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Abstract

The shift towards multi-core architectures has ushered in a new era of
shared memory parallelism for scientific applications. This transition has
introduced challenges for the nuclear engineering community as it seeks to
design high-fidelity full-core reactor physics simulation tools. This paper
describes the parallel transport sweep algorithm in the OpenMOC method
of characteristics (MOC) neutron transport code for multi-core platforms
using OpenMP. Strong and weak scaling studies are performed for both Intel
Xeon and IBM Blue Gene/Q multi-core processors. The results demonstrate
100% parallel efficiency for 12 threads on 12 cores on Intel Xeon platforms,
and over 90% parallel efficiency with 64 threads on 16 cores on the IBM Blue
Gene/Q. These results illustrate the potential for hardware acceleration for
MOC neutron transport on modern multi-core and future many-core archi-
tectures. In addition, this work highlights the pitfalls of programming for
multi-core architectures, with a focal point on false sharing.

Keywords: Multi-core processors, OpenMP, neutron transport, method of
characteristics

1. Introduction

It is well known that the end of clock speed scaling has forced high-
performance computing (HPC) applications to leverage increasing degrees
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of on-node parallelism to efficiently utilize modern processors. This on-
node parallelism can take many forms, including a relatively small number
of sophisticated MIMD-capable cores, nodes with larger core counts tailored
for SIMD-style execution, or heterogeneous systems which combine comple-
mentary strategies. The programming models used to express algorithms
on these architectures are similarly varied, including loops with explicit
or compiler-generated vector instructions, directive-based languages which
encourage coarse-grained parallelism (e.g., OpenMP (1)), and accelerator-
based models with explicit control of host/device memory which encourage
fine-grained parallelism (e.g., CUDA (2)).

Although many of these concepts are rooted in familiar technologies from
previous generations, the HPC community’s understanding of the “best
practices” for optimizing parallel application performance is still much less
mature than it is for distributed memory systems with a message passing
programming model. Some of the major challenges that have been intro-
duced with on-node parallelism include:

• Insufficent hardware and programming model controls to navigate
memory contention on shared memory systems

• Insufficient fine-grained parallelism inherent to some algorithmic for-
mulations

• Limitations based on Amdahl’s Law for accelerator-based systems
• Smaller memory footprints per floating point unit
• Ineffective use of shared and distributed caches on cache-coherent sys-

tems

A deep understanding of the limitations of on-node parallel performance
potentially goes beyond enabling more efficient implementations of existing
methods. In some cases, inevitable trends in node architectures may fa-
vor alternative mathematical formulations or physical models to describe
relevant physical systems.

One such example is the field of nuclear reactor physics, where neu-
tron transport simulations are used to solve the 7-dimensional neutron
transport equation to find the neutron distribution in space, angle,
energy and time (3). The neutron distribution can be used to predict
criticality, power distributions, and temperature profiles in a specified reac-
tor core. Numerical approaches to solving the neutron transport equation
have a long and rich history dating back to the 1950’s (4). At the highest
level, two broad classes of approaches can be identified – stochastic (Monte
Carlo) and deterministic methods.



Parallel algorithms for Monte Carlo methods on distributed memory
systems has been a vibrant area of research for many decades, including
recent advances in distributed fission banks (5) and spatial domain decom-
position (6). However, studies in on-node parallelism have pointed to some
key issues – scaling limitations due to memory contention (7; 8), and the
difficulty of formulating Monte Carlo approaches with SIMD parallelism (9).

The majority of efforts to parallelize deterministic methods have focused
on the discrete ordinates or SN algorithm (10; 11). Less well understood,
however, is parallel performance for the method of characteristics (MOC),
one of the most common methods with real world applications in produc-
tion 2D lattice physics tools used today (12; 13). Although it is un-
clear whether MOC is a viable competitor to continuous energy
Monte Carlo for whole core neutron transport, there have been
a number of recent efforts to implement 3D MOC-based simula-
tion tools, including the MPACT (14) and nTracer (15) codes. In
order to better understand MOC’s viability for future whole core nuclear
reactor analysis, MOC’s ability to efficiently utilize systems with large de-
grees of on-node parallelism must be demonstrated. Although MOC has
been parallelized with OpenMP (16; 17) and CUDA (18), to the authors’
knowledge, no published work presents a comprehensive evaluation of the
parallel performance of MOC on multi-core platforms.

This paper is a case study on the parallelization of the method of char-
acteristics for multi-core processors using OpenMP. Section 2 presents the
method of characteristics and its application to nuclear reactor physics cal-
culations in the OpenMOC code (19). Section 3 discusses the methodology
taken to parallelize the transport sweep in OpenMOC using OpenMP. Sec-
tion 4 defines the parallel performance metrics used to evaluate the MOC
implementation. Section 5 presents parallel performance results for both
weak and strong scaling studies on Intel Xeon and IBM Blue Gene/Q multi-
core processors. Finally, Section 6 illustrates the subtle nature of multi-core
programming with a focus on how false sharing led to poor performance for
one of OpenMOC’s solvers.

2. Method of Characteristics

2.1. General Overview

The method of characteristics is a widely used technique for solving
partial differential equations, including the Boltzmann form of the neutron



transport equation. Though not a stochastic formulation, MOC is a ray-
based algorithm akin to Monte Carlo particle tracking-based methods. In
contrast to Monte Carlo, MOC uses a fixed angular quadrature which is
determined a priori. This quadrature is used to specify 1D characteristics
which cross the spatial domain. Prior to the physics computation, ray
tracing must be performed to sub-divide each characteristic into segments
within different regions in the spatial mesh. Figure 1 illustrates the
spatial mesh and cyclic characteristic laydown used in many 2D
MOC neutron transport codes for light water reactor analysis.

