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Chapter 7

Ground Truth Data, Content, 
Metrics, and Analysis

Buy the truth and do not sell it.

—Proverbs 23:23

This chapter discusses several topics pertaining to ground truth data, the basis for 
computer vision metric analysis. We look at examples to illustrate the importance of 
ground truth data design and use, including manual and automated methods. We then 
propose a method and corresponding ground truth dataset for measuring interest 
point detector response as compared to human visual system response and human 
expectations. Also included here are example applications of the general robustness 
criteria and the general vision taxonomy developed in Chapter 5 as applied to the 
preparation of hypothetical ground truth data. Lastly, we look at the current state of the 
art, its best practices, and a survey of available ground truth datasets.

Key topics include:

Creating and collecting ground truth data: manual vs. synthetic •	
methods

Labeling and describing ground truth data: automated vs. human •	
annotated

Selected ground truth datasets•	

Metrics paired with ground truth data•	

Over-fitting, under-fitting, and measuring quality•	

Publically available datasets•	

An example scenario that compares the human visual system to •	
machine vision detectors, using a synthetic ground truth dataset

Ground truth data may not be a cutting-edge research area, however it is as 
important as the algorithms for machine vision. Let’s explore some of the best-known 
methods and consider some open questions.
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What Is Ground Truth Data?
In the context of computer vision, ground truth data includes a set of images, and a set of 
labels on the images, and defining a modelfor object recognition as discussed in Chapter 4,  
including the count, location, and relationships of key features. The labels are added 
either by a human or automatically by image analysis, depending on the complexity of 
the problem. The collection of labels, such as interest points, corners, feature descriptors, 
shapes, and histograms, form a model.

A model may be trained using a variety of machine learning methods. At run-time, 
the detected features are fed into a classifier to measure the correspondence between 
detected features and modeled features. Modeling, classification, and training are 
statistical and machine learning problems, however, that are outside the scope of this 
book. Instead, we are concerned here with the content and design of the ground truth 
images.

Creating a ground truth dataset, then, may include condieration of the following 
major tasks:

•	 Model design. The model defines the composition of the 
objects—for example, the count, strength, and location 
relationship of a set of SIFT features. The model should be 
correctly fitted to the problem and image data so as to yield 
meaningful results.

•	 Training set. This set is collected and labeled to work with the 
model, and it contains both positive and negative images and 
features. Negatives contain images and features intended to 
generate false matches; see Figure 7-1.

Figure 7-1.  Set of all ground truth data, composed of both positive and negative training 
examples

•	 Test set. A set of images is collected for testing against the training 
set to verify the accuracy of the model to predict the correct 
matches.
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•	 Classifier design. This is constructed to meet the application 
goals for speed and accuracy, including data organization and 
searching optimizations for the model.

•	 Training and testing. This work is done using several sets of 
images to check against ground truth.

Unless the ground truth data contains carefully selected and prepared image 
content, the algorithms cannot be measured effectively. Thus, ground-truthing is closely 
related to root-causing: there is no way to improve what we cannot measure and do not 
understand. Being able to root-cause algorithm problems and understand performance 
and accuracy are primary purposes for establishing ground truth data. Better ground 
truth data will enable better analysis.

Ground truth data varies by task. For example, in 3D image reconstruction or face 
recognition, different attributes of the ground truth data must be recognized for each 
task. Some tasks, such as face recognition, require segmentation and labeling to define 
the known objects, such as face locations, position and orientation of faces, size of faces, 
and attributes of the face, such as emotion, gender, and age. Other tasks, such as 3D 
reconstruction, need the raw pixels in the images and a reference 3D mesh or point cloud 
as their ground truth.

Ground truth datasets fall into several categories:

•	 Synthetic produced: images are generated from computer 
models or renderings.

•	 Real produced: a video or image sequence is designed and 
produced.

•	 Real Selected: real images are selected from existing sources.

•	 Machine-automated annotation: feature analysis and learning 
method are used to extract features from the data.

•	 Human annotated: an expert defines the location of features and 
objects.

•	 Combined: any mixture of the above.

Many practitioners are firmly against using synthetic datasets and insist on using 
real datasets. In some cases, random ground truth images are required; in other cases, 
carefully scripted and designed ground truth images need to be produced, similar to 
creating a movie with scenes and actors.

Random and natural ground truth data with unpredictable artifacts, such as poor 
lighting, motion blur, and geometric transformation, is often preferred. Many computer 
problems demand real images for ground truth, and random variations in the images 
are important. Real images are often easy to obtain and/or easy to generate using a video 
camera or even a cell phone camera. But creating synthetic datasets is not as clear; it 
requires knowledge of appropriate computer graphics rendering systems and tools, so the 
time investment to learn and use those tools may outweigh their benefits.

However, synthetic computer-generated datasets can be a way to avoid legal and 
privacy issues concerning the use of real images.



Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

286

Previous Work on Ground Truth Data:  
Art vs. Science
In this section, we survey some literature on ground truth data. We also highlight several 
examples of automatic ground truth data labeling, as well as other research on metrics 
for establishing if, in fact, the ground truth data is effective. Other research surveyed 
here includes how closely ground truth features agree with human perception and 
expectations, for example, whether or not the edges that humans detect in the ground 
truth data are, in fact, found by the chosen detector algorithms.

General Measures of Quality Performance 
Compared to other topics in computer vision, little formal or analytic work has been 
published to guide the creation of ground truth data. However, the machine learning 
community provides a wealth of guidance for measuring the quality of visual recognition 
between ground truth data used for training and test datasets. In general, the size of the 
training set or ground truth data is key to its accuracy [336–338] and the larger the better, 
assuming the right data is used.

Key journals to dig deeper into machine learning and testing against ground truth 
data include the journal IEEE PAMI for Pattern Analysis and Machine Intelligence, 
whose articles on the subject go back to 1979. While the majority of ground truth datasets 
contain real images and video sequences, some practitioners have chosen to create 
synthetic ground truth datasets for various application domains, such as the standard 
Middlebury dataset with synthetic 3D images. See Appendix B for available real ground 
truth datasets, along with a few synthetic datasets.

