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Abstract— Exciting recent developments at the interface of
optimization and control have shown that several fundamental
problems in dynamics and control, such as stability, collision
avoidance, robust performance, and controller synthesis can
be addressed by a synergy of classical tools from Lyapunov
theory and modern computational techniques from algebraic
optimization. In this paper, we give a brief overview of our
recent research efforts (with various coauthors) to (i) enhance
the scalability of the algorithms in this field, and (ii) un-
derstand their worst case performance guarantees as well as
fundamental limitations. Our results are tersely surveyed and
challenges/opportunities that lie ahead are stated.

I. ALGEBRAIC METHODS IN OPTIMIZATION AND
CONTROL

In recent years, a fundamental and exciting interplay
between convex optimization and algorithmic algebra has
allowed for the solution or approximation of a large class of
nonlinear and nonconvex problems in optimization and con-
trol once thought to be out of reach. The success of this area
stems from two facts: (i) Numerous fundamental problems in
optimization and control (among several other disciplines in
applied and computational mathematics) are semialgebraic;
i.e., they involve optimization over sets defined by a finite
number of possibly quantified polynomial inequalities. (ii)
Semialgebraic problems can be reformulated as optimization
problems over the set of nonnegative polynomials. This
makes them amenable to a rich set of algebraic tools which
lend themselves to semidefinite programming—a subclass
of convex optimization problems for which global solution
methods are available.

Application areas within optimization and computational
mathematics that have been impacted by advances in alge-
braic techniques are numerous: approximation algorithms for
NP-hard combinatorial problems [1], equilibrium analysis of
continuous games [2], robust and stochastic optimization [3],
statistics and machine learning [4], software verification [5],
filter design [6], quantum computation [7], and automated
theorem proving [8], are only a few examples on a long list.

In dynamics and control, algebraic methods and in partic-
ular the so-called area of “sum of squares (sos) optimiza-
tion” [9], [10], [11], [12], [13] have rejuvenated Lyapunov
theory, giving the hope or the outlook of a paradigm shift
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from classical linear control to a principled framework for
design of nonlinear (polynomial) controllers that are provably
safer, more agile, and more robust. As a concrete example,
Figure 1 demonstrates our recent work with Majumdar and
Tedrake [14] in this area applied to the field of robotics.
As the caption explains, sos techniques provide contollers
with much larger margins of safety along planned trajectories
and can directly reason about the nonlinear dynamics of
the system under consideration. These are crucial assets for
more challenging robotic tasks such as walking, running, and
flying. Sum of squares methods have also recently made their
way to actual industry flight control problems, e.g., to explain
the falling leaf mode phenomenon of the F/A-18 Hornet
aircraft [15], [16] or to design controllers for hypersonic
aircraft [17].

Fig. 1. From [14] (with Majumdar and Tedrake): The “swing-up and
balance” task via sum of squares optimization for an underactuated
and severely torque limited double pendulum (the “Acrobot”). Top:
projections of basins of attraction around a nominal swing-up
trajectory designed by linear quadratic regulator (LQR) techniques
(blue) and by SOS techniques (red). Bottom: projections of basins
of attraction of the unstable equilibrium point in the upright position
stabalized by a linear contoller via LQR (blue), and a cubic
controller via SOS (red). To our knowledge, this work constitutes
the first hardware implementation and experimental validation of
sum of squares techniques in robotics.

II. OUR TARGET AREAS IN ALGEBRAIC OPTIMIZATION
AND CONTROL

Despite the wonderful advances in algebraic techniques for
optimization and their successful interplay with Lyapunov
methods, there are still many fundamental challenges to



overcome and unexplored pathways to pursue. In this paper,
we aim at highlighting two concrete areas in this direction:

Area 1—Struggle with scalability: Scalability is ar-
guably the single most outstanding challenge for algebraic
methods, not just in control theory, but in all areas of com-
putational mathematics where these techniques are being ap-
plied today. It is well known that the size of the semidefinite
programs (SDPs) resulting from sum of squares techniques
(although polynomial in the data size) grows quickly and this
limits the scale of the problems that can be efficiently and
reliably solved with available SDP solvers. This drawback
deprives large-scale systems of the application of algebraic
techniques and perhaps equally importantly shuts the door on
the opportunities that lie ahead if we could use these tools
for real-time optimization.

In nonlinear control, problems with scalability also man-
ifest themselves in form of complexity of Lyapunov func-
tions. It is common for “simple” (e.g., low degree) stable
systems to necessitate “complicated” Lyapunov functions as
stability certificates (e.g., polynomials of high degree). The
more complex the Lyapunov function, the more variables its
parametrization will have, and the larger the sum of squares
programs that search for it will be. In view of this, it is
of particular interest to derive conditions for stability that
are less stringent than those of classical Lyapunov theory.
A related challenge in this area is the lack of a unified
and comparative theory for various classes of Lyapunov
functions available in the literature (e.g., polytopic, piece-
wise quadratic, polynomial, etc.). These problems are more
pronounced in the study of uncertain or hybrid system, which
are of great practical relevance.