(a) (b) (c)

Figure 1: The coolant and fuel materials (a), method of characteristics flat source region
spatial mesh (b), and cyclic characteristic laydown (c) for a 4 × 4 fuel pin lattice.

MOC propagates the angular neutron flux along each characteristic
through each spatial zone. For each segment, the angular flux is atten-
uated due to neutron absorption and enhanced due to neutron fission or
scattering in the corresponding spatial zone. MOC uses the multi-group
energy approximation such that this computation is performed for neutrons
within discretized energy groups. Finally, an angular quadrature is applied
to combine the average angular flux contribution from each characteristic
to compute the average scalar flux in each zone and energy group.

2.2. Theory and Derivation

The detailed theory and derivation of the method of characteristics ap-
plied to neutron transport is widely available in the literature (20). This
section provides a brief overview of the MOC equuations, highlighting those
points which are most relevant for the multi-core implementation.



MOC is used to solve the transport equation by discretizing polar and
azimuthal angles and integrating the multi-group characteristic form of the
equation for a particular azimuthal and polar angle quadrature. The multi-
group form of the steady-state Boltzmann neutron transport equation is
presented below,

Ω · ∇Ψg(r,Ω) + ΣT
g (r)Ψg(r,Ω) = Qg(r,Ω) (1)

where r is the spatial position vector, Ω is the angular direction vector, g
is the energy group index, Ψg(r,Ω) is the angular neutron flux, ΣT

g (r) is
the macroscopic total nuclear cross-section and Qg(r) is the neutron source
term. In MOC, this equation is discretized with respect to azimuthal and
polar angles m and p along 1D characteristics k parametrized by s.

In addition, most MOC formulations spatially discretize the simulation
domain into Flat Source Regions (or FSRs). In a typical light water
reactor simulation, each fuel pin may be discretized in 3-5 cylin-
drical rings and 8-16 angular sectors (as illustrated in Figure 1)
in order to capture the spatial variation of the neutron flux to
accurately predict the rate of nuclear fission within each fuel pin.
In the formulation presented here, each FSR i has a constant neutron
source which results in the system of ODEs solved by MOC:

dΨk,g(s)

ds
+ ΣT

i,gΨk,g(s) = Qi,g (2)

The neutron source term Qi,g is defined in terms of the fission and
isotropic scattering from the average neutron scalar flux Φi,g in each FSR:

Qi,g =
1

4π

(
G∑

g′=1

ΣS
i,g′→gΦi,g′ +

χi,g
keff

G∑
g′=1

νΣF
i,g′Φi,g′

)
(3)

where ΣS
i,g′→g is the scattering cross-section for group g′ to group g, ΣF

i,g

is the fission cross-section, ν is the average number of neutrons produced
from fission, χi,g is the fraction of neutrons produced in group g from fission
and keff is the neutron multiplication factor.

Next, an integrating factor is defined in terms of the optical length
τk,i,g = ΣT

i,g(s
′′ − s′) for characteristic k across FSR i from its entry point

at s′ to exit point at s′′. Now the change in the angular flux along the
characteristic segment in FSR i may be expressed as follows:



∆Ψk,i,g = Ψk,g(s
′)−Ψk,g(s

′′) =

(
Ψk,g(s

′)− Qi,g

ΣT
i,g

)
(1− e−τk,i,g) (4)

The key quantity remaining to be determined is the area-averaged scalar
flux Φi,g in each FSR i and energy group g. The scalar flux is needed to
compute nuclear reaction rates - most notably, fission rates - in various
regions of a nuclear reactor core. The discrete ordinates approximation is
applied to approximate the scalar flux from the angular flux contributions
of each characteristic segment crossing FSR i with 2D cross-sectional
area Ai (or volume if in 3D) as follows:

Φi,g =
4π

Σi,g

[
Qi,g +

1

Ai

∑
k∈Ai

ωk∆Ψk,i,g

]
(5)

This is the form of the transport equation solved by the MOC formu-
lation used in work. It should be noted that the quadrature weight wk for
characteristic k is a composition of weights wm and wp for the azimuthal
and polar angle quadratures, respectively.

2.3. OpenMOC

The OpenMOC method of characteristics neutron transport code (19)
was used in this work. OpenMOC is an open source, object-oriented 2D
method of characteristics code written in C/C++ with a Python API.
OpenMOC uses general constructive solid geometry in a similar fashion
to many other widely used neutron transport codes, and is capable of solv-
ing 2D full-core Pressurized Water Reactor (PWR) problems. In addition,
OpenMOC includes routines for nonlinear Coarse Mesh Finite Difference
(CMFD) acceleration. Most relevant to this work, however, is that Open-
MOC incorporates parallel solvers for shared memory multi-core CPUs.

2.4. Exponential Evaluation Methods

The most expensive operation in the MOC equations is the exponential
evaluation needed to compute e−τk,i,g in Equation 4. All mainstream com-
pilers provide a library with an intrinsic exp(...) routine. One method
of avoiding the computational cost of explicitly evaluating exponentials is
through the use of a linear interpolation table (21). The linear interpolation
table may be constructed to compute exponentials to the desired level of
accuracy on a fixed input interval (e.g., 1E-3 relative error for arguments in



[−10, 0]). In addition to reducing the flop count for an exponential evalua-
tion, the table is typically small enough (e.g., 20 KB) to fit completely in
L1 cache and can improve the memory performance of the MOC transport
sweep algorithm. OpenMOC incorporates an option to evaluate exponen-
tials using either the compiler’s exponential intrinsic function or a linear
interpolation table (22). The performance for each method on multi-core
platforms is presented in this paper.

