
HAL Id: hal-01410871
https://hal.archives-ouvertes.fr/hal-01410871

Submitted on 6 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Disruption-Tolerant RESTful Support for the Web of
Things

Nicolas Le Sommer, Lionel Touseau, Yves Mahéo, Maël Auzias, Frédéric
Raimbault

To cite this version:
Nicolas Le Sommer, Lionel Touseau, Yves Mahéo, Maël Auzias, Frédéric Raimbault. A Disruption-
Tolerant RESTful Support for the Web of Things. Muhammad Younas; Irfan Awan; Winston Seah.
4th International Conference on Future Internet of Things and Cloud (FiCloud 2016), Aug 2016,
Vienna, Austria. pp.17 - 24, 2016, <IEEE CS>. <10.1109/FiCloud.2016.11>. <hal-01410871>

https://hal.archives-ouvertes.fr/hal-01410871
https://hal.archives-ouvertes.fr


A Disruption-Tolerant RESTful Support
for the Web of Things

Nicolas Le Sommer, Lionel Touseau, Yves Mahéo, Maël Auzias, Frédéric Raimbault
IRISA, Université de Bretagne Sud, France

Email: Nicolas.Le-Sommer, Lionel.Touseau, Yves.Maheo, Mael.Auzias, Frederic.Raimbault@univ-ubs.fr

Abstract—The Web of Things (WoT) extends the Internet
of Things (IoT) considering that each physical object can
be accessed and controlled using Web-based languages and
protocols. However, due to the mobility of physical objects
and to the short radio range of the wireless interfaces they
are equipped with, frequent and unpredictable connectivity
disruptions may occur between the physical objects and the
Web clients used to control and access these objects.

This paper presents a disruption-tolerant RESTful support
for the WoT, in which resources offered by physical objects
are identified by URIs and accessed through stateless services.
Service requests and responses are forwarded using the store-
carry-and-forward principle. A complete service invocation
model is provided, allowing to perform unicast, anycast, mul-
ticast and broadcast service invocations either using HTTP or
CoAP, which makes it particularly suited for the WoT. This
disruption-tolerant support is illustrated by a case study in the
context of agricultural robotics.

1. Introduction

Everyday objects are getting more and more connected
to the Internet, thus contributing to the emergence of the “In-
ternet of Things”. The next step, as mentioned by Guinard
et al. in [7], is to use the World Wide Web and its associated
standards and technologies as a platform to interconnect and
to control smart objects (i.e., sensors, actuators, electronic
appliances). The “Web of Things” (WoT) aims at doing for
physical objects what the Web did for information resources,
namely an identification of resources using Uniform Re-
source Identifiers (URIs), an access of resources through
standard protocols, and the inclusion in resources of links
to other resources in order to enable a scalable discovery of
highly distributed resources. Physical objects are expected
to embed a Web server (which can now run with a small
memory footprint), or to be connected to a device that hosts
one, in order to expose their functionalities as services. In
this architecture, services are identified by URIs, and HTTP
is not only considered as a communication protocol but
as an application protocol, where services can be invoked
using HTTP methods (GET, POST, etc.). In the WoT, the
RESTful architecture is privileged for simplicity and scala-
bility reasons. REST (REpresentational State Transfer) is an
architectural client-server style for distributed hypermedia

systems [6] that is mainly characterized by stateless servers
with uniform interfaces and caching of responses.

Following this philosophy, project ASAWoO proposes a
WoT architecture which introduces a new kind of software
artifact called “avatar” to provide a virtual extension of
physical objects in the Web [15]. Avatars are implemented
using a distributed software platform that can be fully
deployed on powerful objects, or distributed over resource-
constrained objects and a cloud infrastructure. They expose
the functionalities of objects as REST Web services. An
avatar is composed of the ASAWoO middleware platform
and of a set of REST Web services that allow to interact
with the physical object it represents. Avatars implement a
set of features allowing them to perform dynamic context
adaptations, to select, to deploy and to compose REST Web
services based on semantic descriptions, to apply security
and privacy policies, and to behave autonomously. They also
provide a user-friendly representation of objects using WoT
applications (WoTApps). This makes it possible to interact
with them via Web browsers and thus explore the world
of smart objects with its many relationships (via links to
other related objects). Since embedded Web servers in an
Internet of Things generally have fewer resources than Web
clients such as browsers running on PCs or mobile phones,
WoTApps are designed to execute partially within the client.