Area 2—Lack of rigorous guarantees: While most
works in the literature formulate hierarchies of optimization
problems that—if feasible—guarantee desired properties of a
control system of interest (e.g., stability or safety), relatively
few establish “converse results”, i.e., proofs that if certain
policies meet design specifications, then a particular level in
the optimization hierarchy is guaranteed to find a certificate
as a feasible solution. This is in contrast to more discrete
areas of optimization where tradeoffs between algorithmic
efficiency and worst-case performance guarantees are often
quite well-understood.

A study of performance guarantees for some particular
class of algorithms (in our case, sum of squares algorithms)
naturally borders the study of lower bounds, i.e., fundamental
limits on the efficiency of any algorithm that provably solves
a problem class of interest. Once again here, the state of
affairs in this area of controls is not entirely satisfactory:
there are numerous fundamental problems in the field that
while believed to be “hard” in folklore, lack a rigorous
complexity-theoretic lower bound. One can attribute this
shortcoming to some extent to the nature of most problems in
controls, which typically come from continuous mathematics
and at times describe qualitative behavior of a system rather
than quantitative ones (consider, e.g., asymptotic stability of
a nonlinear vector field).

The remainder of this paper, whose goal is to accompany

our tutorial talk, presents a brief report on some recent
progress we have made on these two target areas, as well
as some challenges that lie ahead. This is meant neither
as a comprehensive survey paper, as there are many great
contributions by other authors that we do not cover, nor as a
stand-alone paper, as for the most part only entry points to a
collection of relevant papers will be provided. The interested
reader can find further detail and a more comprehensive
literature review in the references presented in each section.

A. Organization of the paper

The outline of the paper is as follows. We start by a
short section on basics of sum of squares optimization in
the hope that our tutorial paper becomes accessible to a
broader audience. In Section IV, we describe some recent
developments on the optimization side to provide more
scalable alternatives to sum of squares programming. This
is the framework of “dsos and sdsos optimization”, which
is amenable to linear and second order cone programming
as opposed to semidefinite programming. In Section V, we
describe some new contributions to Lyapunov theory that can
improve the scalability of algorithms meant for verification
of dynamical systems. These include techniques for replacing
high-degree Lyapunov functions with multiple low-degree
ones (Section V-A), and a methodology for relaxing the
“monotonic decrease” requirement of Lyapunov functions
(Section V-B). The beginning of Section V also includes
a list of recent results on complexity of deciding stability
and on success/limitations of algebraic methods for finding
Lyapunov functions. Both Sections IV and V are ended with
a list of open problems or opportunities for future research.

III. A QUICK INTRODUCTION TO SOS FOR THE GENERAL
READER1

At the core of most algebraic methods in optimization and
control is the simple idea of optimizing over polynomials that
take only nonnegative values, either globally or on certain
regions of the Euclidean space. A multivariate polynomial
p(x) := p(x1, . . . , xn) is said to be (globally) nonnegative if
p(x) ≥ 0 for all x ∈ Rn. As an example, consider the task
of deciding whether the following polynomial in 3 variables
and degree 4 is nonnegative:

p(x) = x41 − 6x31x2 + 2x31x3 + 6x21x
2
3 + 9x21x

2
2

−6x21x2x3 − 14x1x2x
2
3 + 4x1x

3
3

+5x43 − 7x22x
2
3 + 16x42.

(1)

This may seem like a daunting task (and indeed it is as
testing for nonnegativity is NP-hard), but suppose we could
“somehow” come up with a decomposition of the polynomial
as a sum of squares:

p(x) = (x21 − 3x1x2 + x1x3 + 2x23)
2 + (x1x3 − x2x3)2

+(4x22 − x23)2.
(2)

1The familiar reader may safely skip this section. For a more compre-
hensive introductary exposition, see:
https://blogs.princeton.edu/imabandit/guest-posts/

https://blogs.princeton.edu/imabandit/guest-posts/


Then, we have at our hands an explicit algebraic certificate of
nonnegativity of p(x), which can be easily checked (simply
by multiplying the terms out). A polynomial p is said to be a
sum of squares (sos), if it can be written as p(x) =

∑
q2i (x)

for some polynomials qi. Because of several interesting
connections between real algebra and convex optimization
discovered in recent years [18] and quite well-known by now,
the question of existence of an sos decomposition (i.e., the
task of going from (1) to (2)) can be cast as a semidefinite
program (SDP) and be solved, e.g., by interior point methods.
The question of when nonnegative polynomials admit a
decomposition as a sum of squares is one of the central
questions of real algebraic geometry, dating back to the
seminal work of Hilbert [19], [20], and an active area of
research today. This question is commonly faced when one
attempts to prove guarantees for performance of algebraic
algorithms in optimization and control.