3. OpenMOC Transport Sweep

OpenMOC includes a solver implementation which integrates the an-
gular flux across the geometry for each characteristic as described in Sec-
tion 2.2. In particular, OpenMOC uses a nested power iteration scheme to
solve for the sources Qi,g and scalar fluxes Φi,g. The inner iteration solves for
an approximate scalar flux in each FSR assuming a fixed source according
to Equation 5. The outer iteration computes an updated source based on
the inner iteration’s approximation to the flux that results from the fixed
source according to Equation 3. The inner iteration to compute Φi,g for
all FSRs and energy groups will henceforth be referred to as the transport
sweep. The transport sweep consumes over 95% of OpenMOC’s simulation
runtime and was the focus of this work.

3.1. Sequential Version

A description of the sequential formulation of OpenMOC’s transport
sweep is given by Algorithm 1. The transport sweep integrates the angular
flux across the geometry for each characteristic according to Equation 4 and
Equation 5. A single transport sweep involves nested loops over azimuthal
and polar angles, characteristics, segments in different FSRs and energy
groups.

It should be noted that a number of different variations of Al-
gorithm 1 have been presented in the literature for MOC. In par-
ticular, some codes make the outermost loop over energy groups
as a Gauss-Seidel approach to update to the flux in energy (17).
However, data structures for the flux, source and cross-sections
are typically stored with stride one in energy, which are best
cached when energy is the innermost loop in the algorithm as
presented here. In addition, most MOC codes, including Open-
MOC, use nonlinear diffusion acceleration (such as Coarse Mesh
Finite Difference Acceleration (23)), which dramatically reduces



the number of iterations beyond what is achievable with a Gauss-
Seidel-like approach. It is for these reasons that Algorithm 1 is
used as the basis for the present analysis.

Algorithm 1 Transport Sweep Algorithm

1: Zero FSR scalar fluxes
2: for all characteristics do
3: for all segments do
4: for all energy groups do
5: Compute change in angular flux . Equation 4
6: Increment FSR scalar flux . Equation 5
7: end for
8: end for
9: end for

3.2. Parallel Version with Atomics

The parallel implementation of the transport sweep algorithm applied
the #pragma omp for declarator to the outermost loop over characteristics
in OpenMOC’s transport sweep algorithm. Work was load-balanced among
threads using OpenMP’s guided scheduling directive. Two versions of the
transport sweep were implemented with and without mutual exclusion locks
for the scalar flux update.

The version with mutual exclusion made use of locks during the FSR
scalar flux update on the innermost loop (see Algorithm 2). This version
contained an array of OpenMP omp lock t variables for each FSR. When a
thread computed the scalar flux contribution from a particular segment s to
FSR i, the ith lock was applied such that no other thread could increment
the scalar flux for that FSR until the lock was released.

Although fine-grained mutual exclusion within an innermost loop typi-
cally might be a cause for concern, it was not expected to lead to significant
performance degradation in this case. The atomic region was applied to
each FSR, and the number of FSRs (105 – 107) is much greater than the
number of threads (∼102) in a typical MOC calculation. Hence, from a
purely statistical standpoint, the number of characteristic segments which
result in two threads attempting to increment the same FSR scalar flux at
the same time should be negligible. This issue was later addressed with
numerical experiments presented in Section 6.



Algorithm 2 Parallel Transport Sweep Algorithm with Atomics

1: Zero FSR scalar fluxes
2: for all characteristics do in parallel
3: for all segments do
4: for all energy groups do
5: Compute change in angular flux . Equation 4
6: begin atomic
7: Increment FSR scalar flux . Equation 5
8: end atomic
9: end for

10: end for
11: end parallel for

3.3. Parallel Version without Atomics

A second parallel version of OpenMOC’s transport sweep was imple-
mented to avoid mutual exclusion. This version made use of private scalar
flux arrays for each thread (see Algorithm 3). In this version, the scalar flux
contribution from segment s to FSR i was tallied to each thread’s private
array of scalar fluxes rather than a shared array. At the conclusion of the
transport sweep, the private FSR scalar fluxes were reduced across threads
into the global scalar flux array.

Algorithm 3 Parallel Transport Sweep Algorithm without Atomics

1: Zero FSR scalar fluxes
2: Zero threadprivate FSR scalar fluxes
3: for all characteristics do in parallel
4: for all segments do
5: for all energy groups do
6: Compute change in angular flux . Equation 4
7: Increment threadprivate FSR scalar flux . Equation 5
8: end for
9: end for

10: end parallel for
11: Reduce threadprivate scalar fluxes

The disadvantage of using private scalar flux arrays is that this approach
resulted in a larger memory footprint than the version with mutual exclu-



sion. For all cases studied in this analysis, however, the extra memory re-
quirements did not present a practical obstacle as the storage requirements
for characteristic segments dominated those for the FSR scalar fluxes. For
future shared memory many-core systems with 100s of cores, however, re-
dundant storage of the scalar fluxes will likely be infeasible.

4. Measuring Parallel Performance

The parallel performance of OpenMOC’s multi-threaded solver was eval-
uated on several different multi-core processors. Section 4.1 introduces weak
and strong scaling and their application to the transport sweep algorithm.
Section 4.2 defines some useful metrics for assessing MOC performance.

4.1. Scaling Studies

In weak scaling, the amount of work per thread is kept constant while
the total work is directly proportional to the number of parallel threads.
Ideally, the solution time will remain constant such that the weak
scaling “speedup” is equal to unity. A simple way to perform a weak
scaling study in MOC is to set the number of azimuthal angles proportional
to the number of threads. The number of characteristics is roughly pro-
portional to the number of azimuthal angles, scaling the amount of work
available to all threads via the outermost loop in the transport sweep algo-
rithm.