This paper focuses on one of the key parts of the
ASAWoO platform, namely the module supporting the pro-
vision of REST services offered by the avatars. This module
is named ADTRS, for ASAWoO Disruption-Tolerant REST-
ful Support, in the remainder of this paper. Avatar services
are accessible not only via the traditional HTTP protocol but
also via the recently standardized Constrained Application
Protocol (CoAP [21]). As HTTP, CoAP is a Web transfer
protocol based on a REST architecture, but it introduces a
number of design choices that make it particularly suited
for the constrained nodes and constrained networks found
in the Internet of Things.

It is quite common that the physical objects involved in
the WoT cannot be connected permanently, firstly for energy
saving reasons but also because of mobility. In this paper,
we consider mobile objects that communicate through short-
range radio interfaces (Wi-Fi, Buetooth, ZigBee, etc.) with
other objects and with potential Internet gateways. Hence,
they are subjects to disconnections while moving. To cope
with this issue, ADTRS makes the requests and responses of



Figure 1. Example of traversal of a DTN involved in the call from a
WoTApp to a Functionality

HTTP or CoAP tolerant to disruptions by transporting them
using a DTN (Delay or Disruption-Tolerant Networking)
protocol [5]. Indeed, this kind of protocol does not assume
that there always exists an end-to-end path between two
devices in the network. Mobile devices can store messages,
carry these messages while moving and deliver them to other
devices when possible. Figure 1 illustrates this principle: an
external WoTApp (running for example in a CoAP-enabled
browser) invokes an ASAWoO functionality exposed as a
RESTful Web service by robot C. With only direct radio
transmissions (that is to say device to device transmission,
e.g. with Bluetooth), a delay-tolerant network is formed by
the three robots A, B and C. The CoAP request first reaches
robot A (assuming that this one was close to the PC that
hosts the WoTApp when the request was issued). The request
traverses the network, through robot B, eventually reaching
robot C, thanks to the radio contact between robots A and
B, the movement of robot B (acting as a data mule), and
finally the encounter between robots B and C.

The remainder of this paper is organized as follows.
Section 2 presents research works dealing with service pro-
vision in disruption-prone environments. Section 3 describes
a case study we consider in project ASAWoO, and that
we plan to use as a testbed to evaluate ADTRS. Section 4
presents ADTRS and illustrates its usage on the case study
of Section 3. Section 4 also defines the spatial and temporal
non-functional properties that can be exhibited by service
providers and required by clients for the service provision
process. Section 5 shows how ADTRS is implemented
over existing disruption-tolerant communication middleware
platforms. Section 6 concludes this paper by summarizing
our contribution and by giving some perspectives.

2. Related Work

The provision of REST services in disruption-prone
environments has been addressed in a few number of works,
most of them dealing with opportunistic computing. Op-
portunistic computing is an extension of the concept of
opportunistic networking [2], in which resources are ex-
posed as application services. Services are discovered and
invoked using opportunistic networking techniques. Like
disruption-tolerant networking techniques, opportunistic net-
working techniques rely on the “store, carry and forward”
principle. Opportunistic networking can be considered as
a sub-category of disruption-tolerant networking, since op-
portunistic contacts between mobile devices are exploited

to transfer data, and not only scheduled ones. Service in-
vocation and service composition in opportunistic networks
have been studied from a theoretical point of view in [3],
[16]. In these works, the authors propose analytical models
to determine the optimal number of parallel executions
required to minimize the service time, without saturating
the computational resources of the service providers, as well
as to select the best service composition among alternative
compositions based on the local knowledge of the network
collected by a node through its opportunistic contacts with
other nodes. In [14], the simultaneous invocation of services
has also been investigated, but with a publish/subscribe
and content-based approach. Service providers subscribe to
service invocation requests containing the name or the de-
scription of the services they provide, process the requests,
and return the responses to the clients. This approach allows
to exploit the presence of several providers in the network,
to reduce the service delivery delay, and thus to provide
a better response time to end-users. The service invocation
requests and service responses are transmitted using oppor-
tunistic communication techniques. To reduce the response
time, intermediate nodes can be used as service proxies
has shown in [12]. Intermediate nodes are expected to
respond on behalf of service providers, as long as that these
intermediate nodes have in their local cache the responses
for the requests they receive and the services are stateless-
services. Intermediate nodes do not forward the requests
towards the providers, but send back the responses to the
clients directly. This solution allows to reduce drastically
the network load and the response time. Finally, discovery
and invocation of location-aware services in opportunistic
networks have been addressed in [11]. Based on their own
location and on the location of service providers, clients
can choose the closest provider, assumed to be the quickest
provider to respond. The location information is also used
to limit the propagation of messages in the network, and to
forward the message towards providers and clients. All these
research works address the service provision in general, but
do not consider the constraints imposed by the delivery
of REST services according to the RESTful architecture
style. The purpose of the work presented in this paper is
to propose a disruption-tolerant RESTful support to provide
REST services in IoT environments composed of mobile
devices.