One noteworthy example framework for ground truth data, detector, and descriptor 
evaluation is the Mikolajczyk and Schmidt methodology (M&S), discussed later in this 
chapter. Many computer vision research projects follow the M&S methodology using a 
variety of datasets.

Measures of Algorithm Performance
Ericsson and Karlsson[102] developed a ground truth correspondence measure (GCM) 
for benchmarking and ranking algorithm performance across seven real datasets and 
one synthetic dataset. Their work focused on statistical shape models and boundaries, 
referred to as polygon shape descriptors in the vision taxonomy in Chapter 5. The goal was 
to automate the correspondence between shape models in the database and detected 
shapes from the ground truth data using their GCM. Since shape models can be fairly 
complex, the goal of automating model comparisons and generating quality metrics 
specific to shape description is novel.

Dutagaci et al.[91] developed a framework and method, including ground truth 
data, to measure the perceptual agreement between humans and 3D interest point 
detectors—in other words, do the 3D interest point detectors find the same interest points 
as the humans expect? The ground truth data includes a known set of human-labeled 
interest points within a set of images, which were collected automatically by an Internet 



Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

287

scraper application. The human-labeled interest points were sorted toward a consensus 
set, and outliers were rejected. The consensus criterion was a radius region counting 
the number of humans who labeled interest points within the radius. A set of 3D interest 
point detectors was ran against the data and compared using simple metrics such as false 
positives, false negatives, and a weighted miss error. The ground truth data was used to 
test the agreement between humans and machine vision algorithms for 3D interest point 
detectors. The conclusions included observations that humans are indecisive and widely 
divergent about choosing interest points, and also that interest point detection algorithms 
are a fuzzy problem in computer vision.

Hamameh et al.[88] develop a method of automatically generating ground truth 
data for medical applications from a reference dataset with known landmarks, such as 
segmentation boundaries and interest points. The lack of experts trained to annotate the 
medical images and generate the ground truth data motivated the research. In this work, 
the data was created by generating synthetic images simulating object motion, vibrations, 
and other considerations, such as noise. Prestawa et al.[89] developed a similar approach 
for medical ground truth generation. Haltakov et al.[510] developed synthetic ground 
truth data from an automobile-driving simulator for testing driver assistance algorithms, 
which provided situation awareness using computer vision methods.

Vedaldi et al.[90] devised a framework for characterizing affine co-variant detectors, 
using synthetically generated ground truth as 3D scenes employing raytracing, 
including simulated natural and man-made environments; a depth map was provided 
with each scene. The goal was to characterize co-variant detector performance under 
affine deformations, and to design better covariant detectors as a result. A set of 
parameterized features were defined for modeling the detectors, including points, 
disks and oriented disks, and various ellipses and oriented ellipses. A large number of 
3D scenes were generated, with up to 1,000 perspective views, including depth maps 
and camera calibration information. In this work, the metrics and ground truth data 
were designed together to focus on the analysis of geometric variations. Feature region 
shapes were analyzed with emphasis on disks and warped elliptical disks to discover 
any correspondence and robustness over different orientations, occlusion, folding, 
translation, and scaling. (The source code developed for this work is available.1)

Rosin’s Work on Corners
Research by Rosin[61,92] involved the development of an analytical taxonomy for gray 
scale corner properties, as illustrated in Figure 7-2. Rosin developed a methodology and 
case study to generate both the ground truth dataset and the metric basis for evaluating 
the performance and accuracy of a few well-known corner detectors. The metric is based 
on the receiver operating characteristic (ROC) to measure the accuracy of detectors to 
assess corners vs. noncorners. The work was carried out over 13,000 synthetic corner 
images with variations on the synthetic corners to span different orientations, subtended 
angles, noise, and scale. The synthetic ground truth dataset was specifically designed 
to enable the detection and analysis of a set of chosen corner properties, including 
bluntness or shape of apex, boundary shape of cusps, contrast, orientation, and 
subtended angle of the corner.

1See the “VLFeat” open-source project online (http://www.vlfeat.org”).

http://www.vlfeat.org/
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A novel aspect of Rosin’s work was the generation of explicit types of synthetic 
interest points such as corners, nonobvious corners, and noncorners into the dataset, 
with the goal of creating a statistically interesting set of features for evaluation that 
diverged from idealized features. The synthetic corners were created and generated in a 
simulated optical system for realistic rendering to produce corners with parameterized 
variations including affine transformations, diffraction, sub-sampling, and in some 
cases, adding noise. Rosin’s ground truth dataset is available for research use, and has 
been used for corner detector evaluation of methods from Kitchen and Rosenfeld, 
Paler, Foglein, and Illingworth, as well as the Kittler Detector and the Harris & Stephens 
Detector.

Similar to Rosin, a set of synthetic interest point alphabets are developed later in 
this chapter snf tested in Appendix A, including edge and corner alphabets, with the 
goal of comparing human perception of interest points against machine vision methods. 
The synthetic interest points and corners are designed to test pixel thickness, edge 
intersections, shape, and complexity. The set diverges significantly from those of Rosin 
and others, and attempts to fill a void in the analysis of interest point detectors. The 
alphabets are placed on a regular grid, allowing for detmining position detection count.

Figure 7-2.  Images illustrating the Rosin corner metrics: (Top left) Corner orientation and 
subtended angle. (Top right) Bluntness. (Bottom left) Contrast. (Bottom right) Black/white 
corner color. (Images © Paul Rosin and used by permission[61])
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Key Questions For Constructing Ground  
Truth Data
In this section we identify some key questions to answer for creating ground truth data, 
rather than provideing much specific guidance or answers. The type of work undertaken 
will dictates the type of guidance, for example, published research usually requires widely 
accepted ground truth data to allow for peer review and duplication of results. In medical 
or automobile industries,there may be government regulations, and also legal issues 
if competitors publish measurement or performance data. For example, if a company 
publishes any type of benchmark results against a ground truth data set comparing the 
results with those of competitor systems, all such data and claims should be reviewed by 
an attorney to avoid the complexities and penalties of commerce regulations, which can 
be daunting and severe.