In strong scaling, the total work is kept constant while the work per
thread is inversely proportional to the number of parallel threads. Ide-
ally, up to the number of threads available on the system, the runtime will
decrease inversely with increasing thread count. Strong scaling is straight-
forward to run in OpenMOC by simply selecting enough azimuthal angles
to provide enough work to hide thread launch latency.

4.2. Performance Metrics

OpenMOC uses the POSIX timer interface for recording sub-millisecond
resolution measurements of the total time T to converge the source. When
computing parallel performance metrics for OpenMOC, the total time to
solution T is normalized to the number of characteristic segments ns, source
iterations ni and threads nt as follows:

Tn(nt) =
T

ns × ni × nt
(6)



The number of segments ns varied for weak scaling but was
fixed for strong scaling. The power iteration scheme converged
to the same solution in the same number of iterations ni,conv irre-
gardless of the thread count. However, for practical reasons the
number of iterations ni was fixed such that ni < ni,conv to permit
timely execution of the parallel performance studies.

The first common metric for evaluating parallel performance and scaling
is the parallel speedup S(nt). The speedup is used to compare the ratio of
the runtime to solve a problem with nt threads, Tn(nt), with respect to the
time Tn(1) to solve the same problem with a single thread. The parallel
speedup for nt threads takes the following form:

S(nt) =
Tn(1)

Tn(nt)
(7)

A second useful metric is the integration rate R(nt). The integration
rate is the number of inner iterations of the transport sweep algorithm
performed per second. Alternatively, the integration rate is the number of
characteristic segments processed per second. This is simply the inverse of
the normalized time to solution in Equation 6:

R(nt) =
1

Tn(nt)
(8)

5. OpenMOC Multi-Core Performance Results

A series of weak and strong scaling studies were performed using Open-
MOC’s multi-threaded solvers. The parallel speedups S(nt) and integration
rates R(nt) from these studies are presented for Intel Xeon and IBM Blue
Gene/Q (BG/Q) platforms in Section 5.2. Some of the key performance
trends are noted in Section 5.3.

5.1. Benchmark Problem

All of the studies used the 2D C5G7 benchmark problem (24), described
in Section 5.1. The C5G7 problem was developed by the OECD’s Nuclear
Energy Agency as a modern benchmark for deterministic neutron transport
methods without spatial homogenization. Figure 2 illustrates the materials
in the problem and the flat source regions used in the spatial model for
OpenMOC. The problem contains four 17 × 17 pin cell assemblies next to
a water reflector. The bundles on the top left and bottom right contain UO2



fuel while the ones on the opposite two corners are MOX assemblies. The
C5G7 problem includes seven different materials, each with seven energy
group nuclear cross-section data. A model of the C5G7 problem was built
with three radial and eight angular subdivisions per fuel pin and 1.26 mm
- 1.26 cm Cartesian mesh in the reflector for a total of 142,964 FSRs.

(a) (b)

Figure 2: Materials composition (a) and flat source region spatial discretization (b) for
the C5G7 benchmark problem.

5.2. Performance Results

A series of weak and strong scaling studies were performed across a
sequence of parameters on Intel Xeon and IBM BG/Q multi-core processors
as described in Section 5.2.1 and Section 5.2.2, respectively. In particular,
experiments were performed both with and without atomics in the transport
sweep, using both linear interpolation and exponential intrinsic methods for
evaluating the exponential. In addition, the GNU and Intel compilers were
evaluated on the Xeon, while GNU and IBM compilers were examined on
the BG/Q.

Each weak scaling study varied the number of threads in integral steps
from 1 to nt,max while increasing the number of azimuthal angles accord-
ingly in steps of 4 (i.e., 4 to 4nt,max). Each strong scaling study varied the
number of threads in integral steps from 1 to nt,max while holding the num-
ber of azimuthal angles constant at 4nt,max. A total of 10 transport sweep
iterations were performed for each data point. On both architectures,



the threads were distributed using OpenMP’s default SCATTER pro-
tocol without explicit pinning of threads to particular cores.

5.2.1. Intel Xeon

The following results were recorded on two Intel i7/E5-2620 (Ivy Bridge)
processors with six cores clocked at 2.5 GHz along with 24 GB of memory
clocked at 1066 MHz. Intel Hyper-threading™ was enabled to provide a total
of 24 hardware threads. The processor cache hierarchy included private L1
(348 KB) and L2 (1536 KB) caches with a shared L3 (15 MB) cache.

OpenMOC was compiled with version 4.4.6 of GNU’s g++ compiler with
-O3 for optimizations and -ffast-math for fast math routines. A second
version of OpenMOC was compiled with version 13.1.0 of Intel’s icpc com-
piler, with the flags -O3 for optimizations and -fast for fast math routines.

The speedups S(nt) for weak and strong scaling are presented in Figure 3
and Figure 4, respectively. Likewise, the integration rate R(nt) (Equation 8)
for each combination of parameters for 1, 6, 12 and 24 threads is presented
in Table 1 and Table 2 for weak and strong scaling, respectively.

(a) (b)

Figure 3: Weak scaling speedup with (a) and without (b) atomics on Intel Xeon.

A number of key observations can be made based upon these results.
First, a dramatic difference was observed in the parallel scalability for the
two solver implementations as illustrated by Figure 3 and Figure 4. In
particular, the solver implementation with threadprivate variables scaled
well to large thread counts, achieving 10 – 12× strong scaling speedup and
0.9 – 1.1× weak scaling speedup with 12 threads. However, the version
with mutual exclusion saw little benefit from parallelism, with only a 1 –
3× speedup from 1 to 12 threads for both weak and strong scaling.



(a) (b)

Figure 4: Strong scaling speedup with (a) and without (b) atomics on Intel Xeon.