In short, sum of squares decomposition is a sufficient
condition for polynomial nonnegativity. It has become quite
popular because of three reasons: (i) the decomposition can
be obtained by semidefinite programming, (ii) the proof of
nonnegativity is in form of an explicit certificate and is easily
verifiable, and (iii) there is strong empirical (and in some
cases theoretical) evidence showing that in relatively low
dimensions and degrees, “most” nonnegative polynomials are
sums of squares.

But why do we care about polynomial nonnegativity to
begin with? We briefly present two fundamental application
areas next: the polynomial optimization problem, and Lya-
punov analysis of control systems.

A. The polynomial optimization problem

The polynomial optimization problem (POP) is currently
a very active area of research in the optimization community.
It is the following problem:

minimize p(x)
subject to x ∈ K := {x ∈ Rn | gi(x) ≥ 0, hi(x) = 0},

(3)
where p, gi, and hi are multivariate polynomials. The special
case of problem (3) where the polynomials p, gi, hi all have
degree one is of course linear programming, which can be
solved very efficiently. When the degree is larger than one,
POP contains as special case many important problems in
operations research; e.g., all problems in the complexity class
NP, such as MAXCUT, travelling salesman, computation of
Nash equilibria, scheduling problems, etc.

A set defined by a finite number of polynomial inequalities
(such as the set K in (3)) is called basic semialgebraic. By
a straightforward reformulation of problem (3), we observe
that if we could optimize over the set of polynomials,
nonnegative on a basic semialgebraic set, then we could
solve the POP problem to global optimality. To see this, note
that the optimal value of problem (3) is equal to the optimal
value of the following problem:

maximize γ
subject to p(x)− γ ≥ 0, ∀x ∈ K. (4)

Here, we are trying to find the largest constant γ such that
the polynomial p(x)−γ is nonnegative on the set K; i.e., the
largest lower bound on problem (3). For ease of exposition,
we only explained how a sum of squares decomposition
provides a sufficient condition for polynomial nonnegativity
globally. But there are straightforward generalizations for
giving sos certificates that ensure nonnegativity of a polyno-
mial on a basic semialgebraic set; see, e.g., [18]. All these
generalizations are amenable to semidefinite programming
and commonly used to tackle the polynomial optimization
problem.

B. Lyapunov analysis of dynamical systems

Numerous fundamental problems in nonlinear dynamics
and control, such as stability, invariance, robustness, collision
avoidance, controller synthesis, etc., can be turned by means
of “Lyapunov theorems” into problems about finding special
functions (the Lyapunov functions) that satisfy certain sign
conditions. The task of constructing Lyapunov functions has
traditionally been one of the most fundamental and chal-
lenging tasks in control. In recent years, however, advances
in convex programming and in particular in the theory of
semidefinite optimization have allowed for the search for
Lyapuonv functions to become fully automated. Figure 2
summarizes the steps involved in this process.

Fig. 2. The steps involved in Lyapunov analysis of dynamical sys-
tems via semidefinite programming. The need for “computational”
converse Lyapunov theorems is discussed in Section V.

As a simple example, if the task in the leftmost block
of Figure 2 is to establish global asymptotic stability of the
origin for a polynomial differential equation ẋ = f(x), with
f : Rn → Rn, f(0) = 0, then the Lyapunov inequalities that
a radially unbounded Lyapunov function V would need to
satisfy are [21]:

V (x) > 0 ∀x 6= 0

V̇ (x) = 〈∇V (x), f(x)〉 < 0 ∀x 6= 0.
(5)

Here, V̇ denotes the time derivative of V along the trajec-
tories of ẋ = f(x), ∇V (x) is the gradient vector of V , and
〈., .〉 is the standard inner product in Rn. If we parametrize
V as an unknown polynomial function, then the Lyapunov
inequalities in (5) become polynomial positivity conditions.
The standard sos relaxation for these inequalities would then
be:

V sos and − V̇ = −〈∇V, f〉 sos. (6)

The search for a polynomial function V satisfying these two
sos constraints is a semidefinite program, which, if feasible,



would imply2 a solution to (5) and hence a proof of global
asymptotic stability through Lyapunov’s theorem.

IV. MORE TRACTABLE ALTERNATIVES TO SUM OF
SQUARES OPTIMIZATION [AREA 1]

As explained in Section III, a central question of relevance
to applications of algorithmic algebra is to provide sufficient
conditions for nonnegativity of polynomials, as working with
nonnegativity constraints directly is in general intractable.
The sum of squares (sos) condition achieves this goal and
is amenable to semidefinite programming (SDP). Although
this has proven to be a powerful approach, its application to
many practical problems has been challenged by a simple
bottleneck: scalability.

For a polynomial of degree 2d in n variables, the size of
the semidefinite program that decides the sos decomposition
is roughly nd. Although this number is polynomial in n
for fixed d, it can grow rather quickly even for low degree
polynomials.