3. Smart Vineyard Case Study

Agricultural robotics is an example of a challenging
case study we consider in project ASAWoO. Agricultural
robotics aims at providing to the agricultural industry the
same productivity gains that robots give in manufacturing
industries. The current trend is to shift from using big
machines to smaller, lighter and more energy efficient un-
manned machines, called agribots, that work as a team [17].
These changing agricultural practices, referred to as pre-
cision farming, have the same objectives of sustainable
development that smart cities. Several precision agricultural



projects involving agribots and sensors are already under-
way1, particularly in the viticulture field [18].

In the case study we consider, agribots are autonomous
and modeled by avatars. These agribots are supervised and
controlled through these logical artifacts, that are endowed
with coordinations capacities, and that can collaborate to
perform specific tasks. The mobility of these agribots in-
duces frequent communication disruptions. The case study
described thereafter is reused in the rest of the paper to
illustrate the usage of ADTRS.

3.1. Precision Viticulture Scenario

The proposed scenario, depicted in Figure 2, takes place
in a vineyard of several dozen hectares, far from any
electrical infrastructure. It is assumed that mobile network
technologies such as 3G/4G, or satellite solutions or other
communication infrastructures, are not suited to be used by
all devices in large areas during long periods of times; only
a few number of devices should be connected to the Internet
with 3G/4G, or occasionally with a Wi-Fi access point. In
the studied scenario, such connected places are limited to
the farmer’s office and to the charging bases of agribots
(places numbered 1 and 2 in Figure 2).

The farm size and its remoteness from urban areas
justifies the use of DTN solutions: the systematic wiring is
unrealistic and the lack of sources of stable electric power
advocates energy-efficient solutions based on short-range
communication.

3.2. Actors and Communication Paths

The actors involved in our scenario are the manager,
manual workers, farm machinery (tractors, etc.), agribots,
sensors and active RFID tags (referred to as class IV or V
devices).

The manager can control all devices thanks to a Web
client, from his PC when he stays in his office, or from his
smartphone while moving, for example when he works in
the vineyards. In this last case, he may access from time to
time the application through a 3G/4G connection. The key
point is to let the fleet of agribots under a lazy supervision,
so that the manager can freely go about other tasks without
having to monitor the agribots in real-time.

Agribots should work autonomously, once assigned a
new task. For example, some agribots are in charge of weed-
ing spaces nearby vine feet. At the same time other agribots
perform background jobs, such as visually detecting infected
leaf areas. Each agribot moves in a row, at its own speed,
according to the conditions it encounters. When an agribot
has finished a row, it passes in front of an active RFID
tag (place 3 in Figure 2) that stores a piece of information
coding the passage of the agribot, in order to notify any
other robot that would try to redo the same row. Such an
active RFID tag, serving as a row crossing, is positioned at

1. See for example, European FP7 projects VINEBOT (http://vinbot.eu/)
and VINEROBOT (http://www.vinerobot.eu).

one end of each row that the agribots must take to enter and
to exit. Two agribots that pass within radio range of each
other (crossing or progressing in nearby rows) can exchange
information directly (place 4 in Figure 2), thus participating
in the transmission of service requests and responses. When
a robot finishes its work or when it lacks energy, it comes
back to its charging base (place 2 in Figure 2), and thereby
may also carry measurements provided by sensors in order
to deliver them to the cloud infrastructure. Other data mules
are farm vehicles (e.g., tractors) equipped with storage and
short-range communication devices (place 5 in Figure 2).

Sensors monitor the essential agronomic parameters (soil
composition, temperature, moisture, plant health, etc.) and
transmit their measurements to data mules that pass nearby
(place 6 in Figure 2). Finally data are delivered in the cloud
infrastructure when a robot or a farm vehicle is connected
to the Internet (places 1 and 2 in Figure 2). Note that
sensors may be moved at will by manual workers; they are
detected in an opportunistic manner when an agribot passes
nearby, without the need to inform the agribots of their new
locations.

3.3. Smart Vineyard Avatars

As mentioned in Section 1, an avatar provides a com-
putational view of a physical object (e.g., sensor, RFID tag,
agribot) or abstracts a set of avatars that collectively provide
some services (e.g., the smart vineyard). Interactions with
avatars are defined by the interface of the REST services
they provide. An avatar can additionally provide users with
a WoT application, to control a physical object or a set of
avatars via a graphical interface. In our scenario, all the
features needed by the vineyard manager are included in
such a WoTApp, that represents the smart vineyard. This
main WoTApp runs in the cloud. It translates the application-
level operations (monitoring of vine’s health parameters,
weeding, phytosanitary treatment, irrigation, pruning, etc.)
expressed by the manager using its smartphone or PC, in
terms of requests to the avatars that model the other actors
of the vineyard.