# Threads

Atomics Compiler 1 6 12 24

Linear Interpolation

Yes GNU 35.1 40.9 67.3 67.4
Yes Intel 35.4 52.8 94.2 70.1
No GNU 40.4 251 446 505
No Intel 45.6 311 612 673

Exponential Intrinsic

Yes GNU 12.6 20.2 32.2 32.4
Yes Intel 12.8 27.7 42.1 35.6
No GNU 8.01 47.7 99.2 169
No Intel 14.3 88.3 172 224

Table 1: Weak scaling integration rates R(nt) on Intel Xeon (in millions).

Second, as can be noted in Table 1 and Table 2, the Intel compiler
non-trivially outperformed the GNU compiler in terms of the integration
rate R(nt) for nearly every configuration. This observation was particularly
relevant for the solver implementation without mutual exclusion, which con-
sistently outperformed GNU by a factor of 1.3 – 1.7 with 12 – 24 threads. In
addition, the Intel-compiled version scaled more “smoothly” with increasing
threads – especially with Hyper-threading – while GNU’s version displayed
more erratic behavior with increasing thread count.

A final observation is that the linear interpolation method was 3 – 6×
faster than the exponential intrinsic for evaluating exponentials. This was



# Threads

Atomics Compiler 1 6 12 24

Linear Interpolation

Yes GNU 54.9 47.7 88.3 85.4
Yes Intel 29.7 68.1 38.2 9.68
No GNU 57.6 324 572 353
No Intel 65.4 371 688 687

Exponential Intrinsic

Yes GNU 9.67 15.0 25.0 31.5
Yes Intel 14.7 25.9 18.1 21.7
No GNU 8.57 46.2 98.0 171
No Intel 15.9 94.3 176 224

Table 2: Strong scaling integration rates R(nt) on Intel Xeon (in millions).

expected due to the intrinsic’s larger flop count and the interpolation table’s
cache efficiency as described in Section 2.4. Interestingly, the transport
sweep without atomics but with the exponential intrinsic scaled well with
Hyper-threading - achieving 20× and 14× strong scaling speedup with the
GNU and Intel compilers, respectively.

5.2.2. IBM Blue Gene/Q

The following results were recorded from runs performed on Vesta, a
test/development rack of the IBM Blue Gene/Q (BG/Q) owned and man-
aged by the Argonne Leadership Computing Facility (ALCF) at Argonne
National Laboratory. Each node included a single PowerPC A2 processor
with 16 cores each clocked at 1.6 GHz and 16 GB of memory clocked at 1.33
GHz. All cores included 4-way hardware multi-threading. The processor
cache hierarchy included local L1 (32 KB) and shared L2 (32 MB) caches.

OpenMOC was compiled with version 4.4.6 of GNU’s g++ compiler
with -O3 for optimizations and -ffast-math for fast and approximate
math routines. A second version of OpenMOC was compiled with ver-
sion 12.1 of IBM’s bgxlc++ r compiler, with the flags -O2, -qtune=qp and
-qunroll=auto for optimizations.

The speedups S(nt) for weak and strong scaling are presented in Figure 5
and Figure 6, respectively. Likewise, the integration rate R(nt) (Equation 8)
for each combination of parameters for 1, 4, 16, and 64 threads is presented
in Table 3 and Table 4 for weak and strong scaling, respectively.

A first observation is that the solver implementation with mutual exclu-



(a) (b)

Figure 5: Weak scaling speedup with (a) and without (b) atomics on IBM BG/Q.

(a) (b)

Figure 6: Strong scaling speedup with (a) and without (b) atomics on IBM BG/Q.

sion scaled nearly the same as the version with threadprivate variables as
illustrated by Figure 5 and Figure 6. In particular, the version with mutual
exclusion achieved 35 – 45× strong scaling speedup and 0.8 – 0.9× weak
scaling speedup with 64 threads on 16 cores. Although mutual exclusion did
not impact parallel scaling as it did on the Xeon, it did appear to dramati-
cally degrade the performance as shown in Table 3 and Table 4. Indeed, the
integration rates were 10× faster for the version without mutual exclusion.

Second, as noted in Table 3 and Table 4, the IBM compiler consistently
outperformed the GNU compiler in terms of the integration rate. How-
ever, the disparity between the two compilers was less remarkable than that



# Threads

Atomics Compiler 1 4 16 64

Linear Interpolation

Yes GNU 0.351 1.67 6.96 19.2
Yes IBM 0.354 1.82 7.41 21.8
No GNU 3.99 21.9 87.8 188
No IBM 3.91 22.8 95.3 229

Exponential Intrinsic

Yes GNU 0.164 0.679 2.62 8.16
Yes IBM 0.159 0.695 2.82 8.54
No GNU 1.64 6.79 26.2 81.7
No IBM 1.59 6.95 28.2 85.4

Table 3: Weak scaling integration rates R(nt) on IBM BG/Q (in millions).

# Threads

Atomics Compiler 1 4 16 64

Linear Interpolation

Yes GNU 0.564 1.86 6.75 19.2
Yes IBM 0.591 2.05 7.89 21.8
No GNU 7.07 27.1 95.5 188
No IBM 7.11 28.2 107 230

Exponential Intrinsic

Yes GNU 0.197 0.723 2.66 8.18
Yes IBM 0.192 0.734 2.89 8.52
No GNU 2.12 8.22 30.1 81.5
No IBM 2.02 8.08 31.9 88.4

Table 4: Strong scaling integration rates R(nt) on IBM BG/Q (in millions).

observed on the Xeon. In particular, with 64 threads the IBM compiled-
versions of the solver achieved 1.1 – 1.2× greater integration rates than the
version compiled with GNU. In addition, the IBM-compiled versions scaled
more “smoothly” than the GNU-compiled versions, which followed some
step changes in performance for certain thread counts.