For real products and real systems, perhaps the best guidance comes from the 
requirements, expectations and goals for performance and accuracy.Once a clear set of 
requirements are in place, then the ground truth selection process can begin.

Content: Adopt, Modify, or Create
It is useful to become familiar with existing ground truth datasets prior to creating a new 
one. The choices are obvious:

Adopt an existing dataset.•	

Adopt-And-Modify an existing data set.•	

Create a new dataset.•	

Survey Of Available Ground Truth Data
Appendix B has information on several existing ground truth datasets. Take some time 
to get to know what is already available, and study the research papers coming out of 
SIGGRAPH, CVPR, IJCV, NIPS in Appendix C, and other research conferences to learn 
more about new datasets and how they are being used. The available datasets come from 
a variety of sources, including:

Academic research organizations, usually available free of charge •	
for academic research.

Government datasets, sometimes with restricted use.•	

Industry datasets, available from major corporations like •	
Microsoft, sometimes can be licensed for commercial use.
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Fitting Data to Algorithms	
Perhaps the biggest challenge is to determine whether a dataset is a correct fit for the 
problem at hand. Is the detail in the ground truth data sufficient to find the boundaries 
and limits of the chosen algorithms and systems? “Fitting” applies to key variables 
such as the ground truth data, the algorithms used, the object models, classifier, and 
the intended use-cases. See Figure 7-3, which shows how ground truth data, image 
pre-processing, detector and descriptor algorithms, and model metrics should be 
fitted together.

Figure 7-3.  (Top left) Image pre-processing for edges shown using Shen-Castan edge 
detection against ground truth data. (Top right) Over-fitting detection parameters   
yield too many small edges. (Bottom left) Under fitting parameters  yield too few edges. 
(Bottom right) Relaxed parameters yield reasonable edges
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Here are a few examples to illustrate the variables.

•	 Data fitting: If the dataset does not provide enough pixel 
resolution or bit depth, or there are insufficient unique samples 
in the training set, the model will be incomplete, the matching 
may suffer, and the data is under-fitted to the problem. Or, if the 
ground truth contains too many different types of features that 
will never be encoutered in the test set or in real applications. 
If the model resolution is 16 bits per RGB channel when only 
8 bits per color channel are provided in real data, the data and 
model are over-fitted to the problem.

•	 Algorithm fitting: If scale invariance is included in the ground 
truth data, and the LBP operator being tested is not claimed to be 
scale invariant, then the algorithm is under-fitted to the data. If the 
SIFT method is used on data with no scale or rotation variations, 
then the SIFT algithm is over-fitted to the data.

•	 Use-case fitting: If the use-cases are not represented in the data 
and model, the data and model are under-fitted to the problem.

Scene Composition and Labeling
Ground truth data is composed of labeled features such as foreground, background, and 
objects or features to recognize. The labels define exactly what features are present in 
the images, and these labels may be a combination of on-screen labels, associated label 
files, or databases. Sometimes a randomly composed scene from the wild is preferred as 
ground truth data, and then only the required items in the scene are labeled. Other times, 
ground truth data is scripted and composed the way a scene for a movie would be.

In any case, the appropriate objects and actors in the scene must be labeled, and 
perhaps the positions of each must be known and recorded as well. A database or file 
containing the labels must therefore be created and associated with each ground truth 
image to allow for testing. See Figure 7-4, which shows annotated or labeled ground 
truth dataset images for a scene analysis of cuboids [62]. See also the Labelme database 
described in Appendix B, which allows contributors to provide labeled databases.
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Composition
Establishing the right set of ground truth data is like asssembling a composition; several 
variables are involved, including:

•	 Scene Content: Designing the visual content, including fixed 
objects (those that do not move), dynamic objects (those that 
enter and leave the scene), and dynamic variables (such as 
position and movement of objects in the scene).

•	 Lighting: Casting appropriate lighting onto the scene.

•	 Distance: Setting and labeling the correct distance for each 
object to get the pixel resolution needed—too far away means not 
enough pixels.

•	 Motion Scripting: Determining the appropriate motion of objects 
in the scene for each frame; for example, how many people are 
in the scene, what are their positions and distances, number of 
frames where each person appears, and where each person enters 
and exits. Also, scripting scenes to enable invariance testing for 
changes in perspective, scale, affine geometry, occlusion.

•	 Labeling: Creating a formatted file, database, or spreadsheet to 
describe each labeled ground truth object in the scene for each 
frame.

•	 Intended Algorithms: Deciding which algorithms for interest 
point and feature detection will be used, what metrics are to be 
produced, and which invariance attributes are expected from 
each algorithm; for example, an LBP by itself does not provide 
scale invariance, but SIFT does.

Figure 7-4.  Annotated or labeled ground-truth dataset images for scene analysis of cuboids 
(left and center). The labels are annotated manually into the ground- truth dataset, in yellow 
(light gray in B&W version) marking the cuboid edges and corners. (right) Ground-truth 
data contains pre-computed 3D corner HOG descriptor sets, which are matched against live 
detected cuboid HOG feature sets. Successful matches shown in green (dark gray in B&W 
version). (Images used by permission © Bryan Russel, Jianxiong Xiao, and Antonio Torralba)
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•	 Intended Use-Cases: Determining the problem domain or 
application. Does the ground truth data represent enough real 
use-cases?

•	 Image Channel Bit Depth, Resolution: Setting these to match 
requirements.

•	 Metrics: Defining the group of metrics to measure—for example, 
false positives and false negatives. Creating a test fixture to run 
the algorithms against the dataset, measuring and recording all 
necessary results.