In addition to being large-scale, the resulting semidefinite
programs are also often ill-conditioned and challenging to
solve. In general, SDPs are among the most expensive convex
relaxations and many practitioners try to avoid them when
possible. In the field of integer programming for instance,
the cutting-plane approaches used on industrial problems
are almost exclusively based on linear programming (LP)
or second order cone programming (SOCP). Even though
semidefinite cuts are known to be stronger, they are typically
too expensive to be used even at the root node of branch-and-
bound techniques for integer programming. Because of this,
many high-performance solvers, e.g., the CPLEX package of
IBM [23], do not even provide an SDP solver and instead
solely work with LP and SOCP relaxations. In the field of
sum of squares optimization, however, a sound alternative to
sos programming that can avoid SDP and take advantage of
the existing mature and high-performance LP/SOCP solvers
is lacking. This is precisely what we aim to achieve in this
section.

Let PSDn,d and SOSn,d respectively denote the cone of
nonnegative and sum of squares polynomials in n variables
and degree d, with the obvious inclusion relation SOSn,d ⊆
PSDn,d. The basic idea is to approximate the cone SOSn,d
from the inside with new cones that are more tractable for
optimization. Towards this goal, one may think of several
natural sufficient conditions for a polynomial to be a sum of
squares. For example, consider the following sets:
• The cone of polynomials that are sums of 4-th powers

of polynomials: {p| p =
∑
q4i },

• The set of polynomials that are a sum of three squares
of polynomials: {p| p = q21 + q22 + q23}.

Even though both of these sets clearly reside inside the
sos cone, they are not any easier to optimize over. In fact,
they are much harder! Indeed, testing whether a (quartic)

2Here, we are assuming a strictly feasible solution to the SDP (which
unless the SDP has an empty interior will be automatically returned by the
interior point solver). See the discussion in [22, p. 41].

polynomial is a sum of 4-th powers is NP-hard [24] (as
the cone of 4-th powers of linear forms is dual to the
cone of nonnegative quartic forms [25]) and optimizing over
polynomials that are sums of three squares is intractable
(as this task even for quadratics subsumes the NP-hard
problem of positive semidefinite matrix completion with a
rank constraint [26]). These examples illustrate the rather
obvious point that inclusion relationship in general has no
implications in terms of complexity of optimization. Indeed,
we would need to take some care in deciding what subset of
SOSn,d we exactly choose to work with—on one hand, it has
to comprise a “big enough” subset to be useful in practice;
on the other hand, it should be computationally simpler for
optimization.

A. The cone of r-dsos and r-sdsos polynomials

We now describe cones inside SOSn,d (and some in-
comparable with SOSn,d but still inside PSDn,d) that are
naturally motivated and that lend themselves to linear and
second order cone programming. There are also several
generalizations of these cones, including some that result in
fixed-size (and “small”) semidefinite programs. These can be
found in [27] and are omitted from here.

Definition 1 (Ahmadi, Majumdar,‘13):
• A polynomial p is diagonally-dominant-sum-of-squares

(dsos) if it can be written as

p =
∑
i

αim
2
i +

∑
i,j

β+
ij(mi +mj)

2 + β−ij(mi −mj)
2,

for some monomials mi,mj and some constants
αi, β

+
ij , β

−
ij ≥ 0.

• A polynomial p is scaled-diagonally-dominant-sum-of-
squares (sdsos) if it can be written as

p =
∑
i

αim
2
i+
∑
i,j

(β+
i mi+γ

+
j mj)

2+(β−i mi−γ−j mj)
2,

for some monomials mi,mj and some constants
αi, β

+
i , γ

+
j , β

−
i , γ

−
j ≥ 0.

• For a positive integer r, a polynomial p is r-diagonally-
dominant-sum-of-squares (r-dsos) if p ·

(
1 +

∑
i x

2
i

)r
is dsos.

• For a positive integer r, a polynomial p is r-scaled-
diagonally-dominant-sum-of-squares (r-sdsos) if
p ·

(
1 +

∑
i x

2
i

)r
is sdsos.

We denote the set of polynomials in n variables
and degree d that are dsos, sdos, r-dsos, and r-
sdsos by DSOSn,d, SDSOSn,d, rDSOSn,d, rSDSOSn,d,
respectively.

The following inclusion relations are straightforward:

DSOSn,d ⊆ SDSOSn,d ⊆ SOSn,d ⊆ POSn,d,

rDSOSn,d ⊆ rSDSOSn,d ⊆ POSn,d,∀r,



rDSOSn,d ⊆ (r + 1)DSOSn,d,∀r,

rSDSOSn,d ⊆ (r + 1)SDSOSn,d,∀r.

Our terminology in Definition 1 comes from the following
concepts in linear algebra.

Definition 2: A symmetric matrix A is diagonally domi-
nant (dd) if aii ≥

∑
j 6=i |aij | for all i. A symmetric matrix

A is scaled diagonally dominant (sdd) if there exists an
element-wise positive vector y such that:

aiiyi ≥
∑
j 6=i

|aij |yj ,∀i.

Equivalently, A is sdd if there exists a positive diagonal
matrix D such that AD (or equivalently, DAD) is dd. We
denote the set of n× n dd and sdd matrices with DDn and
SDDn respectively.

