dimensional (2D) wind tunnel via
Laplacian feedback formation control [43] of multiple cooperative robots in a variety of formations
(see figure 2). Source localization was done by plume centering of the formation based on odor
measurements obtained from all the robots in the formation. With an extension to a 3D scenario,
another study presents simulation and experimental results for 3D distributed plume tracking with
a group of land and air robots measuring odor concentration in a wind tunnel [12]. In [44], the
authors simulated a group of MEDUSA class of marine vehicles [45] measuring conductivity in a
fresh water stream. These works [12, 44] use integration of three behaviors: upstream movement,
plume centering, and Laplacian feedback formation control.

In a more recent study [46], the authors extended the source localization problem to multiple
odor sources and presented localization with multiple robots in a circular formation avoiding ob-
stacles and localizing odor sources in a simulated environment. From an optimal point of view,
the formation of swarm robots that maximizes their probability of finding an odor plume in an
unknown environment was studied [14]. The authors analytically showed that the optimal con-
figuration is a diagonal upwind moving formation, facing the wind direction. This was validated
through simulations and indoor experimental tests.
3.3. Entropy Reduction (Infotaxis)

In a turbulent medium like air or water, turbulent flow causes random and disconnected patches
of odor or pollution which makes the gradient of information uncertain to be used for guidance in
source seeking. Infotaxis [47], a gradient-free method, is a recent addition to the search method-
ology. From a theoretical stand-point, this method is based on information principles to maximize
the entropy reduction. Several studies exploited this method as reported in [34 ••], see figure 3,
and references therein. In a different study [15 •], inspired by moths, the authors attached an elec-
troantennogram of a moth to a robot to indirectly control it. They compared four search strategies,
three reactive (combination of upwind surge, spiral casting and crosswind [zigzag] casting) [48],
and infotaxis [47]. They concluded that reactive searching is more efficient (yielding shorter tra-
jectories) for higher pheromone doses while infotaxis does a better job in cases with lower doses of
pheromones but with more computational cost. In [49], the authors investigated the performance
of the infotaxis algorithm on a simulated 3D turbulent channel air flow for two different Reynolds
numbers.

The authors in [50] have presented information theoretic search strategies based on [47] for a
planar case but also extended the source localization for a group of robot(s) in a turbulent flow, in
a 2D [50] and 3D [51] scenario. The clear contribution and advantage are the use of a multi-robot
system which is explored in a lossless communication framework communication without any loss
of information. In reality, however, underwater communications are severely affected by packet
losses and delays.
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Figure 3 (adapted from [34 ••]): Example of source localization and tracing using infotaxis method. An agent starts
from the bottom right without any knowledge of the source location. The brown heat map represents expected pollu-
tion level at each location. The red track represents movements of the agent, the black circles are pollution detection,
the yellow square shows the location of the source, and the green dots show hypotheses of source locations which are
close to the true location. Since the current flow is to the right, the agent first sweeps cross-current and approaches the
source when detections occur more often.

The infotaxis search problem on a two-dimensional grid but in a distributed form and with
agents that are almost memoryless is studied in [52]. The author emphasizes that a good search
strategy does not necessarily consist in always trying to approach the source, but also to move
orthogonally to the estimated direction of the source, which has been shown analytically in a
different application in [53]. In this strategy, which is introduced as amoebae-infotaxis model, each
agent performs a random walk on the grid and when it makes a detection, it triggers a reaction-
diffusion wave in the grid to attract other agents towards itself. In the long term, this will move
the group towards the source. The search strategy benefits from a simple implementation for
multi-agent systems, but its success is not guaranteed and it might fail in some situations.

The infotaxis approach is very promising, but as pointed out in [54 •], it only remains robust as
long as the estimated parameters of the source are within a neighborhood of their true values. If
the searcher agent severely underestimates or overestimates the real environment parameters, the
success rate quickly drops, making infotaxis no longer feasible.
3.4. Information Maximization (FIM)

The concept of using a sensor model carried by one agent to decide on the best possible course
of action of that agent so as to maximize the information available for localizing an underwater
target has been exploited in [53, 55]. By adopting an estimation-theoretical setting, the key idea
exploited is to maximize, by a proper choice of the agent’s motion, the information available
for source localization. This is done by maximizing the determinant of an appropriately defined
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Figure 4 (adapted from [26••]): Example of source localization and tracing using the information maximization (FIM)
method. An agent starts from bottom right without any knowledge about the source location. The red track represents
movements of the agent, black circles are pollution detections (diameters proportional to pollution levels), the yellow
square shows the location of the source, the green dots show hypotheses of source locations, which are close to the
true location. The flow direction is to the right and the brown heat map represents the expected pollution level at each
location.

