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Definition

The purpose of illumination estimation is to determine
the direction, intensity, and/or color of the lighting in
a scene. In contrast to direct measurement of light-
ing, the illumination information is inferred from cues
within the scene, without use of a special probe or color
calibration chart.

Background

The appearance of objects and scenes can vary con-
siderably with respect to illumination conditions.
In [1], differences in face appearance due to light-
ing were found to be greater than those due to
identity. Since such appearance variations can affect
the performance of certain computer vision algorithms,

much research has focused on illumination estima-
tion, so that lighting can be accounted for in image
understanding.

To simplify inference, methods for illumination
estimation typically assume that the illumination origi-
nates from distant light sources. With this assumption,
the illumination can be considered to be uniform across
the scene, such that only a single lighting condition
needs to be estimated. Most techniques perform this
estimation on a single input image, as this allows for
wider applicability.

Methods

Different image cues have been utilized to estimate
illumination. Several techniques categorized by cue are
described in the following.

Shading
Many methods for illumination estimation are based
on an analysis of shading over the surface of an object.
They typically utilize the relationship between shading
and lighting described by the Lambertian reflectance
model:

I.x/ D �.x/N.x/ � L
where x indexes the shaded image pixels, I denotes
image intensity (shading), � is the albedo, N.x/ is the
surface normal, and L is the light vector that encodes
the direction and magnitude of illumination. To solve
for L, shading-based techniques for illumination esti-
mation generally assume the surface of interest to have
a uniform albedo and a known geometry. If the abso-
lute albedo value is unknown, then L can be estimated
up to an unknown scale factor.
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While some methods focus on recovering only
the direction of a single illuminant [2, 3], most
address the more common scenario of multiple illu-
mination sources. Hougen and Ahuja [4] solve a
set of linear equations to determine light intensities
from a set of sampled directions. Yang and Yuille
[5] use image intensities and known surface nor-
mals at occluding boundaries to constrain illuminant
directions. Ramamoorthi and Hanrahan [6] compute a
low-frequency illumination distribution from a decon-
volution of reflectance and lighting. Zhang and Yang
[7] estimate lighting directions from critical points
which have surface normals perpendicular to an illu-
minant direction. Based on this, Wang and Samaras [8]
segmented images into regions of uniform lighting and
then performed estimation by recursive least-squares
fitting of the Lambertian reflectance model to these
regions.

Illumination may alternatively be estimated by
uncalibrated photometric stereo [9], without the need
for known albedos and surface normals. This approach
requires a set of images taken under different lighting
conditions as input.

Cast Shadows
Several techniques analyze cast shadows for illumi-
nation estimation. For an object of known shape, the
shadows that it casts provide constraints on the light-
ing directions and their corresponding intensities. Sato
et al. [10–13] formulated these constraints as a system
of equations in terms of observed brightness values
within shadows and a set of sampled lighting direc-
tions at which source intensities are to be solved.
These methods require a single input image for objects
that cast shadows onto a uniform-colored surface; two
images are needed to cancel out the effects of color
variation for surfaces with texture. This approach was
extended by Okabe et al. [14] to a lighting repre-
sentation of Haar wavelets. Kim and Hong [15] later
proposed a single-image method that handles sur-
face texture by incorporating regularization and some
user-specified information.

Specular Reflections
Some methods consider specular reflections in esti-
mating illumination. From the locations of specu-
lar reflections on an object of known shape, these
techniques compute the corresponding light source

directions according to the mirror reflection property.
This approach was used by Nishino et al. [16] to obtain
an initial approximation of the illumination distribu-
tion, which is then refined using a more sophisticated
model of reflectance. Illumination cues from specu-
lar reflections are combined with those from shading
and shadows by Li et al. [17] to minimize the effects
of scene texture on lighting estimation. Without need-
ing explicit object shape recovery, Nishino et al. [18]
and Wang et al. [19] proposed to estimate lighting
from specular reflections on human eyes, which are
highly reflective and have a similar shape from person
to person.