•	 Analysis: Interpreting the metrics by understanding the 
limitations of both the ground truth data and the algorithms, 
defining the success criteria.

•	 Open Rating Systems: Exploring whether there is an open rating 
system that can be used to report the results. For example, the 
Middlebury Dataset provides an open rating system for 3D stereo 
algorithms, and is described in Appendix B; other rating systems 
are published as a part of grand challenge contests held by 
computer vision organizations and governments, and some are 
reviewed in Appendix B. Open rating systems allow existing and 
new algorithms to be compared on a uniform scale.

Labeling
Ground truth data may simply be images returned from a search engine, and the 
label may just be the search engine word or phrase. Figure 7-5 shows a graph of photo 
connectivity for photo tourism [63–65] that is created from pseudo-random images of a 
well-known location, the Trevi Fountain in Rome. It is likely that in five to ten years, photo 
tourism applications will provide high-quality image reconstruction including textures, 
3D surfaces, and rerenderings of the same location, rivaling real photographs.
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For some applications, labels and markers are inserted into the ground truth 
datasets to enable analysis of results, as shown in the 3D scene understanding database 
for cuboids in Figure 7-4. Another example later in this chapter composes scenes using 
synthetic alphabets of interest points and corners that are superimposed on the images 
of a regularly spaced grid to enable position verification (see also Appendix A). In some 
visual tracking applications, markers are attached to physical objects (a wrist band, for 
example) to establish ground truth features.

Another example is ground truth data composed to measure gaze detection, using 
a video sequence containing labels for two human male subjects entering and leaving 
the scene at a known location and time, walking from left to right at a known speed and 
depth in the scene. The object they are gazing at would be at a known location and be 
labeled as well.

Defining the Goals and Expectations    
To establish goals for the ground truth data, questions must be asked. For instance, what 
is the intended use of the application requiring the ground truth data? What decisions 
must be made from the ground truth data in terms of accuracy and performance? How is 
quality and success measured? The goals of academic research and commercial systems 
are quite different.

Figure 7-5.  Graph of photo connectivity (center) created from analyzing multiple public 
images from a search engine of the Trevi Fountain (a). Edges show photos matched and 
connected to features in the 3D scene, including daytime and nighttime lighting (b)(c)(d). 
(Images © Noah Snavely and used by permission)
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Mikolajczyk and Schmid Methodology
A set of well-regarded papers by Mikolajczyk, Schmid and others [45,79,82,91,306] 
provides a good methodology to start with for measuring local interest points and feature 
detector quality. Of particular interest is the methodology used to measure scale and 
affine invariant interest point detectors [306] which uses natural images to start, then 
applies a set of known affine transformations to those images, such as homography, 
rotation, and scale. Interest point detectors are run against the images, followed by 
feature extractors, and then the matching recall and precision are measured across the 
transformed images to yield quality metrics.

Open Rating Systems 
The computer vision community is, little by little, developing various open rating 
systems, which encourage algorithm comparisons and improvements to increase quality. 
In areas where such open databases exist, there is rapid growth in quality for specific 
algorithms. Appendix B lists open rating systems such as the Pascal VOC Challenge for 
object detection. Pascal VOC uses an open ground truth database with associated grand 
challenge competition problems for measuring the accuracy of the latest algorithms 
against the dataset.

Another example is the Middlebury Dataset, which provides ground truth datasets 
covering the 3D stereo algorithm domain, allowing for open comparison of key metrics 
between new and old algorithms, with the results published online.

Corner Cases and Limits
Finding out where the algorithms fail is valuable. Academic research is often not 
interested in the rigor required by industry in defining failure modes. One way to find 
the corner cases and limits is to run the same tests on a wide range of ground truth data, 
perhaps even data that is outside the scope of the problem at hand. Given the availability 
of publicly available ground truth databases, using several databases is realistic.

However, once the key ground truth data is gathered, it can also be useful to devise 
a range of corner cases—for example, by providing noisy data, intensity filtered data, or 
blurry data to test the limits of performance and accuracy.

Interest Points and Features 
Interest points and features are not always detected as expected or predicted. Machine 
vision algorithms detect a different set of interst points than those humans expect. For 
example, Figure 7-6 shows obvious interest points missed by the SURF algorithm with 
a given set of parameters, which uses a method based on determinant of Hessian blob 
detection. Note that some interest points obvious to humans are not detected at all, some 
false positives occur, and some identical interest points are not detected consistently.
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Also, real interest points change over time—for example, as objects move and 
rotate—which is a strong agrument for using real ground truth data vs. synthetic data to 
test a wide range of potential interest points for false positives and false negatives.

Robustness Criteria for Ground Truth Data
In Chapter 5, a robustness criteria was developed listing various invariance attributes, 
such as rotation and scale. Here, we apply the robustness criteria to the development of 
ground truth data.

Illustrated Robustness Criteria
Table 7-1 discusses various robustness criteria attributes, not all attributes are needed 
for a given application. For example, if radial distortion might be present in an optical 
system, then the best algorithms and corresponding metrics will be devised that are 
robust to radial distortion, or as mitigation, the vision pipeline must be designed with 
a pre-processing section to remove or compensate for the radial distortion prior to 
determining the metrics.

Figure 7-6.  Interest points detected on the same image using different methods: (Left) 
Shi-Tomasi corners marked with crosses. (Right) SURF interest points marked with circles. 
Results are not consistent or deterministic
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Table 7-1.  Robustness Criteria for Ground Truth Data

Attribute Discussion

Uneven 
illumination

Define range of acceptable illumination for the application; 
uneven illumination may degrade certain algorithms, some 
algorithms are more tolerant.

Brightness Define expected brightness range of key features, and prepare 
ground-truth data accordingly.

Contrast Define range of acceptable contrast for the application; some 
algorithms are more tolerant.