Theorem 4.1 (Ahmadi, Majumdar,’13):
• A polynomial p of degree 2d is dsos if and only if it

admits a representation as p(x) = zT (x)Qz(x), where
z(x) is the standard monomial vector of degree d, and
Q is a dd matrix.

• A polynomial p of degree 2d is sdsos if and only if it
admits a representation as p(x) = zT (x)Qz(x), where
z(x) is the standard monomial vector of degree d, and
Q is a sdd matrix.

Theorem 4.2 (Ahmadi, Majumdar,’13): For any nonneg-
ative integer r, the set rDSOSn,d is polyhedral and the
set rSDSOSn,d has a second order cone representation.
For any fixed r and d, optimization over rDSOSn,d (resp.
rSDSOSn,d) can be done with linear programming (resp.
second order cone programming), of size polynomial in n.

B. How fast/powerful is the dsos and sdsos methodology?

A large portion of our recent papers [27], [28], [29] is
devoted to this question. We provide a glimpse of the results
in this section.

As it is probably obvious, the purpose of the parameter
r in Definition 1 is to have a knob for trading off speed
with approximation quality. By increasing r, we obtain
increasingly accurate inner approximations to the set of
nonnegative polynomials. The following example shows that
even the linear programs obtained from r = 1 can outperform
the semidefinite programs resulting from sum of squares.

Example 4.1: Consider the polynomial

p(x) = x41x
2
2 + x42x

2
3 + x43x

2
1 − 3x21x

2
2x

2
3.

One can show that this polynomial is nonnegative but not
a sum of squares [20]. However, we can give an LP-based
nonnegativity certificate of this polynomial by showing that
p ∈ 1DSOS. Hence, 1DSOS * SOS.

By employing appropriate Positivstellensatz results from
real algebraic geometry, we can prove that many asymptotic
guarantees that hold for sum of squares programming also
hold for dsos and sdsos programming.

Theorem 4.3 (Ahmadi, Majumdar,’13):

Fig. 3. An illustration
of the N-link inverted
pendulum system (with
N = 6).
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Fig. 4. From [29] (with Majumdar and
Tedrake): comparisons of projections of the
ROAs computed for the 6-link pendulum sys-
tem using DSOS, SDSOS and SOS program-
ming, via LP, SOCP, and SDP respectively.

• Let p be an even form (i.e., a form where no variable
is raised to an odd power). If p(x) > 0 for all x 6= 0,
then there exists an integer r such that p ∈ rDSOS.

• Let p be any form. If p(x) > 0 for all x 6= 0, then
there exists a form q such that q is dsos and pq is dsos.
(Observe that this is a certificate of nonnegativity of p
that can be found with linear programming.)

• Consider the polynomial optimization problem (POP)
(3) and the hierarchy of sum of squares relaxations of
Parrilo [18] that solve it to arbitrary accuracy. If one
replaces all sos conditions in this hierarchy with dsos
conditions, one still solves POP to arbitrary accuracy
(but with a sequence of linear programs instead of
semidefinite programs).

On the practical side, we have preliminary evidence for
major speed-ups with minor sacrifices in conservatism. Fig-
ure 4 shows our experiments for computing the region of
attraction (ROA) for the upright equilibrium point of a stabi-
lized inverted N -link pendulum with 2N states; see Figure 3
for an illustration with N = 6 and [29] for experiments with
other values of N . The same exact algorithm was run (details
are in [29]), but polynomials involved in the optimization
which were required to be sos, were instead required to be
dsos and sdsos. Even the dsos program here is able to do
a good job at stabilization. More impressively, the volume
of the ROA of the sdsos program is 79% of that of the sos
program. For this problem, the speed up of the dsos and
sdsos algorithms over the sos algorithm is roughly a factor
of 1400 (when SeDuMi is used to solve the SDP) and a
factor of 90 (when Mosek is used to solve the SDP).



Perhaps more important than the ability to achieve
speedups over the sos approach in small or medium sized
problems is the opportunity to work in much bigger regimes
where sos solvers have no chance of getting past even the
first iteration of the interior point algorithm (at least with
the current state of affairs). For example, in work with
Majumdar and Tedrake [29], we use sdsos optimization to
compute (in the order of minutes) a stabilizing controller and
a region of attraction for an equilibrium point of a nonlinear
model of the ATLAS robot (built by Boston Dynamics Inc.
and used for the 2013 DARPA Robotics Challenge), which
has 30 states and 14 control inputs. (See video made by
Majumdar and Tedrake: https://www.youtube.com/
watch?v=6jhCiuQVOaQ) Similarly, in [27], we have
been able to solve dense polynomial optimization problems
of degree 4 in 70 variables in a few minutes.