Color
Much research focuses on estimating the color of illu-
mination, rather than the directional distribution. Early
methods solve for light color based on assumed prop-
erties of the imaged scene, such as the average color
being achromatic [20] or that the scene contains a
maximally reflective white patch [21]. More recent
techniques are guided by more detailed knowledge
about illumination and surface colors in the natural
world. A statistical model of lights and surfaces from
training data is used by Brainard and Freeman [22]
and Finlayson et al. [23] to obtain a solution. Knowl-
edge about illuminations and surfaces is instead used
by Forsyth [24] and Finlayson et al. [25] to constrain
the range of illuminant colors that could possibly result
in the observed image. A comprehensive review of illu-
mination color estimation methods is provided in [26].

Application

Illumination estimation has been employed in vari-
ous applications based on appearance modeling. In
[18], lighting estimates from eye reflections are used
for robust face recognition under varying illumina-
tion conditions. Estimates of scene illumination have
also been used to realistically composite virtual objects
into an image in an illumination-consistent manner
[27, 28]. In digital cameras, methods for estimat-
ing illumination color are incorporated into auto-
matic white balance algorithms. Recent methods for
estimating light color, however, have been found
to be inadequate in improving color-based object
recognition [29].
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Definition

An image decomposition is the result of a mathemati-
cal transformation of an image into a new set of images
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that represent different aspects of the input image or
scene pictured in that image. The original image can
typically be reconstructed from these new images.

Background

While images are primarily stored as an array of pixel
values, an image can be represented in a number of
different ways. For instance, an image can be easily
transformed into two images, one containing the high-
frequency variation in the input image and a second
containing the low-frequency variation. This process
decomposes the input image into two images, each
of which expresses different information about the
original image.

This process is useful when further processing will
treat these two images differently. If the decomposition
is chosen correctly, the image is decomposed into a set
of images that can each be processed uniformly. Thus,
the decomposition facilitates adaptive processing of
the content of an image.

Theory

Image decompositions can be roughly divided into
two different types of decompositions, image-based
decompositions and intrinsic image decompositions.
Image-based decompositions represent the image itself
using new images, while the intrinsic image decompo-
sitions reflect the content of the scene pictured in the
image itself.

Image-Based Decompositions
Similar to the background example above, many
image-based decompositions focus on representing
multi-scale frequency content in the scene. The Gaus-
sian pyramid is one of the most basic decompositions
representing multi-scale content. The decomposition
consists of a set of images of progressively smaller
resolution, with each image being one level of the pyra-
mid. Each level is created by filtering the image at the
level below, then downsampling the result. This creates
a multi-resolution set of images.

Depending on the application, the usefulness of
the Gaussian pyramid may be limited because each
level contains redundant information. This can be
eliminated by modifying the pyramid creation process

to create a Laplacian pyramid [1]. In the Laplacian
pyramid, the input image is progressively downsam-
pled. The image at level i in the Laplacian pyramid
is computed by taking the difference between the i th
level of the Gaussian pyramid and the upsampled ver-
sion of level i C 1, which has been downsampled from
the i th level of the Gaussian pyramid. Effectively, each
level of the Laplacian pyramid expresses the image
information at a particular scale. Figure 1 shows an
example of the Laplacian decomposition of an image.

In [2], Simoncelli et al. extended this decomposi-
tion process to also separate orientation into different
images, creating the steerable pyramid decomposition.
Similar decompositions can also be generated by using
a different process to separate the images. In [3],
the bilateral filter is used to generate a two-image
decomposition.

These decompositions are also connected to other
image transformations, particularly wavelets. The con-
nections are discussed in [2].

Intrinsic Image Decompositions
While image-based decompositions are focused on the
pixel values themselves, intrinsic image decomposi-
tions create images that are based on the content of
the scene. The intrinsic image decomposition is based
on the intrinsic image approach for representing scene
characteristics. In this approach, each intrinsic charac-
teristic of the scene is represented by a distinct image.
In the intrinsic image decomposition, these images are
chosen to both represent intrinsic characteristics and
image content.

In [4], Weiss uses video data to separate an image
into illumination, or shading, and albedo components.
In this decomposition, an input image pixel at location
n, I.n/, is equal to the product of a shading image and
an albedo image, or I.n/ D S.n/�A.n/. In [5] and [6],
Tappen et al. show how the intrinsic image decompo-
sition can be computed from a single image. Figure 2
shows an example of an intrinsic image decomposition
for the image on the left.