Each of the physical devices that needs to be managed
or requested by the main WoTApp has to be represented by
an avatar. To take into account the various computing and
storage capabilities of the devices, we have to distinguish
locally hosted avatars from remotely hosted avatars. We as-
sume that agribots are able to host their own avatar, i.e., they
can notably run a Web server that receives, treats and returns
HTTP messages. Avatars deployed on agribots are also in
charge of collecting data generated by the sensors distributed
in the vineyard, and of interacting with the avatars of these
sensors. The avatars of the sensors are not deployed on the
sensors themselves, but in the cloud, because these ones
have limited resources. Each of these avatars implements a
service that returns the value collected by the remote sensor
it represents. These services are expected to be invoked
by the main WoTApp. As the sensors are not online, the
returned value is the last known value collected by a robot
and transported by a mule, and delivered by this one when it



Figure 2. Precision viticulture in a Delay Tolerant Network environment.

is connected to the Internet. Thus, the gathering of sensors
values is not modeled by an interaction between avatars, but
it is exposed as an agribot’s functionality.

Moreover, for simplicity reasons, it has been chosen not
to associate avatars to the active RFID tags lying at the
beginning of each vine row. An agribot can read or change
the status of an RFID tag (which may be also changed
by a worker to prevent robots from accessing the row as
mentioned before). But the interaction is not managed by
avatars because there is no direct application interest. Tags
are only means to ensure exclusive access to the rows.
Similarly, agricultural machinery is not modeled by avatars
as it is involved only as data mules.

4. A Disruption-Tolerant Support for REST
Services

In order to be compliant with the six constraints –the
sixth one is optional– defined by the REST architecture
style for performance, scalability and simplicity purposes, a
disruption-tolerant communication support must implement
the specific features that are described hereafter. ADTRS
implements all of these ones. First, REST is based on a
loosely-coupled client/server architecture where servers are
accessed through uniform interfaces and do not maintain
any session state (servers must be stateless). ADTRS meet
these three constraints since avatars are designed as a set
of distributed clients and stateless services, that interact
through well defined interfaces (i.e., avatars functionalities).
Since the communication path between a service provider
and its clients may be subject to disruptions, maintaining a
session with a client can become difficult for a provider. It
is consequently preferable to maintain a state on the client
side.

REST promotes a layered system as well as cacheable
responses in order to improve overall scalability. Layers
consist in intermediate servers in charge of non-functional
concerns such as security, load balancing or shared caches

provision. By implementing the “store, carry and forward”
principle, ADTRS makes it possible to store service re-
sponses in the cache of clients and of intermediate nodes,
but also the service requests that have been sent in the
network. Following a proxy-based approach, intermediate
hosts can respond on behalf of a server if they have the
response in their local cache, when this one is still valid.
Such an approach allows to improve the performance and
the scalability of the system, because it naturally performs
load balancing and data caching on intermediate hosts, and
thus fulfills the two above-mentioned requirements.

In addition, WoTApps can be partially or fully developed
in Javascript, thus allowing to execute on the client side a
part of the application and to reduce the computation load
on the physical objects, which complies with REST optional
code-on-demand constraint.

The remainder of this section presents the communi-
cation models and the non-functional properties offered by
ADTRS, and shows how REST services provided by avatars
can be invoked using this RESTful support.

4.1. Communication models

Besides providing the traditional point-to-point
client/server communication model used in the Web,
ADTRS proposes alternative communication models, that
are not necessarily relevant for traditional Web applications,
but that are suited in the WoT, such as anycast, multicast
and broadcast transmission models. Disruption-tolerant
communication systems implementing a multiple copy
forwarding strategy can take advantage of these message
transmission models to increase the message delivery
probability and to reduce the response time. Indeed, if it
exists several providers offering the same service in the
environment, these providers can indifferently be invoked
with the same request. If an anycast communication
model is used, only the first response received by the
communication system will be returned to the client.
Similarly, several sensors can simultaneously be invoked



using a multicast transmission model without naming them
explicitly. All the responses returned by these sensors will
be transmitted to the client.