Vignette Optical systems may degrade light and manifest as dim 
illumination at the edges. Smaller the features are localized better 
and may be able to overcome this situation; large features that 
span areas of uneven light are affected more.

Color accuracy Inaccurate color space treatment may result in poor color 
performance. Colorimetry is important; consider choosing the 
right color space (RGB, YIQ, Lab, Jab, etc.) and use the right level  
of bit precision for each color, whether 8/16 bits is best.

Clutter Some algorithms are not tolerant of clutter in images and rely on 
the scene to be constructed with a minimal number of subjects. 
Descriptor pixel size may be an issue for block search methods—
too much extraneous detail in a region may be a problem for the 
algorithm.

Occlusion and 
clipping

Objects may be occluded or hidden or clipped. Algorithms may or 
may not tolerate such occlusion. Some occlusion artifacts can be 
eliminated or compensated for using image pre-processing and 
segmentation methods.

Outliers and 
proximity

Sometimes groups of objects within a region are the subject, and 
outliers are to be ignored. Also, proximity of objects or features 
may guide classification, so varying the arrangement of features  
or objects in the scene may be critical.

Noise Noise may take on regular or random patterns, such as snow, rain, 
single-pixel spot nose, line noise, random electrical noise affecting 
pixel bit resolution, etc.

Motion blur Motion blur is an important problem for almost all real-time 
applications. This can be overcome by using faster frame rates  
and employing image pre-processing to remove the motion blur,  
if possible.

Jitter and judder Common problem in video images taken from moving cameras, 
where each scan line may be offset from the regular 2D grid.

(continued)
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Table 7-1.  (continued)

Attribute Discussion

Focal plane or 
depth

If the application or use-case for the algorithm assumes all depths 
of the image to be in focus, then using ground truth data with out-
of-focus depth planes may be a good way to test the limits.

Pixel depth 
Resolution

If features are matched based on the value of pixels, such as gray 
scale intensity or color intensity, pixel resolution is an issue. For 
example, if a feature descriptor uses 16 bits of effective gray scale 
intensity but the actual use-case and ground truth data provide 
only 8 bits of resolution, the descriptor may be over-fitted to the 
data, or the data may be unrealistic for the application.

Geometric 
distortion

Complex warping may occur due to combinations of geometric 
errors from optics or distance to subject. On deformable surfaces 
such as the human face, surface and feature shape may change in 
ways difficult to geometrically describe.

Scale, projection Near and far objects will be represented by more or less pixels, 
thus a multi-scale dataset may be required for a given application, 
as well as multi-scale feature descriptors. Algorithm sensitivity to 
feature scale and intended use case also dictate ground truth data 
scale.

Affine transforms 
and rotation

In some applications like panoramic image stitching, very little 
rotation is expected between adjacent frames—perhaps up to 
15 degrees may be tolerated. However, in other applications like 
object analysis and tracking of parts on an industrial conveyor belt, 
rotation between 0 and 360 degrees is expected.

Feature mirroring, 
translation

In stereo correspondence, L/R pair matching is done using the 
assumption that features can be matched within a limited range 
of translation difference between L/R pairs. If the translation is 
extreme between points, the stereo algorithm may fail, resulting in 
holes in the depth map, which must be filled.

Reflection Some applications, like recognizing automobiles in traffic, require a 
feature model, which incorporates a reflective representation and a 
corresponding ground truth dataset. Automobiles may come and go 
from different directions, and have a reflected right/left feature pair.

Radial distortion Optics may introduce radial distortion around the fringes; usually 
this is corrected by a camera system using digital signal processors 
or fixed-function hardware prior to delivering the image.
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Using Robustness Criteria for Real Applications
Each application requires a different set of robustness criteria to be developed into the 
ground truth data. Table 7-2 illustrates how the robustness criteria may be applied to a 
few real and diverse applications.

Table 7-2.  Robustness Criteria Applied to Sample Applications (each application with 
different requirements for robustness)

General Objective 
Criteria Attributes

Industrial inspection 
of apples on a 
conveyor belt, fixed 
distance, fixed speed, 
fixed illumination

Automobile 
identification on 
roadway, day and 
night, all road 
conditions

Multi-view 
stereo 
reconstruction 
bundle 
adjustment

Uneven illumination - Important Useful

Brightness Useful Important Useful

Contrast Useful Important Useful

Vignette Important Useful Useful

Color accuracy Important Important Useful

Clutter - Important Important

Occlusion - Important Important

Outliers - Important Important

Noise - Important Useful

Motion blur Useful Important Useful

Focal plane or depth - Important Useful

Pixel depth resolution Useful Important important

Subpixel resolution - - important

Geometric distortion 
(warp)

- Useful Important

Affine transforms - Important Important

Scale - Important Important

Skew - - -

Rotation Important Useful Useful

Translation Important Useful Useful

(continued)
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As illustrated in Table 7-2, a multi-view stereo (MVS) application will hold certain 
geometric criteria as very important, since accurate depth maps require accurate 
geometry assumptions as a basis for disparity calculations. For algorithm accuracy 
tuning, corresponding ground truth data should be created using a well-calibrated 
camera system for positional accuracy of the 3D scene to allow for effective comparisons.

Another example in Table 7-2 with many variables in an uncontrolled environment 
is that of automobile identification on roadways—which may be concerned with distance, 
shape, color, and noise. For example, identifying automobiles may require ground truth 
images of several vehicles from a wide range of natural conditions, such as dawn, dusk, 
cloudy day, and full sun, and including conditions such as rainfall and snowfall, motion 
blur, occlusion, and perspective views. An example automobile recognition pipeline is 
developed in Chapter 8.

Also shown Table 7-2 is an example with a controlled environment: industrial 
inspection. In industrial settings, the environment can be carefully controlled using 
known lighting, controlling the speed of a conveyor belt, and limiting the set of objects in 
the scenes. Accurate models and metrics for each object can be devised, perhaps taking 
color samples and so forth—all of which can be done a priori. Ground truth data could be 
easily created from the actual factory location.