Third, the use of hardware multi-threading enabled substantial perfor-
mance enhancements for all sets of parameters and solvers on the BG/Q. In-
deed, hardware multi-threading provided nearly 3× strong scaling speedup
for 64 threads with respect to 16 threads on 16 cores. Likewise, the weak



scaling speedup ranged from 0.7 – 0.95× for 64 threads. This stands in
contrast to the scaling observed on the Xeon, where Hyper-threading pro-
vided little benefit for most configurations (likely due to the inclusion of
out-of-order execution on the Xeon but not the BG/Q).

A final note is that the linear interpolation method was 2-3× faster
than the exponential intrinsic for evaluating exponentials. Furthermore,
the difference in scalability between the two exponential evaluation meth-
ods was markedly different on the BG/Q. The linear interpolation method
experienced a dramatic improvement in performance from 1 to 8 threads,
achieving weak scaling parallel speedups of 1.3 – 1.5×. As the thread count
increased, the weak scaling speedup for the linear interpolation method
continued to outperform the exponential intrinsic, though its performance
degrades more rapidly than the exponential intrinsic. In contrast, the trans-
port sweep with the exponential intrinsic scaled slightly better than the one
with linear interpolation for strong scaling.

5.3. Analysis

This section analyzes the parallel performance reults of the preceding
section in an attempt to better understand their implications. In particu-
lar, several general trends are highlighted and some questions are identified
which remain the subject of further research.

5.3.1. Mutual Exclusion

Mutual exclusion appeared to severely degrade the parallel performance
for the transport sweep with atomics. The parallel scalability was very poor
for the mutual exclusion version of the solver on the Xeon. However, on the
BG/Q the integration rates were significantly reduced while the scalability
did not appear to suffer.

Initially, these results were interpreted as an indication that it is impor-
tant to avoid mutual exclusion – particularly in computationally intensive
regions of the code – for maximal compute performance. However, the
marked difference in behavior on the two hardware platforms, along with
some probabilistic analysis cast some doubt on this conclusion. As explained
in Section 6, the probability for any two threads to “collide” when attempt-
ing to write to an FSR’s scalar flux array is exceedingly small. The appar-
ent slowdown due to mutual exclusion was investigated with a performance
model and addressed with only a slight modification to the implementation
as described in Section 6.



5.3.2. Super-linear Weak Scaling

The performance results for both the Xeon and BG/Q exhibited better
than ideal weak scaling for several configurations. On the Xeon, the Intel-
compiled solver implementation without mutual exclusion with the linear
interpolation method recorded 110% parallel efficiency with 12 threads on
12 cores. The weak scaling on BG/Q was super-linear to nearly 60 threads
on 16 cores for the linear interpolation method without atomics. The IBM
compiler achieved slightly super-linear scaling with the exponential intrinsic
method up to roughly 40 threads on 16 cores.

The reason for super-linear weak scaling is not yet understood. One ex-
planation is that concurrency enables more efficient caching on the chip. In
particular, it may be possible cores can assist each other with pre-fetching
commonly referenced cache lines in memory. In the C5G7 benchmark prob-
lem, the materials data (∼2 KB) and linear interpolation table (∼20 KB)
are small enough to fit entirely in L1 cache. If more efficient caching is the
reason for super-linear scaling, the performance should degrade for larger
problems with more materials and/or energy groups. This is one of many
questions which need to be addressed in the future.

5.3.3. Hardware Multi-Threading

The use of hardware multi-threading enabled significant gains in perfor-
mance for certain runtime configurations on both the Xeon and BG/Q
platforms. The speedups achieved with multiple threads per physical core
were most substantial when using the (slower) exponential intrinsic method.
The exponential intrinsic achieved 14× and 20× speedups for strong scaling
with 24 threads on 12 Xeon cores with Intel and GNU compilers, respec-
tively. This compares to 11× and 6× speedups for the linear interpolation
method. With 64 threads on 16 cores on the BG/Q, the strong scaling
speedups of 44× and 39× for the intrinsic compare to 32× and 26× for
interpolation with the IBM and GNU compilers, respectively. In addition,
the slope of the speedup curves with threads is nearly flat at 64 threads
for the interpolation method, while it continues to steadily increase for the
intrinsic.

In analyzing these trends, it is important to note that the exponential
intrinsic is more flop-intensive than the linear interpolation table (21). In
addition, the linear interpolation method is specifically designed for maxi-
mal cache efficiency since the table typically only consumes 20 KB which
can easily fit in private cache on most multi-core machines. Both exponen-
tial evaluation methods must load the same data from main memory for



each iteration of the transport sweep – namely, the length lk,i = s′′ − s′ of
each characteristic segment, the total cross-section ΣT

i,g and source Qi,g of
each FSR i. With multiple hardware threads, the increased flops necessary
to evaluate the exponential may be used to “hide” the latency needed to
load this common data from memory.

Although the increased flop intensity of the intrinsic improved scalabil-
ity, it did not lead to greater overall performance. This is important to
note since it illustrates that poorly performing code may exhibit the best
parallel scalability. As many-core machines with tens to hundreds of cores
per node are deployed, the scalability of more flop-intensive code – such as
the exponential intrinsic – may enable it to outperform methods best suited
for today’s processor architectures.

5.3.4. Vendor-Specific Compilers

The Intel and IBM compilers each resulted in code which outperformed
GNU’s compiler on the Xeon and BG/Q platforms, respectively. The Intel
compiler’s superior performance was likely due to high level optimizations
and well-suited for the Xeon and BG/Q architectures. Although the vendor-
specific compilers resulted in code with consistently faster integration rates,
the speedups achieved by GNU were comparable to the vendor-specific com-
pilers.