Opportunities for future research. We believe the most
exciting opportunity for new contributions here is to reveal
novel application areas in control and polynomial optimiza-
tion where problems have around 20 − 100 state variables
and can benefit from tools for optimization over nonnega-
tive polynomials. It would be interesting to see for which
applications, and to what extent, our new dsos and sdsos
optimization tools can fill the gap for sos optimization at
this scale. To ease such investigations, a MATLAB package
for dsos and sdsos optimization is soon to be released as part
of the SPOTless toolbox3.

On the theoretical side, comparing worst-case approxima-
tion guarantees of dsos, sdsos, and sos approaches for par-
ticular classes of polynomial optimization problems (beyond
our asymptotic results) remains a wide open area.

V. COMPUTATIONAL ADVANCES IN LYAPUNOV THEORY
[AREAS 1&2]

If we place the theory of dynamical systems under a
computational lens, our understanding of the theory of
nonlinear or hybrid systems is seen to be very primitive
compared to that of linear systems. For linear systems, most
properties of interest (e.g., stability, boundedness of trajec-
tories, etc.) can be decided in polynomial time. Moreover,
there are certificates for all of these properties in form of
Lyapunov functions that are quadratic. Quadratic functions
are tractable for optimization purposes. By contrast, there
is no such theory for nonlinear systems. Even for the class
of polynomial differential equations of degree two, we do
not currently know whether there is a finite time (let alone
polynomial time) algorithm that can decide stability. In fact,
a well-known conjecture of Arnold from [30] states that there
should not be such an algorithm. Likewise, the classical
converse Lyapunov theorems that we have only guarantee
existence of Lyapunov functions within very broad classes
of functions (e.g. the class of continuously differentiable
functions) that are a priori not amenable to computation. The
situation for hybrid systems is similar, if not worse.

3https://github.com/spot-toolbox/spotless

We have spent some of our recent research ef-
forts [31], [32], [33], [34], [35] understanding the behavior of
nonlinear (mainly polynomial) and hybrid (mainly switched
linear) dynamical systems both in terms of computational
complexity and existence of computationally friendly Lya-
punov functions. In a nutshell, the goal has been to establish
results along the “converse arrow” of Figure 2 in Section III.
Some of our results are encouraging. For example, we
have shown that under certain conditions, existence of a
polynomial Lyapunov function for a polynomial differential
equation implies existence of a Lyapunov function that can
be found with sum of squares techniques and semidefinite
programming [31], [33]. More recently, we have shown that
stability of switched linear systems implies existence of an
sos-convex Lyapunov functions [36]. These are Lyapunov
functions that can be found with semidefinite programming
and that have algebraic certificates of convexity [36], [37].
Unfortunately, however, we also have results that are very
negative in nature:

Theorem 5.1 (Ahmadi, Krstic, Parrilo [32]): The
quadratic polynomial vector field,

ẋ = −x+ xy
ẏ = −y, (7)

is globally asymptotically stable but does not admit a poly-
nomial Lyapunov function of any degree.

Theorem 5.2 (Ahmadi, Parrilo [33]): For any positive in-
teger d, there exist homogeneous4 polynomial vector fields
in 2 variables and degree 3 that are globally asymptotically
stable but do not admit a polynomial Lyapunov function of
degree ≤ d.

Theorem 5.3 (Ahmadi, Jungers [38]): Consider the
switched linear system xk+1 = Aixk. For any positive
integer d, there exist pairs of 2× 2 matrices A1, A2 that are
asymptotically stable under arbitrary switching but do not
admit (i) a polynomial Lyapunov function of degree ≤ d, or
(ii) a polytopic Lyapunov function with ≤ d facets, or (iii)
a piecewise quadratic Lyapunov function with ≤ d pieces.
(This implies that there cannot be an upper bound on the
size of the linear and semidenite programs that search for
such stability certicates.)

Theorem 5.4 (Ahmadi [34]): Unless P=NP, there cannot
be a polynomial time (or even pseudo-polynomial time) algo-
rithm for deciding whether the origin of a cubic polynomial
differential equation is locally (or globally) asymptotically
stable.

Theorem 5.5 (Ahmadi, Majumdar, Tedrake [35]): The
hardness result of Theorem 5.4 extends to ten other
fundamental properties of polynomial differential equations
such as boundedness of trajectories, invariance of sets,
stability in the sense of Lyapunov, collision avoidance,
stabilizability by linear feedback, and others.

These results show a sharp transition in complexity of
Lyapunov functions when we move away from linear sys-
tems ever so slightly. Although one may think that such

4A homogeneous polynomial vector field is one where all monomials
have the same degree. Linear systems are an example.

https://www.youtube.com/watch?v=6jhCiuQVOaQ
https://www.youtube.com/watch?v=6jhCiuQVOaQ
https://github.com/spot-toolbox/spotless


counterexamples are not representative of the general case,
in fact it is quite common for simple nonlinear or hybrid
dynamical systems to at least necessitate “complicated” (e.g.,
high degree) Lyapunov functions. In view of this, it is
natural to ask whether we can replace the standard Lyapunov
inequalities with new ones that are less stringent in their
requirements but still imply stability. This would enlarge
the class of valid stability certificates to include simpler
functions and hence reduce the size of the optimization
problems that try to construct these functions.