Application

Image decompositions are frequently used to generate
images that processed separately. In [7], Portilla et al.
use the steerable pyramid to denoise images. Heeger
and Bergen showed that texture can be generated by
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Image
Decompositions, Fig. 1
These images are a Laplacian
pyramid created from the
well-known Lena image. Each
image captures the variation at
a specific scale

Input Image Shading Image Albedo Image

ImageDecompositions, Fig. 2 An example of an intrinsic image decomposition. The image on the left is decomposed into shading
and albedo components

forcing the marginal histograms of the levels of a steer-
able pyramid to match those of a pyramid generated
from a reference image [8]. More complete measures
of statistical similarity are used in [9], leading to
improved synthesis results.

As mentioned earlier, the bilateral filter is used
in [3] to separate the image into large- and fine-scale
variations to combine images taken under different
illumination. In [10], Bousseau et al. describe how
user input can improve intrinsic image decompositions
and demonstrate how they can be applied for graphics
applications.
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Synonyms

Image inverse problems

Related Concepts

�Denoising; �Image-Based Modeling; �Inpainting

Definition

Image enhancement and restoration is a procedure that
attempts to improve the image quality by removing
the degradation while preserving the underlying image
characteristics.

Background

Image quality is often deteriorated during acquisition,
compression, and transmission. Typical degradations
include image blur introduced by lens out-of-focus,

resolution downgrade due to acquisition equipment
pixel limitation, noise spots introduced at high ISO,
and JPEG block artifact, as illustrated in Fig. 1.
Image enhancement and restoration is a procedure that
attempts to improve the image quality by removing
the degradation while preserving the underlying image
characteristics. For some specific degradations as men-
tioned above, image enhancement and restoration is
also known as deblurring, super-resolution zooming,
denoising, and deblocking. While jointly addressed
here and in most of the literature, restoration often
refers to the case where one attempts to mathemat-
ically invert the degradation (e.g., invert the blurring
filter), and enhancement refers to the improvement of
the overall image quality without explicit mathematical
inversion of the degradation process.

Theory

The problems of image enhancement and restoration
are ill posed since they amount to recovering some
image information that has been eliminated during
the degradation. Solving these problems must there-
fore rely on some prior knowledge of the image, or
in mathematical terms image models, to regularize the
solution. Mathematically, let f denote an ideal image,
U a linear degradation operator, w an additive noise,
and

y D Uf C w (1)

the degraded (observed) image. While this model does
not cover all possible degradation scenarios, it is very
popular and useful, and serves to illustrate the underly-
ing image enhancement and restoration key concepts.
Modern image enhancement and restoration estimates
the underlying image f from the degraded observa-
tion y by, for example, minimizing a functional of
the form

Of D arg min
h

�ky � Uhk2 C '.h/
�
; (2)

where the first term ensures that the restored image Of
and the degraded image y agree with the image degra-
dation (Eq. 1), and the second term '.h/ regularizes
the solution via a certain image model. The technology
of image enhancement and restoration thus has been
developed hand in hand with a better understanding of
image modeling.

http://dx.doi.org/10.1007/978-0-387-31439-6_100051
http://dx.doi.org/10.1007/978-0-387-31439-6_484
http://dx.doi.org/10.1007/978-0-387-31439-6_11
http://dx.doi.org/10.1007/978-0-387-31439-6_249
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Image Enhancement and
Restoration, Fig. 1 From
left to right. Ideal image,
image degraded by
out-of-focus, resolution
downgrade, noise spots, and
JPEG block artifact

Image Enhancement and Restoration, Fig. 2 Left: noisy
image. Right: image denoised by Gaussian smoothing

The most classic image model that dated from
the 1960s assumes that image content is uniformly
smooth [10]. This model results in a number of
well-known image enhancement and restoration algo-
rithms, including Gaussian smoothing for denoising,
bicubic interpolation for zooming, and Wiener filter
for deblurring [12]. All these algorithms are imple-
mented with linear filtering uniformly applied over
the image, typical isotropic local filters smoothing
out the image. While the uniformly smooth assump-
tion holds on regular image regions such as sky
or a blackboard, that typically dominates a natural
image, it is obviously oversimplified on other impor-
tant types of image transition structures, such as con-
tours, that are smooth along one direction but not the
other, and textures that are oscillatory patterns. As
shown in Fig. 2, although image noise is attenuated,
image contours become blurred at the end of restora-
tion when this simple uniformly smooth model is
assumed.