In order to remain consistent with the RESTful ap-
proach, these different transmission models are specified in
the scheme of the URIs used to access REST Web services.
The general format of a URI is the following:

<service URI> ::= <scheme>"://"<destination>"/"<avatar name>"/"
<resource>["?"<parameters>]

The first part of the scheme indicates the application-
level protocol (i.e., HTTP, HTTPS, or CoAP) used to com-
municate with a remote service. +dtn must additionally
be specified in the scheme if CoAP and HTTP messages
must be forwarded by a disruption-tolerant communication
system. By default, messages are transmitted using a unicast
communication model. +acast, +mcast and +bcast specify
respectively that an anycast, a multicast and a broadcast
transmission model must be used in the forwarding process.

Depending on the communication model, the destination
part of the URI can designate the name or the address of
a host, of a multicast group or an anycast group. It can
also be a broadcast address or the wildcard *. The avatar
part of the URL designates the name or the ID of the
avatar. This part must be specified if the remote host(s)
accommodate(s) several avatars simultaneously, otherwise it
is optional. When an avatar is hosted by the physical object
it represents, it is advisable to define as host alias the name
of the avatar. The resource part identifies the resource that
must be created, read, updated or deleted (CRUD opera-
tions). Additional parameters can also be specified in order
to define non-functional properties for disruption-tolerant
and opportunistic computing as presented in the sub-section
below.

Table 1 gives examples of URIs that could be used in
the smart vineyard scenario presented in Section 3. URI
number 1 could be sent in unicast to order robot whose ID
is agribot7 to go back to its recharging base after its current
mission. Concretely, such an order is given by submitting
a new job back_to_charging_station to the job manager of
the avatar. This job manager is exposed as a Web service
and is invoked via a POST CoAP method. Similarly, URI
number 2 could be used to ask robots belonging to the
agribots anycast group to weed around vine feet from rows
1 to 3 (additional parameters specified in the body of the
POST request). Finally, URI number 3 allows to get the
soil moisture from avatars of sensors monitoring the soil.
As avatars of sensors are hosted in a cloud infrastructure,
they do not need to be reached in a disruption-tolerant way.

4.2. Non-functional parameters for delay-tolerant
computing

In delay-tolerant networks, service messages are for-
warded following the “store, carry and forward” principle.
The propagation delay and transmission area of messages is

likely to be bounded not only to fulfill application require-
ments (e.g., a 2nd floor printer that can only be used by
2nd floor users), but also to reduce the network load. In the
remainder of this section, we list a set of non-functional
properties that can be expressed by service clients and
service providers regarding the service delivery conditions
on the one hand, and that can be exploited by disruption-
tolerant communication systems in the message routing
process on the other hand.

4.2.1. Caching parameter. Service clients can specify in
their requests if these requests can be cached by intermediate
nodes or not. If so, intermediate nodes will store in their
cache both the request and the response associated with
this request until they expire. Thus, they can reply later
to a similar request sent by any node on behalf of the
service provider (i.e., by returning immediately the cached
response, instead of forwarding the request towards the
service provider).

For instance, environmental data such as air temperature
at the vine feet, which is not likely to change frequently, can
be retrieved by sending a GET request at the following URI:

coap+dtn+acast://agribots/tempsensors/
temperature?dtn_cacheable=true

4.2.2. Time parameters. Temporal constraints can be ex-
pressed in URIs as query strings or in the payload of
application-level messages. Two temporal constraints are
considered: the message creation time, and the message
expiration time, expressed relatively to the creation time.
The expiration time can also be specified as a symbolic value
defined from a temporal social ontology (e.g., afternoon,
evening, tomorrow).

In a service invocation request, these constraints express
the fact that the client wants to get a response before the
expiration time specified in the request message. The request
can be forwarded in the network, and a provider of the
service can answer to this request until it expires. When
specifying time constraints for a response, these constraints
express the lifetime of the response, and the validity duration
of the data it contains. These temporal constraints are also
used by the disruption-tolerant communication systems to
determine how long a message can be stored in a cache or
forwarded in the network.

In the robotic viticulture case study, robots can be or-
dered to start weeding the vine feet of the first row by
sending a POST request to the following URI:

coap+dtn+acast://agribots/JobManager/weed?row=1;
dtn_ctime=1453913100000;dtn_etime=900000

This request expires after 15 minutes: considering the
time required for weeding a row, passed this deadline it
will be too late to start.