Pairing Metrics with Ground Truth 
Metrics and ground truth data should go together. Each application will have design 
goals for robustness and accuracy, and each algorithm will also have different intended 
uses and capabilities. For example, the SUSAN detector discussed in Chapter 6 is often 
applied to wide baseline stereo applications, and stereo applications typically are not 

Table 7-2.  (continued)

General Objective 
Criteria Attributes

Industrial inspection 
of apples on a 
conveyor belt, fixed 
distance, fixed speed, 
fixed illumination

Automobile 
identification on 
roadway, day and 
night, all road 
conditions

Multi-view 
stereo 
reconstruction 
bundle 
adjustment

Projective 
transformations

Important Important -

Reflection Important Important -

Radial distortion - - Important

Polar distortion - - Important

Discrimination or 
uniqueness

- Useful -

Location accuracy - Useful -

Shape and thickness 
distortion

- Useful -
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concerned much with rotational invariance because the image features are computed 
on corresponding stereo pair frames that have been affine rectified to align line by line. 
Feature correspondence between image pairs is expected within a small window, with 
some minor translation on the x axis.

Pairing and Tuning Interest Points, Features,  
and Ground Truth
Pairing the right interest point detectors and feature descriptors can enhance results, 
and many interest point methods are available and were discussed in Chapter 6. When 
preparing ground truth data, the method used for interest point detection should be 
considered for guidance.

For example, interest point methods using derivatives, such as the Laplace and Hessian 
style detectors, will not do very well without sufficient contrast in the local pixel regions of 
the images, since contrast accentuates maxima, minima and local region changes. However, 
a method such as FAST9 is much more suited to low-contrast images, uses local binary 
patterns, and is simple to tune the compare threshold and region size to detect corners and 
edges; but the tradeoff in using FAST9 is that scale invariance is sacrificed.

A method using edge gradients and direction, such as eigen methods, would require 
ground truth containing sufficient oriented edges at the right contrast levels. A method 
using morphological interest points would likewise require image data that can be 
properly thresholded and processed to yield the desired shapes.

Interest point methods also must be tuned for various parameters like strength of 
thresholds for accepting and rejecting candidate interest points, as well as and region 
size. Choosing the right interest point detector, tuning, and pairing with appropriate 
ground truth data are critical. The effect of tuning interest point detector parameters is 
illustrated in Figures 7-6 and 7-7.

Figure 7-7.  Machine corner detection using the Shi-Tomasi method marked with crosses; 
results are shown using different parameter settings and thresholds for the strength and 
pixel size of the corners

Examples Using The General Vision Taxonomy 
As a guideline for pairing metrics and ground truth data, we use the vision taxonomy 
developed in Chapter 5 to illustrate how feature metrics and ground truth data can be 
considered together.
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Table 7-3 presents a sample taxonomy and classification for SIFT and FREAK 
descriptors, which can be used to guide selection of ground truth data and also show 
several similarities in algorithm capabilities. In this example, the invariance attributes 
built into the data can be about the same— namely scale and rotation invariance. Note 
that the compute performance claimed by FREAK is orders of magnitude faster than SIFT, 
so perhaps the ground truth data should contain a sufficient minimum and maximum 
number of features per frame for good performance measurements.

Table 7-3.  General Vision Taxonomy for Describing FREAK and SIFT

Visual Metric Taxonomy Comparison

Attribute SIFT FREAK

Feature Category Family Spectra Descriptor Local Binary Descriptor

Spectra Dimensions Multivariate Single Variate

Spectra Value Orientation Vector

Gradient Magnitude

Gradient Direction

HOG, Cartesian Bins

Orientation Vector

Bit Vector Of values

Cascade of 4 Saccadic 
Descriptors

Interest Point SIFT DOG over 3D Scale Pyramid Multi-scale AGAST

Storage Format Spectra Vector Bit Vector
Orientation Vector

Data Types Float Integer

Descriptor Memory 512 bytes, 128 floats 64 Bytes, 4 16-byte 
Cascades

Feature Shape Rectangle Circular

Feature Search Method Coarse to Fine Image Pyramid

Scale Space Image Pyramid

Double-scale First Pyramid Level

Sparse at Interest Points

Sparse at interest points

Pattern Pair Sampling n.a. Foveal Centered 
Trained Pairs

Pattern Region Size 41x41 Bounding Box 31x31 Bounding Box 
(may vary)

Distance Function Euclidean Distance Hamming Distance

Run-Time Compute 100% (SIFT is the baseline) .1% of SIFT

(continued)
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Synthetic Feature Alphabets
In this section, we create synthetic ground truth datasets for interest point algorithm 
analysis. We create alphabets of synthetic interest points and synthetic corner points. The 
alphabets are synthetic, meaning that each element is designed to perfectly represent 
chosen binary patterns, including points, lines, contours, and edges.

Various pixel widths or thickness are used for the alphabet characters to measure 
fine and coarse feature detection. Each pattern is registered at known pixel coordinates 
on a grid in the images to allow for detection accuracy to be measured. The datasets are 
designed to enable comparison between human interest point perception and machine 
vision interest point detectors.

Here is a high-level description of each synthetic alphabet dataset:

•	 Synthetic Interest Point Alphabet. Contains points such as 
boxes, triangles, circle, half boxes, half triangles, half circles, 
edges, and contours.

•	 Synthetic Corner Point Alphabet. Contains several types of 
corners and multi-corners at different pixel thickness.

•	 Natural images overlaid with synthetic alphabets. Contains 
both black and white versions of the interest points and corners 
overlaid on natural images.

Note■■  T he complete set of ground truth data is available in Appendix A.