Anisotropic image models attempting to address
this problem came into the scene in the early 1990s
(with some works dating to the 1960s as well,
by Gabor). As opposed to the uniformly smooth

assumption, the anisotropic models assume that an
image is piecewise smooth, in other words, smooth
inside each sub-region, and that at a contour or bound-
ary of the regions where the image intensity sharply
changes, the smoothness holds only along the con-
tour direction but not in the perpendicular direction.
These models give clearly a better image description
and have been elegantly formulated in some partial
differential equation frameworks such as anisotropic
diffusion [7, 15] and total variation [16]. The result-
ing algorithms implement nonlinear filtering adaptive
to the image content, uniformly smoothing inside each
image sub-region, and smoothing only along the con-
tour direction on the region boundaries. Therefore,
image contours are better preserved.

Since the boom of wavelets in the early 1990s,
multi-resolution harmonic analysis has lead to consid-
erable efforts and improvements on image modeling
and restoration [4, 12]. Wavelet analysis models an
image from multiple resolutions; at each resolution,
translating local wavelet atoms oscillating at the cor-
responding scale are used. The wavelet response is
typically high on image transition structures, such
as contours and textures, and negligible on regular
regions. As a result, it does not only implement non-
linear adaptive filtering, but also reveals the important
concept of “sparse modeling”: wavelet analysis rep-
resents an image with only a few large wavelet coef-
ficients that absorb most of the image energy, while
the majority of wavelet coefficients quickly decay to
zero. The wavelet’s sparsity as well as its performance
in image enhancement and restoration have been later
improved by geometric adaptive harmonic analysis
such as curvelets [5] that include local directional
atoms to catch the image contours.

In order to further promote the resulting sparsity
relative to prefixed harmonic analysis dictionaries
(Dictionary here means an ensemble of harmonic anal-
ysis atoms), such as wavelets or curvelets, sparsifying
learned dictionaries, i.e., dictionaries that are learned
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Image Enhancement and
Restoration, Fig. 3 Image
enhancement and restoration
examples. (a) and (b)
Super-resolution zooming:
Low-resolution and zoomed
images. (c) and (d)
Deblurring: blurred and
deblurred images (Figures
reproduced from [17])

Image Enhancement and Restoration, Fig. 4 Image
enhancement and restoration examples. (a) and (b) Denois-
ing: Noisy and denoised images. (c) and (d) Inpainting: image
with 80% random missing pixels and restore image. (This

problem is related to the task of reconstructing a color image
from undersampled color channels, as present in most low/mid,
end digital cameras.) The results are obtained following the
technique in [17]

from images of interest to yield sparse representations
for that class of data, have emerged [1, 13], leading to
further improved image enhancement and restoration
performance [11].

Non-local image modeling is based on the obser-
vation that images typically contain repetitive local
patterns (self-similarity). Since the pioneering work
of the nonlocal means denoising algorithm [3] in
2005 (see also [2, 14]), non-local modeling has
been extensively studied in image enhancement and
restoration [8, 9].

Gaussian mixture models, a statistical model widely
applied in machine learning, have been shown partic-
ularly effective for image enhancement and restora-
tion [17]. The models assume that local image patches
follow a mixture of Gaussian distributions. The result-
ing piecewise linear algorithm is not only extremely

fast, but also reveals some connections to sparse mod-
eling and non-local modeling.

State-of-the-art image enhancement and restora-
tion results are obtained with algorithms derived from
the last three image models, namely, sparse model-
ing with learned dictionaries, non-local modeling, and
Gaussian mixture models. Figure 3 illustrates some
examples.