As noted earlier, the Intel- and IBM-compiled code resulted in more
smoothly varying speedup curves than the versions compiled by GNU. Al-
though the overall speedups were largely similar across compilers, GNU
experienced more irregular deviations from the general trend lines. It is rea-
sonable to speculate that NUMA effects were more significant for the GNU
compiler, which manifested themselves as step changes in performance for
certain thread counts, but this hypothesis was not verified in the present
analysis.

5.3.5. Clock Frequency Scaling

Finally, it should be noted that the peak integration rate on the BG/Q
was less than that on the Xeon. Even with 64 threads, both linear inter-
polation and exponential intrinsic methods for the transport sweep without
atomics were faster by ∼3× on the Xeon. Most codes experience a slow-
down on the BG/Q with respect to conventional platforms for a number
of reasons. First and foremost, the clock speed is significantly slower to
increase power efficiency. Second, the cores on the BG/Q do not support
out-of-order execution which eliminates instruction pipelining. It is likely



that each of these differences played a role in the observed performance on
BG/Q.

Hardware vendors should note that while reducing the clock frequency
and increasing concurrency (in this case, via hardware multi-threading) may
improve power efficiency, it is often not beneficial for overall application
performance. As a result, users may continue to deploy some codes on plat-
forms with fewer parallel resources but higher clock frequencies to minimize
the runtime of their applications for the forseeable future.

6. Mutual Exclusion Collisions

The preceding section revealed a contrast in the performance for the
transport sweep algorithm with atomics on Intel Xeon and IBM BG/Q ma-
chines. In particular, the transport sweep with mutual exclusion observed
poor scalability on the Xeon, while it achieved good scaling but poor overall
performance on the BG/Q. To better understand this behavior, a predictive
model was derived and compared to empirical measurements as presented
in Section 6.1. This work showed that mutual exclusion was likely not the
culprit behind these trends. Further investigation led to the discovery that
the poor performance was the result of false sharing to maintain cache co-
herency. Section 6.2 describes a modified implementation of the transport
sweep with atomics which enabled it to achieve the same scalability as that
observed for the version with threadprivate arrays as is demonstrated
with performance data in Section 6.3.

6.1. Performance Model

To investigate these trends, a predictive model for mutual exclusion col-
lisions was derived and compared to empirical observations. For the pur-
pose of this paper, a mutual exclusion collision is defined as an instance
where two (or more) threads attempt to update the scalar flux for an FSR
at the same time. In the case of the transport sweep with atomics, one
thread was granted exclusivity to increment an FSR’s scalar flux through
the omp set lock(...) routine while other threads were idled until the
first thread completed the update.

A predictive model for the number of collisions was deduced using sim-
ple combinatorics based on a couple of assumptions. First, it is assumed
that characteristic segments are uniformly distributed across FSRs in the
geometry. Second, the problem is assumed to be perfectly load balanced
such that each thread performs the same number of segment integrations.



Third, it is assumed that threads perform segment integrations in lockstep
fashion in perfect synchronization with every other thread. Finally, higher
order collisions of three or more threads are neglected. Each of these as-
sumptions except for the final one are highly conservative and should lead
to an upper bound estimate on the number of collisions.

There are three important terms in the model equation for the number
of collisions. First, the number of collisions should scale proportionally to
the number of thread pairings pt. The number of distinct pairs of threads
pt is given by Gauss’ Trick:

pt = (nt − 1) + (nt − 2) + ...+ 1 =
nt(nt − 1)

2
(9)

For a particular thread pairing, the probability that both threads at-
tempt to update the scalar flux for the same FSR at the same time is given
by the inverse of the number of FSRs, 1/ni. The number of opportunities
for any two threads to collide scales linearly with the number of character-
istic segments designated to each thread. For perfect load balancing this is
simply ns/nt. The three factors combine multiplicatively to predict the total
number of collisions during a transport sweep:

# collisions ≈ nt(nt − 1)

2

1

ni

ns
nt

(10)

In order to verify this performance model, the number of mutual exclu-
sion collisions was empirically measured. OpenMP permits one to query
whether a mutual exclusion lock is taken with the omp test lock(...)

routine. Two weak scaling studies were performed on the Intel Xeon and
IBM BG/Q platforms and the number of collisions was measured using this
routine.

On the Xeon, the number of threads was scaled from 1 – 12 while scaling
the number of azimuthal angles from 4 – 48. On the BG/Q, the number
of threads was scaled from 1 – 64 while scaling the number of azimuthal
angles from 4 – 256. Ten source iterations were performed for each data
point. The transport sweep with atomics was compiled with GNU for both
platforms. The predicted and observed mutual exclusion collision rates for
Xeon and BG/Q are presented in Figure 7.

As illustrated in the figures, the collision rate is surprisingly well pre-
dicted by the model, particularly when using fewer than or as many threads
as the number of cores. This is likely due to the fact that each core can only
handle a single thread context at a time. In addition, the assumption that



each thread executes segment integrations in lockstep is almost certainly
broken when using multiple hardware threads per core.

(a) (b)

Figure 7: Predicted and observed collision rates on (a) Intel Xeon and (b) IBM BG/Q.

The empirical results show that for 12 threads on the Xeon, there are
∼300 collisions per transport sweep. Given that there are 7,863,448 charac-
teristic segments in the problem with 48 azimuthal angles, mutual exclusion
collisions occur for only ∼0.0038% of the segments. On the BG/Q, the rate
increases to ∼0.015% of the 41,912,514 segments for 256 azimuthal angles
with 64 threads. The collision rate was similar on both Xeon and BG/Q,
yet the parallel scaling was strikingly different for both platforms. This
indicated that mutual exclusion was not the root cause of the performance
degradation. Further investigation led to a suitable explanation and solu-
tion to this issue as described in the following section.