4.2.3. Spatial parameters. A number of hops can addi-
tionally be specified in application-level messages in order
to circumscribe at a coarse grain the area in which the



URI Method Parameters

1 coap+dtn://agribot7/JobManager/back_to_charging_station POST
2 coap+dtn+acast://agribots/JobManager/weed POST rows=1-3
3 http+mcast://soilsensors/moisture GET

Table 1. EXAMPLES OF URIS SUPPORTED BY ADTRS.

messages can be forwarded, and to avoid that a message
eternally roams in the network. Nevertheless, this limitation
is not exact, and does not guarantee that a message cannot
be transfered outside an expected area. In order to limit
more precisely the propagation of messages in the physical
environment, geographical properties can be specified. Geo-
graphical areas are defined as squares or circles relatively to
a given GPS position or identified by a symbolic name refer-
encing a known area (e.g., home, office, myVineyard). The
location of service providers can also be specified by clients
in their service invocation requests as GPS coordinates or
as an address whose GPS coordinates can be provided by a
location service (e.g., OpenStreetMap, GoogleMaps). This
location information can be used in the message forwarding
process as shown in [9].

In the following example two vineyards are owned by
the same wine grower. However the owner does not want
the robots from one vineyard to interact with the robots
operating on the other one. For instance, to restrict the
communication to a circle defined by a GPS point matching
the vineyard center and a 100 meter radius, one can config-
ure the communication manager of the agribots –which is
exposed as a Web service– with the dtn_area parameter.

coap+dtn+mcast://agribots/CommunicationManager/
?dtn_area=47.319, -0.535, 100

4.2.4. Asynchronous communication. Service clients can
add in the query string part of the URI or as a path-
parameter a parameter callback in order to define the URI
that must be used by service providers to return the re-
sponse. Thus, clients can process the responses they receive
asynchronously without being blocked by the reception of
service responses.

In the vineyard case study, a sprinkler agribot that does
not know the soil composition on the third row can ask other
agribots to analyze it and send back the result. While waiting
for the analysis, the agribot continues its current task (e.g.,
irrigating the first row). Once the soil composition analysis
is received, the robot can process it and if the soil is dry, it
will proceed to irrigate the row.

coap+dtn+mcast://agribots/JobManager/analyze_soil?row=3;
callback=coap+dtn://agribot7/JobManager/sprinkle

5. Architecture and Implementation of the
Disruption-Tolerant RESTful Support

5.1. Identification of Devices Hosting Avatars

Unlike Internet-legacy protocols, which rely on IP ad-
dresses, there is no standard regarding host identification and

addressing in disruption-tolerant communication systems.
Thus, we choose to identify devices hosting avatars by short
string unique IDs in ADTRS. These IDs are mapped to
the specific addresses of the underlying network layer (IP
addresses or ad hoc addresses). A user-friendly name (i.e.,
an alias) can also be associated to these IDs. If a host can be
accessed using both Internet-legacy protocols and a given
disruption-tolerant communication system, the same alias
should be assigned to the IP address of this host and to its
address provided by the disruption-tolerant communication
system, thus allowing to access this host with the same alias
whatever the communication mode that is used.

For instance, an agricultural robot whose IP address is
192.168.1.7 aliased as cabernet (as defined in /etc/hosts file)
would be identified by the name resolver of the DTN com-
munication system as agribot7 (ID) also aliased as cabernet.

5.2. Overview of the architecture

ADTRS allows to invoke services using the HTTP
and CoAP application-level protocols. The application-level
messages (i.e., HTTP and CoAP messages) can be encapsu-
lated in UDP datagrams, in TCP segments or in messages of
a given disruption-tolerant communication system in order
to be transmitted to their destination. Different wireless
technologies (e.g., Bluetooth, Wi-Fi) can be employed to
communicate with physical objects.

ADTRS is implemented by two main elements, namely
an HTTP/CoAP proxy and a DTN adapter (see Figure 3).
The HTTP/CoAP proxy makes it possible for standard
HTTP and CoAP clients and servers to send and receive ser-
vice requests and responses using disruption-tolerant com-
munication techniques. To do so, clients specify in the URL
of the proxy –that, in our current implementation, listens
on a predefined communication port of the local host–
a parameter dtn_uri containing a URI compliant with the
syntax specified in the previous section. For instance, to
simultaneously invoke from a standard HTTP Web browser
several smart temperature sensors using the CoAP proto-
col, and to process the responses asynchronously, one can
proceed as follows:

http://localhost:8080/?dtn_uri=coap+dtn+mcast://soilsensors/
moisture?callback=coap+dtn://192.168.1.10/moisturecallback

Thanks to this proxy, programmers can develop HTTP
and CoAP WoTApps using regular HTTP and CoAP, li-
braries. Moreover, standard HTTP and CoAP servers do not
need to be modified. This proxy can also invoke remote
REST services using Internet-legacy routing protocols (i.e.,
TCP/IP). The HTTP/CoAP proxy is a common element
shared between all the implementations.



Figure 3. Overview of the implementation of ADTRS.