Open Problems

For image enhancement and restoration problems such
as removing Gaussian white noise from an image
and filling small holes at random positions in an
image, it seems that the current performance is already
acceptable, as illustrated in Fig. 4, and has arguably



Image Plane 379 I

I

reached a quality boundary uneasy to go beyond.
For other more difficult problems such as deblur-
ring and zooming, although substantial visual quality
improvement has been achieved with respect to classic
algorithms such as Wiener filter and bicubic interpola-
tion, objective performance improvement is relatively
limited despite considerable efforts that have been
devoted. Theoretical performance bounds of image
enhancement and restoration remains to be understood.
The recent very exciting compressive sensing the-
ory [6] reveals the performance bounds of the sparse
modeling approaches given some random degradation
operations, but is inapplicable to typical degradations
such as blurring and subsampling and to the most suc-
cessful learned dictionaries. The extension of these
results to more realistic image degradation scenarios
and image models is among the current challenges of
image restoration and enhancement.
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Synonyms

Retina

Related Concepts

�Pinhole Camera Model

Definition

The image plane is the planar surface on which the
image is generated in an image formation process or
a model thereof.
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Background

In most cameras, the photosensitive elements are
arranged on a planar support. In image formation mod-
els, the image plane is the (mathematical) plane where
the image is formed and within which pixels or film are
supposed to be located.

There exist cameras where the photosensitive area
is not flat. For instance, in most early panoramic image
acquisition systems that proceeded by scanning a scene
with a rotating slit camera, the film was wrapped
onto the inside of a cylindrical surface [1, 2]. In that
case, one may still devise an equivalent theoretical
image formation model that has a planar image support
surface.
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Synonyms

Image alignment

Definition

Image registration aligns corresponding features of
images via spatial transformations.

Background

Computer vision or image processing systems often
need to align multiple images of the same or similar

scenes. In medical imaging, for example, radiologists
routinely compare images of a patient acquired at dif-
ferent times to monitor changes. The intensity differ-
ence between two images highlights such changes but
only if the corresponding features are in the same loca-
tion. However, patients’ positions in imaging devices
vary between visits, so raw images never have perfect
alignment. Image registration transforms or warps one
image so that the important objects and regions are in
the same position as in the other image. The difference
image then reveals intrinsic physical changes. Figure 1
illustrates the idea. The problem becomes more chal-
lenging when the images come from different devices
(inter-modality registration) or from different subjects
(intersubject registration).

The same problem arises in nonmedical imaging
applications. Surveillance systems, for example, often
need to look for differences between images at differ-
ent times, for example, to subtract the background and
highlight activity in a scene viewed by a security cam-
era. Fixed cameras can wobble in the wind and produce
misaligned images that require registration before the
difference image provides a meaningful result. Stitch-
ing images together to create panoramas [1–3] also
requires image registration to align the overlapping
parts of the images being stitched together; Fig. 2
illustrates this application. Similarly, super-resolution
techniques [4] align multiple images of the same scene
and infer subpixel detail.

Theory

The process of automatic image registration involves
optimizing a cost function, which expresses the simi-
larity of the two images, with respect to the parameters
of a transformation of one of the images. Mathemati-
cally, the optimization problem is

fT ?; g?g D argmin
fT;gg

.f .I1; T .g.I2////; (1)

where I1 is the target image, which is fixed; I2 is the
source image, which the transformations T and g act
upon; T is a spatial transformation, or warp; and g

affects only the image intensity at each pixel position;
the optimization seeks the transformations T ? and g?

that minimize the cost function f .
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Image Registration, Fig. 1 Intrasubject brain image registra-
tion. Top left: overlaid images of the same brain from dif-
ferent acquisitions, one in red and one in green; bottom left:

difference image of the two unaligned images; top right: over-
laid images after registration via a rigid transformation; bottom
right: difference image after alignment

The process decomposes into four key compo-
nents, which the following subsections discuss one by
one. The literature contains many review papers, for
example, [5–8], that discuss each component in more
detail.

Features
Various image features can drive the registration pro-
cess. Broadly, the feature set is either sparse or dense.

Sparse feature sets consist of geometric features
identified in the image through some preprocessing
step. These features might be salient points identified
by a user or by an automatic detector; SIFT features [9]
or variants thereof are a common choice. Features
may also be more complex geometric objects, such as
salient lines, curves, surfaces, or regions.