Table 7-3.  (continued)

Visual Metric Taxonomy Comparison

Attribute SIFT FREAK

Feature Density Sparse Sparse

Feature Pattern Rectangular kernel

Sample Weighting Pattern

Binary compare pattern

Claimed Robustness

*Final robustness is a 
combination of interest 
point method, descriptor 
method, and classifier

Scale

Rotation

Noise

Affine Distortion

Illumination

Scale

Rotation

Noise
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Analysis is provided in Appendix A, which includes running ten detectors against the 
datasets. The detectors are implemented in OpenCV, including SIFT, SURF, ORB, BRISK, 
HARRIS, GFFT, FAST9, SIMPLE BLOB, MSER, and STAR. Note that the methods such 
as SIFT, SURF, and ORB provide both an interest point detector and a feature descriptor 
implementation. We are only concerned with the interest point detector portion of each 
method for the analysis, not the feature descriptor.

The idea of using synthetic image alphabets is not new. As shown in Figure 7-2, 
Rosin[61] devised a synthetic set of gray corner points and corresponding measurement 
methods for the purpose of quantifying corner properties via attributes such as bluntness 
or shape of apex, boundary shape of cusps, contrast, orientation, and subtended angle 
of the corner. However, the synthetic interest point and corner alphabets in this work are 
developed to address a different set of goals, discussed next.

Goals for the Synthetic Dataset 
The goals and expectations for this synthetic dataset are listed in Table 7-4. They center 
on enabling analysis to determine which synthetic interest points and corners are found, 
so the exact count and position of each interest point is a key requirement.

Table 7-4.  Goals and Expectations for the Ground Truth Data Examples: Comparison  
of Human Expectations with Machine Vision Results

Goals Approach

Interest point and corner 
detectors, stress testing

Provide synthetic features easily recognized by a 
human; measure how well various detectors perform.

Human recognizable synthetic 
interest point sets

Synthetic features recognized by humans are developed 
spanning shapes and sizes of edges and line segments, 
contours and curved lines, and corners and multi-corners.

Grid positioning of interest 
points

Each interest point will be placed on a regular grid at a 
known position for detection accuracy checking.

Scale invariance Synthetic interest points to be created with the same 
general shape but using different pixel thickness for scale.

Rotation invariance Interest points will be created, then rotated in 
subsequent frames.

Noise invariance Noise will be added to some interest point sets.

Duplicate interest points, 
known count

Interest points will be created and duplicated in each 
frame for determining detection and performance.

Hybrid synthetic interest 
points overlaid on real images

Synthetic interest points on a grid are overlaid onto real 
images to allow for hybrid testing.

Interest point 
detectors,determinism and 
repeatability

Detectors will include SIFT, SURF, ORB, BRISK, 
HARRIS, GFFT, FAST9, SIMPLE BLOB, MSER, and 
STAR. By locating synthetic interest points on a grid,  
we can compute detection counts.
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The human visual system does not work like an interest point detector, since 
detectors can accept features which humans may not recognize. The human visual 
system discriminates and responds to gradient information [248] in a scale and 
rotationally invariant manner across the retina, and tends to look for learned features 
relationships among gradients and color.

Humans learn about features by observations and experience, so learned 
expectations play a key role interpreting visual features. People see what they believe and 
what they are looking for, and may not believe what they see if they are not looking for it. 
For example, Figure 7-7 shows examples of machine corner detection; a human would 
likely not choose all the same corner features. Note that the results are not what a human 
might expect, and also the algorithm parameters must be tuned to the ground truth data 
to get the best results.

Accuracy of Feature Detection via Location Grid
The goal of detector accuracy for this synthetic ground truth is addressed by placing 
synthetic features at a known position on a regular spaced grid, then after detection,  
the count and position are analyzed. Some of the detectors will find multiple features for 
a single synthetic interest point or corner. The feature grid size chosen is 14x14 pixels, 
and the grid extends across the entire image. See Figures 7-9 and 7-10.

Rotational Invariance via Rotated Image Set
For each ground truth set, rotated versions of each image are created in the range 0 to  
90 degrees at 10 degree increments.Since the synthetic features are placed on a regularly 
spaced grid at known positions, the new positions under rotation are easily computed. 
The detected synthetic features can be counted and analyzed. See Appendix A for results.

Scale Invariance via Thickness and Bounding Box Size
The synthetic corner point features are rendered into the ground truth data with feature 
edge thickness ranging from 1 to 3 pixels for simulated scale variation. Some of the 
interest point features, such as boxes, triangles, and circles, are scaled in a bounding box 
ranging from 1x1 pixels to 10x10 pixels to allow for scale invariance testing.

Noise and Blur Invariance
A set of synthetic alphabets is rendered using Gaussian noise, and another set using salt-
and-pepper noise to add distortion and uncertainty to the images. In addirion, by rotating 
the interest point alphabet at varying angles between 0 and 90 degrees, digital blur is 
introduced to the synthetic patterns as they are rendered, owing to the anti-aliasing 
interpolations introduced in the affine transform algorithms.
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Repeatabilty
Each ground truth set contains a known count of synthetic features to enable detection 
rates to be analyzed. To enable measurement of the repeatability of each detector, there 
are multiple duplicate copies of each interest point feature in each image. A human 
would expect identical features to be detected in an identical manner; however, results 
in Appendix A show that some interest point detectors do not behave in a predictable 
manner, and some are more predictable than others.

As shown in Figure 7-6, detectors do not always find the same identical features. For 
example, the synthetic alphabets are provided in three versions— black on white, white 
on black, and light gray on dark gray—for the purpose of testing each detector on the 
same pattern with different gray levels and polarity. See Appendix A showing the how the 
detectors provide different results based on the polarity and gray level factors.

Real Image Overlays of Synthetic Features
A set of images composed of synthetic interest points and corners overlayed on top of 
real images is provided, sort of like markers. Why overlay interest point markers, since 
the state of the art has moved beyond markers to markerless tracking? The goal is to 
understand the limitations and behavior of the detectors themselves, so that analyzing 
their performance in the presence of natural and synthetic features will provide some 
insight.