In this direction, we have developed two frameworks:
path-complete graph Lyapunov functions (with Jungers and
Roozbehani) [39], [40] and non-monotonic Lyapunov func-
tions [22], [41]. The first approach is based on the idea of
using multiple Lyapunov functions instead of one and brings
in concepts from automata theory to establish how Lyapunov
inequalities should be written among multiple Lyapunov
functions. The second approach relaxes the classical require-
ment that Lyapunov functions should monotonically decrease
along trajectories. We briefly describe these concepts next.

A. Lyapunov inequalities and transitions in finite automata
[Areas 1&2]

Consider a finite set of matrices A := {A1, ..., Am}.
Our goal is to establish global asymptotic stability under
arbitrary switching (GASUAS) of the difference inclusion
system

xk+1 ∈ coA xk, (8)

where coA here denotes the convex hull of the set A. In
other words, we would like to prove that no matter what the
realization of our uncertain and time-varying linear system
turns out to be at each time step, as long as it stays within
coA, then we have stability. Let ρ(A) be the joint spectral
radius (JSR) of the set of matrices A:

ρ (A) = lim
k→∞

max
σ∈{1,...,m}k

‖Aσk
...Aσ2

Aσ1
‖1/k . (9)

It is well-known that ρ < 1 if and only if system (8) is
GASUAS.

Aside from stability of switched systems, computation
of the JSR emerges in many areas of application such as
computation of the capacity of codes, continuity of wavelet
functions, convergence of consensus algorithms, trackability
of graphs, and many others; see [42]. In [39], [40], we give
SDP-based approximation algorithms for the JSR by apply-
ing Lyapunov analysis techniques to system (8). We show
that considerable improvements in scalability are possible
(especially for high dimensional systems) if instead of a
common Lyapunov function of high degree for the set A,
we use multiple Lyapunov functions of low degree (quadratic
ones). Motivated by this observation, the main challenge is
to understand which sets of inequalities among a finite set of
Lyapunov functions imply stability. We give a graph theoretic
answer to this question by defining directed graphs whose
nodes are Lyapunov functions and whose edges are labeled
with matrices from the set of input matrices A. Each edge of

this graph defines a single Lyapunov inequality as depicted
in Figure 5(a).

Definition 3: (Ahmadi, Jungers, Parrilo, Roozbehani [39])
Given a directed graph G(N,E) whose edges are labeled
with words (matrices) from the set A, we say that the graph
is path-complete, if for all finite words Aσk

. . . Aσ1
of any

length k (i.e., for all words in A∗), there is a directed path
in the graph such that the labels on the edges of this path
are the labels Aσ1

up to Aσk
.

(a)

(b) (c)

Fig. 5. Path-complete graph Lyapunov functions. (a) The nodes of
the graph are Lyapunov functions and the directed edges, which
are labeled with matrices from the set A, represent Lyapunov
inequalities. (b) An example of a path-complete graph on the
alphabet {A1, A2}. This graph contains a directed path for every
finite word. (c) The SDP associated with the graph in (b) when
quadratic Lyapunov functions V1,2(x) = xTP1,2x are assigned to
its nodes. This is an SDP in matrix variables P1 and P2 which if
feasible implies ρ(A1, A2) ≤ 1. We prove an approximation ratio
of 1/ 4

√
n for this particular SDP.

An example of a path-complete graph is given in Fig-
ure 5(b), with dozens more given in [40]. In the terminology
of automata theory, path-complete graphs correspond pre-
cisely to finite automata whose language is the set A∗ of
all words (i.e., matrix products) from the alphabet A. There
are well-known algorithms in automata theory (see e.g. [43,
Chap. 4]) that can check whether the language accepted by
an automaton is A∗. Similar algorithms exist in the symbolic
dynamics literature; see e.g. [44, Chap. 3]. Our interest in
path-complete graphs stems from the following two theorems
that relate this notion to Lyapunov stability.

Theorem 5.6: (Ahmadi, Jungers, Parrilo, Roozbe-
hani [39]) Consider any path-complete graph with edges
labeled with matrices from the set A. Define a set of
Lyapunov inequalities, one per edge of the graph, following
the rule in Figure 5(a). If Lyapunov functions are found,
one per node, that satisfy this set of inequalities, then the
switched system in (8) is GASUAS.

Theorem 5.7: (Jungers, Ahmadi, Parrilo, Roozbe-
hani [45]) Consider any set of inequalities of the form
Vj(Akx) ≤ Vi(x) among a finite number of Lyapunov
functions that imply GASUAS of system (8). Then the
graph associated with these inequalities, drawn according to



the rule in Figure 5(a), is necessarily path-complete.
These two theorems together give a characterization of all

stability proving Lyapunov inequalities. Our result has uni-
fied several works in the literature, as we observed that many
LMIs that appear in the literature [46], [47], [48], [49], [50],
[51], [52] correspond to particular families of path-complete
graphs. In addition, the framework has introduced several
new ways of proving stability with new computational ben-
efits. Finally, by relying on some results in convex geom-
etry, we have been able to prove approximation guarantees
(converse results) for the SDPs that search for Lyapunov
functions on nodes of path-complete graphs. For example,
the upper bound ρ̂ that the SDP in Figure 5(c) produces on
the JSR satisfies

1
4
√
n
ρ̂(A) ≤ ρ(A) ≤ ρ̂(A).