6.2. False Sharing Resolution

The performance model for mutual exclusion collisions led to an effort
to understand the poor performance observed for the transport sweep algo-
rithm with atomics. Several permutations of the original implementation
were explored before discovering that the poor scaling was not due to mu-
tual exclusion but was instead the result of a subtle implementation issue
which led to false sharing. False sharing occurs when a processor attempts
to unnecessarily maintain cache coherency. False sharing may degrade some
applications’ parallel performance since the hardware is constantly synchro-
nizing dirty cache lines across multiple cores’ local cache(s).



In the original version of algorithm, a contiguous array was allocated
as a “scratchpad” for each thread to accumulate the contribution to an
FSR’s scalar flux from a particular segment during the transport sweep.
This array was indexed by thread ID and energy group. The portion of
the “scratchpad” array designated to each thread was not memory aligned.
As more threads were introduced to the computation, those cache lines of
the “scratchpad” array which were shared between threads became dirty,
requiring the processor to maintain coherency across local caches.

Upon further examination, it was discovered that by allowing each thread
to allocate its own individual “scratchpad” array, the version of the trans-
port sweep with atomics achieved the same performance and parallel scal-
ability as the one without mutual exclusion. In this implementation, no
cache lines were shared across cores/threads, relieving the processor of the
need to maintain cache coherency. This new implementation mitigates the
need for redundant storage of FSR scalar fluxes, and is the one currently
available in OpenMOC’s online source code.

6.3. Performance Results for the Modified Transport Sweep Algorithm

A series of weak and strong scaling studies were performed
with the modified transport sweep algorithm to demonstrate good
scalability with mutual exclusion. Figure 8 illustrates the weak
and strong scaling speedups on Intel Xeon when compiled with
Intel’s compiler (note that Intel Hyper-threading was not used
for technical reasons), while Figure 9 highlights the speedup on
BG/Q when compiled with the IBM compiler. In both cases, the
exponential linear interpolation table was used since it was the
fastest runtime configuration on both platforms.

The modified transport sweep demonstrated nearly ideal strong
scaling and super-linear weak scaling on the Xeon as was the case
for the implementation without atomics in Section 5.2.1. The
weak scaling performance on BG/Q dropped from a peak of 1.5×
to 1.25×, while the strong scaling speedup actually improved from
32× to 38×. It should be noted that the integration rates for the
modified transport sweep dropped by approximately 20% on the
Xeon and 5% on the BG/Q with respect to those rates for the
transport sweep without atomics presented in Section 5. However,
this minor decline in performance is outweighed by the reduction
in the memory footprint for the modified transport sweep over
the version with threadprivate arrays (by a factor roughly equal



(a) (b)

Figure 8: Weak (a) and strong (b) scaling on Intel Xeon with the modified transport
sweep algorithm with atomics modified to eliminate false sharing.

(a) (b)

Figure 9: Weak (a) and strong (b) scaling on IBM BG/Q with the modified transport
sweep algorithm with atomics modified to eliminate false sharing.

to the number of threads). It is for this reason that the modified
version of the parallel transport sweep shows promise as a good
candidate algorithm for future many-core machines.

7. Conclusion

This paper presented the development and implementation of parallel
algorithms for the OpenMOC neutron transport code on multi-core proces-
sors. The performance results reveal the dramatic potential for paralleliza-
tion of MOC on multi-core platforms. OpenMOC achieved super-linear



weak scaling and nearly perfect strong scaling with 12 threads on 12 Intel
Xeon cores. The benefits of hardware multi-threading were demonstrated
on the IBM Blue Gene/Q architecture, where OpenMOC achieved super-
linear weak scaling up to 60 threads on 16 cores. These results reveal MOC
as a promising candidate as a potential sucessor to diffusion-based methods
for full-core reactor analysis on next-generation computing systems.

In addition, this paper identified some subtle challenges of multi-threaded
programming for multi-core hardware platforms. Initially, it was believed
that mutual exclusion led to poor parallel performance for one version of the
transport sweep algorithm. However, a predictive model was developed and
compared to empirical measurements to show that the performance degra-
dation with threads could not be the result of mutual exclusion collisions.
Further investigation found that the performance was sharply limited due
to false sharing rather than mutual exclusion.

This work illustrated the harsh reality that small variations in code im-
plementation can substantially affect within-node parallel performance. In
the case of OpenMOC’s transport sweep, only two lines of code were modi-
fied in order to gain significant speedups. A key take-home point from case
studies such as this one is that developers should be cautious about mak-
ing premature conclusions without fully characterizing their application’s
parallel performance.

The interpretation of the performance results presented in this paper
may be improved with further analysis. First, analyzing performance coun-
ters (25) and/or other profiling mechanisms may be used to determine the
reason for super-linear weak scaling. If our conjecture that multiple cores
improves the cache efficiency of the MOC algorithm is accurate, future anal-
yses may show that larger problem sizes with more materials and/or more
energy groups has a significant impact on the parallel scaling.

Future work will aim to further improve the floating point throughput
achieved on multi-core processors. Perhaps the most fruitful area for on-
node hardware optimizations would be the formulation of a transport sweep
algorithm which makes use of the vector floating point unit on modern multi-
core processors. In addition, a degree of distributed memory paral-
lelism will be required for future MOC-based whole core methods.
In particular, spatial domain decomposition will be needed to seg-
ment the memory footprint across multiple nodes as is presently
done by the MPACT code (17). Future work should couple spatial
domain decomposition for distributed memory parallelism with



shared memory parallel transport sweeps executing on each node
for efficient and scalable whole core transport.
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