Dense features are typically pixel-by-pixel image
intensities. Each feature may be a single scalar inten-
sity or may have multiple components, as in multispec-
tral images. Dense feature sets may not include every
pixel in the image and often exclude pixels that lie out-
side the salient region of the image, such as the brain
region in Fig. 1.

Cost Function
The cost function provides a measurement of similar-
ity between two images. The definition of similarity
depends on the set of features.

For sparse feature sets, the cost function typically
uses a measure of distance between matched features
in the two images. For example, if the feature set is
a list of salient points in each image, the Euclidean
distance between each corresponding pair of points
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Image Registration, Fig. 2 Image registration for stitch-
ing. The panoramic image at the top comes from stitching
together various images including the two at the bottom. Image

registration provides the spatial transformation that associates
corresponding salient points in the two images, such as those
marked by the green arrows

provides a measure of similarity. This requires a pre-
ceding step to establish correspondence between pairs
of points, in a similar way to various other computer
vision tasks, such as stereo matching.

Registration based on dense features, that is, pixel
intensities, typically uses statistical measures of simi-
larity between pixel intensities in corresponding loca-
tions. The most direct measure of similarity uses the
average intensity difference

f1.I1; I2/ D �
X

x2X
jI1.x/ � I2.x/j; (2)

where X is the salient set of pixels. Equation 2 uses the
L1 norm, but other norms are equally possible.

Direct intensity comparisons, as in f1, assume that
the pixel intensity at corresponding locations is the
same subject to some noise perturbation. However,
that assumption often does not hold. For example,
differences in intensity scale between images arise fre-
quently. Where such intensity differences are likely,
similarity measures based on the correlation of pixel

intensities between the two images are more appropri-
ate. For example, the normalized cross correlation

f2.I1; I2/D
P

x2X.I1.x/� NI1/.I2.x/� NI2/qP
x2X.I1.x/� NI1/2

P
x2X.I2.x/� NI2/2

;

(3)

where NI is the mean intensity of image I over
region X .

The mapping between intensities of correspond-
ing pixels is sometimes more complex than a simple
scale change. It may be nonlinear and non-monotonic.
For example, in inter-modality medical image regis-
tration, two images of the same object may have the
same regional structure but different regional contrast:
image 1 has higher intensity than image 2 in some
regions, vice versa in others, and intensity correla-
tion at alignment remains low. Entropy-based similar-
ity measures [10–13] provide a useful alternative. A
common choice is the normalized mutual information

f3.I1; I2/ D H.I1/CH.I2/

H.I1; I2/
; (4)
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where

H.I/ D �
X

x2X
p.I.x// logp.I.x// (5)

is the entropy of image I , with p the distribution of
image intensities in I , and

H.I1; I2/ D �
X

x2X
p.I1.x/; I2.x// logp.I1.x/; I2.x//

(6)

is the joint entropy of images I1 and I2, with p

now the joint intensity distribution. The cost func-
tion f3 is minimum when one image predicts the
other most parsimoniously, that is, when the intensity
mapping from I1 to I2 requires the least information
to describe. Mutual-information-based cost functions
prove remarkably effective and robust. In practice, they
are often preferred to direct comparison or correlation-
based cost functions, such as f1 and f2, even for
intrasubject intra-modality registration.

Transformation Model
A variety of models are available for the spatial trans-
formation, T . Simple transformations, such as rigid,
affine, or polynomial transformations, are global in the
sense that even well-separated pixels undergo highly
correlated displacements. More complex models, such
as spline [14], radial-basis-function [15], elastic [16],
or fluid [17] transformations, can have more local
properties, so that the displacement of one pixel under
the transformation correlates only with that of proxi-
mal pixels.

In some applications, simple global transformations
are sufficient. For example, in brain imaging, rigid
transformations are often sufficient to align two images
from the same subject. Since a rigid skull encases the
brain, it deforms very little between image acquisi-
tions. The registration needs to correct only for the dif-
ference in position and orientation of the subject in the
imaging device. Higher-order global transformations,
such as full affine or polynomial transformations, can
improve alignment significantly even when the phys-
ical transformation is rigid, because they can capture
artifactual distortions introduced by the image device.
Image stitching often uses a homography, which is
a global transformation that accounts for changes in
perspective.