Synthetic Interest Point Alphabet
As shown in Figures 7-8 and 7-9, an alphabet of synthetic interest points is defined across 
a range of pixel resolutions or thicknesses to include the following features:

POINT / SQUARE, 1–10 PIXELS SIZE•	

POINT / TRIANGLE HALF-SQUARE, 3–1 PIXELS SIZE•	

CIRCLE, 3–10 PIXELS SIZE•	

CIRCLE / HALF-CIRCLE, 3–10 PIXELS SIZE•	

CONTOUR, 3–10 PIXELS SIZE•	

CONTOUR / HALF-CONTOUR, 3–10 PIXELS SIZE•	

CONNECTED EDGES•	

DOUBLE CORNER, 3–10 PIXELS SIZE•	

CORNER, 3–10 PIXELS SIZE•	

EDGE, 3–10 PIXELS SIZE•	
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Figure 7-8.  Portion of the synthetic interest point alphabet:  points, edges, edges, and contours. 
(Top to bottom) White on black, black on white, light gray on dark gray, added salt and 
pepper noise, added Gaussian noise

Figure 7-9.  Scaled and rotated examples of the synthetic interest point alphabet. Notice the 
artifacts introduced by the affine rotation, which distorts the synthetic binary patterns via 
anti-aliasing and sub-sampling artifacts

The synthetic interest point alphabet contains 83 unique elements composed on 
a 14x14 grid, as shown in Figure 7-9. A total of seven rows and seven columns of the 
complete alphabet can fit inside a 1024x1024 image, yielding a total of 7x7x83=4067 total 
interest points.

Synthetic Corner Alphabet
The synthetic corner alphabet is shown in Figure 7-10. The alphabet contains the 
following types of corners and attributes:

2-SEGMENT CORNERS, 1,2,3 PIXELS WIDE•	

3-SEGMENT CORNERS, 1,2,3 PIXELS WIDE•	

4-SEGMENT CORNERS, 1,2,3 PIXELS WIDE•	
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As shown in Figure 7-11, the corner alphabet contains patterns with multiple types 
of corners composed of two-line segments, three-line segments, and four-line segments, 
with pixel widths of 1,2, and 3. The synthetic corner alphabet contains 54 unique 
elements composed on a 14x14 pixel grid.

Figure 7-10.  Portion of the synthetic corner alphabet, features include 2-,3-, and 4-segment 
corners. (Top to bottom) White on black, black on white, light gray on dark gray, added 
salt and pepper noise, added Gaussian noise

Figure 7-11.  Synthetic corner points image portions

Each 1024x1024 pixel image contains 8x12 complete alphabets composed of 6x9 
unique elements each, yielding 6x9x12x8=5184 total corner points per image. The 
full dataset includes rotated versions of each image from 0 to 90 degrees at 10 degree 
intervals.
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Hybrid Synthetic Overlays on Real Images
We combine the synthetic interest points and corners as overlays with real images to 
develop a hybrid ground truth dataset as a more complex case.

The merging of synthetic interest points over real data will provide new challenges 
for the interest point algorithms and corner detectors, as well as illustrate how each 
detector works. Using hybrid synthetic feature overlays on real images is a new approach 
for ground truth data (as far as the author is aware), and the benefits are not obvious 
outside of curiosity. One reason the synthetic overlay approach was chosen here is to fill 
the gap in the literature and research, since synthetic features overlays are not normally 
used. See Figure 7-12.

Figure 7-12.  Synthetic interest points combined with real images, used for stress testing 
interest point and corner detectors with unusual pixel patterns

The hybrid synthetic and real ground truth datasets are designed with the following 
goals:

Separate ground truth sets for interest points and corners, using •	
the full synthetic alphabets overlaid on real images, to provide a 
range of pixel detail surrounding each interest point and corner.

Display known positions and counts of interest points on a  •	
14x14 grid.

Provide color and gray scale images of the same data.•	

Provide rotated versions of the same data 0 to 90 degrees at  •	
10 degree intervals.
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Method for Creating the Overlays
The alphabet can be used as a binary mask of 8-bit pixel values of black 0x00 and white 
0xff for composing the image overlays. The following Boolean masking example is 
performed using Mathematica code ImageMultiply and ImageAdd operators.

ImageMultiply [  ]

ImageMultiply is used to get the negatives, and then followed by ImageAdd to get 
the positives. Note that in other image processing tool systems, a Boolean ImageAND, 
ImageOR, and ImageNOT may be provided as alternatives.

ImageAdd [  ]

Summary
We have surveyed manual and automated approaches to creating ground truth data, have 
identified some best practices and guidelines, have applied the robustness criteria and 
vision taxonomy developed in Chapter 5, and have worked through examples to create a 
ground truth dataset for evaluation of human perceptions compared to machine vision 
methods for keypoint detectors.

Here are some final thoughts and key questions for perparing ground truth data:

•	 Appropriateness: How appropriate is the ground truth dataset 
for the analysis and intended application? Are the use-cases and 
application goals built into the ground truth data and model? Is the 
dataset under-fitted or over-fitted to the algorithms and use-cases?

•	 Public vs. proprietary: Proprietary ground truth data is a barrier 
to independent evaluation of metrics and algorithms. It must be 
possible for interested parties to duplicate the metrics produced 
by various types of algorithms so they can be compared against the 
ground truth data. Open rating systems may be preferred, if they 
exist for the problem domain. But there are credibility and legal 
hurdles for open-sourcing any proprietary ground truth data.
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•	 Privacy and legal concerns: There are privacy concerns for 
individuals in any images chosen to be used; images of people 
should not be used without their permission, and prohibitions 
against the taking of pictures at restricted locations should be 
observed. Legal concerns are very real.

•	 Real data vs. synthetic data: In some cases it is possible to use 
computer graphics and animations to create synthetic ground 
datasets. Synthetic datasets should be considered especially when 
privacy and legal concerns are involved, as well as be viewed as a 
way of gaining more control over the data itself.
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