B. Non-monotonic Lyapunov functions [Area 1]

Our research on this topic is motivated by a very natural
question: If all we need for the conclusion of Lyapunov’s
stability theorem to hold is for the value of the Lyapunov
function to eventually reach zero, why should we require the
Lyapunov function to decrease monotonically? Can we write
down conditions that allow Lyapunov functions to increase
occasionally, but still guarantee their convergence to zero
in the limit? In [22], [41], we showed that this is indeed
possible. The main idea is to invoke higher order derivatives
of Lyapunov functions (or higher order differences in discrete
time). Intuitively, whenever we allow V̇ > 0 (i.e., V increas-
ing), we should make sure some higher order derivatives of V
are negative, so the rate at which V increases decreases fast
enough for V to be forced to decrease later in the future.
An example of such an inequality for a continuous time
dynamical system ẋ = f(x) is [53]:

τ2
...
V (x) + τ1V̈ (x) + V̇ (x) < 0. (10)

Here, τ1 and τ2 are nonnegative constants and by the first
three derivatives of the Lyapunov function V : Rn → R in
this expression, we mean

V̇ (x) = 〈∂V (x)
∂x , f(x)〉,

V̈ (x) = 〈∂V̇ (x)
∂x , f(x)〉,

...
V (x) = 〈∂V̈ (x)

∂x , f(x)〉.

In [22], [54], we establish a link between non-monotonic
Lyapunov functions and standard ones, showing how the
latter can be constructed from the former. The main ad-
vantage of non-monotonic Lyapunov functions over standard
ones is, however, that they can often be much simpler in
structure. Figure 6 shows a trajectory of a stable linear
time-varying system for which a standard Lyapunov function
should either depend on time or be extremely complicated.
However, if one uses condition (10), the simple quadratic
non-monotonic Lyapunov function ||x||2 provides a proof
of stability. We have also showed how one can replace

Fig. 6. Non-monotonic Lyapunov functions [22]. A typical trajectory
of a linear time-varying dynamical system (left). The value of
a stability proving quadratic non-monotonic Lyapunov function
along the trajectory (right). A classical time-independent Lyapunov
function would have to be extremely complicated.

condition (10) with other inequalities involving the first three
derivatives, which are at least as powerful, but also convex
in the decision variables. This allowed for sum of squares
methods to become applicable for an automated search for
non-monotonic Lyapunov functions. The concrete advantage
over standard Lyapunov functions is savings in the number
of decision variables of the sos programs; see, e.g., [54, Ex.
2.1].

Opportunities for future research. The body of work
described in this section leaves several directions for future
research:

• On the topic of complexity: What is the complexity of
testing asymptotic stability of a polynomial vector field
of degree 2? For degree 1, the problem can be solved
in polynomial time; for degree 3, we have shown that
the problem is strongly NP-hard [34], [33].

• On the topic of existence of polynomial Lyapunov func-
tions: Is there a locally asymptotically stable polynomial
vector field with rational coefficients that does not
admit a local polynomial Lyapunov function? Our work
in [32] presents an example with no global polynomial
Lyapunov function. Bacciotti and Rosier [55, Prop.
5.2] present an independent example with no local
polynomial Lyapunov function, but their vector field
needs to have an irrational coefficient and the non-
existence of polynomial Lyapunov functions for their
example is not robust to arbitrarily small perturbations.

• On the topic of existence of sos Lyapunov functions:
Does existence of a polynomial Lyapunov function for
a polynomial vector field imply existence of an sos
Lyapunov function (see [31] for a precise definition)?
We have answered this question in the affirmative under
a few assumptions [31], [13], but not in general.

• On the topic of path-complete graph Lyapunov func-
tions: Characterize all Lyapunov inequalities among
multiple Lyapunov functions that establish switched
stability of a nonlinear difference inclusion. We know
already that the situation is more delicate here than the
characterization for the linear case presented in [40].
Indeed, we have shown [36] that path-complete graphs
no longer guarantee stability and that convexity of
Lyapunov functions plays a role in the nonlinear case.



• On the topic of non-monotonic Lyapunov functions:
Characterize all Lyapunov inequalities involving a finite
number of higher order derivatives that imply stability.
Determine whether the search for Lyapunov functions
satisfying these inequalities can be cast as a convex
program.

VI. ACKNOWLEDGEMENTS

We are grateful to Anirudha Majumdar for his contribu-
tions to the work presented in Section IV and to Russ Tedrake
for the robotics applications and many insightful discussions.

REFERENCES
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