As for the DTN adapter, it binds the proxy and the
disruption-communication system in charge of forwarding
messages in the network. Hence, the DTN adapter depends
of the underlying communication system and is specifically
developed for each different system. The Bundle Protocol
(BP) [20], which is the standard message-based protocol
over the DTN architecture [1], has been chosen as the default
disruption-communication system in our current implemen-
tation. Another implementation has also been done using an
opportunistic communication platform we have developed,
and which is called C3PO [10]. This platform provides
interesting features to implement the anycast, multicast and
broadcast communication models efficiently. For instance,
service responses are used to stop the propagation of service
requests in the network, and messages can be restricted to
a given geographical area. Adapters for other disruption-
tolerant communication systems could be developed in the
future, such as for Haggle [19], DoDWAN [13], or the one
presented in [8].

When the proxy receives a request, it forwards this
one directly to the server if the networking environment is
well connected. Otherwise, if the networking environment
is challenging and intermittently connected, the proxy uses
the DTN adapter to emit the request via the DTN commu-
nication system.

5.3. Implementation over IBR-DTN

BP defines a store-carry-and-forward overlay specifying
the format of messages –called bundles– and the logic part
to process them. BP is not bound to any routing algorithms
though many exist, most of them offering to disseminate
multiple copies of a bundle in the network. Bundles do not
have a hop-count TTL, but a lifetime expressed in seconds.
When its lifetime expires, the bundle, and its copies, are
deleted from the cache of the devices. The applications
running over BP –which are called endpoints– are identified
by URIs. These URIs can either reference a single endpoint,
or a set of endpoints that register themselves with a common
URI. BP lies on a Convergence Layer (CL) to transport
bundles (e.g., TCP, UDP, LTP).

In our current implementation, the IBR-DTN [4] has
been chosen as the BP implementation. IBR-DTN is started
as a daemon. This daemon is accessible via a TCP socket.
Applications (BP endpoints) that need to communicate can

use the daemon API through this socket. This implemen-
tation design makes it possible for constrained nodes (i.e.,
nodes that are not able to run their own BP daemon) to use
a remote daemon, that can be likened to a DTN gateway.

The DTN adapter, communicating with IBR-DTN, acts
as a BP application. It sends bundles to and receive bundles
from the IBR-DTN daemon through the TCP socket, on
behalf of the HTTP and CoAP clients and servers. It extracts
from the HTTP and CoAP messages it receives from the
proxy the pieces of information required to build bundles
(destination, lifetime, etc.) and embeds these messages as
payloads in bundles. Reversely, it extracts from the bundles
the payloads and builds HTTP and CoAP messages that it
transfers to the proxy. The IBR-DTN daemon ensures the
delivery of the bundles based on the routing algorithm it
relies on.

6. Conclusion

In this paper, we have presented a disruption-tolerant
RESTful support for the Web of Things. This support is a
key element of a distributed middleware platform defined in
project ASAWoO, which proposes to extend physical objects
in the Web with software artifact called “avatar”. Avatars
allow to access and control physical objects using standard
Web technologies and protocols. Avatars can be deployed on
powerful physical objects, in a cloud infrastructure, or can
be distributed over physical objects and a cloud infrastruc-
ture. The disruption-tolerant RESTful support we detailed
in the paper permits to invoke the services offered by the
avatars using HTTP and CoAP, despite the connectivity
disruptions induced notably by the power saving strategies
and of the mobility of physical objects equipped with short-
range wireless interfaces. We have also shown in a viticul-
ture testbed scenario how this support can be used. In a
near future, the implementations of this support relying on
IBR-DTN and on the C3PO opportunistic communication
platform will be compared and tested on the viticulture
scenario, both in simulation and on robots.

Acknowledgment

This work is supported by the French ANR (Agence
Nationale de la Recherche) grant number ANR-13-INFR-
012.

References

[1] Cerf, V.G., Burleigh, S.C., Durst, R.C., Fall, K., Hooke, A.J., Scott,
K.L., Torgerson, L., Weiss, H.S.: Delay-Tolerant Networking Archi-
tecture. IETF RFC 4838 (Nov 2007)

[2] Conti, M., Giordano, S., May, M., Passarella, A.: From Opportunistic
Networks to Opportunistic Computing. IEEE Communications Mag-
azine 48(9), 126–139 (2010)

[3] Conti, M., Marzini, E., Mascitti, D., Passarella, A., Ricci, L.: Ser-
vice Selection and Composition in Opportunistic Networks. In: 9th
International Wireless Communications and Mobile Computing Con-
ference (IWCMC 2013) . pp. 1565–1572. Cagliari, Italy (July 2013)