Fisher information matrix (FIM), which yields a measure of the minimum covariance of the target
estimation error that can possibly be achieved with any unbiased estimator. Referring to [55], the
strategy is to carry out planning, motion control, and estimation in sequence over a sliding horizon.

Contrary to infotaxis, wherein agent is limited to a set of predefined actions, FIM based ap-
proach chooses optimal actions (that satisfy the input constraints) by maximizing a scalar function
of an analytically computed FIM over a sliding horizon. Inspired by this approach, the authors in
[26 ••] exploited this concept for the sensor model adapted from [47] and analytically derived the
FIM associated to a pollutant source localization problem. Figure 4 shows an example of source
localization and tracing using the new methodology proposed. The optimization problem con-
sisted of finding a sequence of the agent’s course angle that maximized a scalar valued function
of the FIM, i.e. its determinant. Maximizing the information about the source location resulted
in steering the searcher towards the source. One can balance between gathering new knowledge
versus exploiting existing knowledge by choosing the sliding time horizon. The FIM approach
could possibly suffer from overestimation or underestimation as stated by [54 •] for infotaxis. To
the best of our knowledge, the successful implementation of the FIM method was reported for the
first time in [53], where the objective is to localize a moving underwater target using a surface
vehicle that measures its range to the target.
4. Discussion

The source localization problem has attracted enormous interest over the years and many meth-
ods have been proposed with various degrees of sophistication and complexity. In this article, we
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provided an overview of recent developments in this area that included various applications, dif-
ferent search methods, and platforms employed. Aerial applications have been investigated very
extensively due to their early development, ease of deployment, and the use of wind tunnels to
simulate an odor source [14]. In contrast to aerial applications, the marine technology is relatively
new and still facing challenges such as long sensor response time, low bandwidth underwater
communications, and limited vehicle capabilities for cruising and hovering.

Among the search methods, chemotaxis and anemotaxis are model-independent, which is a
drawback if the medium is turbulent [15 •]. The latter causes disconnected patches of chemical
substances with low or high dose, thus making it more difficult to get a good gradient estimation
of the scalar field. Moreover, in chemotaxis or anemotaxis there is no feedback mechanism to
minimize the uncertainty in the source location. Information based approaches, FIM and infotaxis,
use a model of the pollutant in turbulent medium to minimize the uncertainty about the source
location. This may lead to poor performance if there is a severe model mismatch [54 •]. It is worth
mentioning that foraging strategies in nature may exhibit differently, such as the one reported in
[56], which showed that mice can efficiently track odor sources with limited prior experience of
source locations and consistent with a gradient ascent algorithm. Although, with more experience,
they shifted from a sensory driven approach to a more efficient and stereotyped foraging approach
that varied little in response to sensory data. Interestingly in [26 ••] one can notice that the optimal
trajectory obtained has a close resemblance with the moth trajectory as reported in [56].

To summarize, we have provided the state-of-art in the domain of various search methods using
different search platforms for source localization, as shown graphically in Figure 5. Although there
is less freedom to pick a platform, there are mainly four methods, namely chemotaxis, anemotaxis,
infotaxis, and FIM, depending on the application, and each of these methods has its own advan-
tages and disadvantages. The gradient method is simple to implement compared to others but can
be troublesome in the presence of turbulences. However, turbulences can be more effectively dealt
by using the infotaxis method, which is a gradient-free method. From a conceptual point of view,
information maximization seems to be very promising and may prove to play a significant role
in many applications in the near future. Finally, we discuss future directions that warrant some
attention.

In contrast to single-agent approaches that may require the agent to undergo complicated mo-
tions and may take a larger time to converge, multi-agent systems with complementary sensor
suites offer a better way to approximate the gradient of signal measured by individual agents and
shared among the agents in a centralized or distributed fashion. This helps to drive the formation
of agents towards the source [10 •], [12, 23, 35, 42, 50, 51, 52, 57, 58, 59, 60]. Since multi-agent
systems provide flexibility, maneuverability to explore regions, and more information, we envision
that they hold a great potential and will likely dominate future research directions in the source
localization problem. However, from a theoretical standpoint this requires solution to a much
harder problem but there are still challenges that needs to be addressed such as testing in open
environments, hardware implementation and system integration, and cooperative localization and
tracing.
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