[4] Doering, M., Lahde, S., Morgenroth, J., Wolf, L.: IBR-DTN: an effi-
cient implementation for embedded systems. In: 3rd ACM Workshop
on Challenged Networks (CHANTS 2008). pp. 117–120. ACM (Sep
2008)

[5] Fall, K.: A Delay-Tolerant Network Architecture for Challenged In-
ternets. In: Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM’03). pp.
27–34. ACM, Karlsruhe, Germany (Aug 2003)

[6] Fielding, R.T.: Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. thesis, University of California, Irvine
(2000)

[7] Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the Internet of
Things to the Web of Things: Resource-oriented Architecture and
Best Practices. In: Architecting the Internet of Things, chap. 5, pp.
97–129. Springer (2011)

[8] Helgason, O., Yavuz, E., Kouyoumdjieva, S., Pajevic, L., Karlsson,
G.: A Mobile Peer-to-Peer System for Opportunistic Content-Centric
Networking. In: 2nd ACM SIGCOMM Workshop on Networking,
Systems, and Applications on Mobile Handhelds (MobiHeld’10). pp.
21–26. ACM, New Delhi, India (Aug 2010)

[9] Le Sommer, N., Ben Sassi, S., Guidec, F., Mahéo, Y.: A Middleware
Support for Location-Based Service Discovery and Invocation in
Disconnected MANETs. Studia Informatica Universalis 8(3), 71–97
(Sep 2010)

[10] Le Sommer, N., Launay, P., Mahéo, Y.: A Framework for Oppor-
tunistic Networking in Spontaneous and Ephemeral Social Networks.
In: 10th Workshop on Challenged Networks (CHANTS’2015). ACM,
Paris, France (Sep 2015)

[11] Le Sommer, N., Mahéo, Y.: Location-Aware Routing for Service-
Oriented Opportunistic Computing. International Journal on Ad-
vances in Networks and Services 5(3&4), 225–235 (2012)

[12] Le Sommer, N., Said, R., Mahéo, Y.: A Proxy-based Model for
Service Provision in Opportunistic Networks. In: 6th International
Workshop on Middleware for Pervasive and Ad-Hoc Computing
(MPAC’08). ACM, Louvain, Belgium (Dec 2008)

[13] Mahéo, Y., Le Sommer, N., Launay, P., Guidec, F., Dragone, M.:
Beyond Opportunistic Networking Protocols: a Disruption-Tolerant
Application Suite for Disconnected MANETs. In: 4th Extreme Con-
ference on Communication (ExtremeCom’12). pp. 1–6. ACM, Zürich,
Switzerland (Mar 2012)

[14] Mahéo, Y., Said, R.: Service Invocation over Content-Based Com-
munication in Disconnected Mobile Ad Hoc Networks. In: 24th
International Conference on Advanced Information Networking and
Applications (AINA’10). pp. 503–510. IEEE, Perth, Australia (Apr
2010)

[15] Mrissa, M., Médini, L., Jamont, J.P., Le Sommer, N., Laplace, J.: An
Avatar Architecture for the Web of Things. IEEE Internet Computing
19(2), 30–38 (2015)

[16] Passarella, A., Kumar, M., Conti, M., Borgia, E.: Minimum-Delay
Service Provisioning in Opportunistic Networks. IEEE Transactions
on Parallel and Distributed Systems 22(8), 1267–1275 (2010)

[17] Redhead, F., Snow, S., Vyas, D., Bawden, O., Russell, R., Perez, T.,
Brereton, M.: Bringing the Farmer Perspective to Agricultural Robots.
In: 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI EA ’15). pp. 1067–1072. ACM, Seoul, Republic of
Korea (Apr 2015)

[18] Neves dos Santos, F., Sobreira, H., Campos, D., Morais, R., Moreira,
A.P., Contente, O.: Towards a Reliable Monitoring Robot for Moun-
tain Vineyards. In: International Conference on Autonomous Robot
Systems and Competitions (ICARSC 2015). pp. 37–43. IEEE, Vila
Real, Portugal (Apr 2015)

[19] Scott, J., Hui, P., Crowcroft, J., Diot, C.: Haggle: a Networking
Architecture Designed Around Mobile Users. In: IFIP Conference on
Wireless on Demand Network Systems and Services (WONS 2006).
Les Ménuires, France (Jan 2006)

[20] Scott, K., Burleigh, S.: Bundle Protocol Specification. IETF RFC
5050 (Apr 2007)

[21] Shelby, Z., Hartke, K., Bormann, C.: Constrained Application Proto-
col (CoAP). IETF Internet Draft (Jun 2014)