Local transformations can capture more subtle
changes between images. They are essential, for
example, for detecting and quantifying local atrophy
(shrinkage) of brain tissue that occurs over time in
various neurological conditions [18]. In general, in
medical imaging, local transformations are usually
necessary for good alignment in intersubject image
registration, where local variations in size and shape
of organs and body structure arise.

In practice, the intensity transformation, g in Eq. 1,
is often the identity. However, g becomes important in
images that contain more complex information at each
pixel than single or multiple scalar values. For exam-
ple, vector or tensor images are common in remote
sensing and medical imaging. In such images, each
pixel has an associated orientation. Nontrivial g is
essential to ensure that local orientations remain con-
sistent with the image structure through the spatial
transformation; see, for example, [19, 20].

Optimization
The wide range of optimization algorithms available
today, from simple line search or gradient descent to
stochastic and genetic optimization procedures, pro-
vides many candidates for driving the minimization of
the cost function that solves the registration problem.
The choice of optimization procedure depends on the
feature set. Registration via sparse feature matching
often relies on algorithms like RANSAC [21], which
are robust to errors in point correspondence, whereas
most image registration algorithms with dense features
use some form of gradient descent. The cost func-
tion is almost always non-convex, and an effective
optimization procedure for reliable image registration
cannot ignore local minima. Even for simple rigid
transformations, local minima often arise and reli-
able rigid registration with gradient descent requires
repeated runs with multiple starting points [22]. The
optimization problem tends to become harder the more
complex the transformation model. In local registra-
tion, the optimization has a much larger number of
parameters, so takes longer, and repeated runs can
be impractical. Hierarchical approaches, which start
with a simple global registration to get a good start-
ing point and gradually add parameters and reopti-
mize, are common to obtain a good local registra-
tion. Multi-resolution strategies, which start with low-
resolution images and gradually increase resolution,
also help.
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Application

The medical imaging community is a large consumer
and developer of image registration techniques. Intra-
subject image registration enables fusion of informa-
tion in images from different devices. Intrasubject
registration also enables tracking of changes over time
during development or disease. In drug trials, for
example, imaging offers the potential to observe the
effects of a prospective treatment and establish its effi-
cacy noninvasively; image registration is essential for
monitoring such effects.

Another major application is spatial normalization
for group studies, which study the variation in the size,
shape, and internal organization of a particular organ
or object. A common application is human brain map-
ping where morphological variability is well studied in
a range of conditions. Intersubject image registration
ensures that a collection of similar images are in the
same spatial frame of reference so that studies of varia-
tion are meaningful. This spatial normalization allows,
for example, medical imaging researchers to charac-
terize differences in organ size, shape, and structure
between different populations, such as normal healthy
adults and patients with a certain condition.

Image registration for image stitching enables day-
to-day image processing for digital camera users, as
standard packages like Photoshop include such opera-
tions. Google Maps is a large-scale application of the
same technology.

Many implementations of image registration are
freely available. Tried and tested global registration
software includes the FLIRT package [22] and Nifty
Reg [23]. The popular b-spline registration algo-
rithm [14] has implementations with some variations
in FNIRT [24] and Nifty Reg [25], which also offers
a GPU implementation. The DARTEL package [26]
is designed specifically for spatial normalization of
large brain image ensembles. The recent ANTS pack-
age [27] combines several state-of-the-art ideas and
performs well in a head-to-head evaluation with other
standard packages [28].

Open Problems

Consistency remains an open problem in image reg-
istration. Basic algorithms do not ensure that the
transformation from registering images A to B is

the perfect inverse of that from registering images
B to A. Symmetry constraints on the cost function
to ensure binary consistency are straightforward to
enforce. However, the problem becomes more complex
as the number of images to align increases: ensuring
consistency of A to B to C with C to A is more chal-
lenging. Groupwise registration, as in [26], goes some
way towards ameliorating this problem.

Topological differences or changes present a fur-
ther open challenge. Most transformation models do
not accommodate differences in topology naturally
between images. In fact, significant effort has gone into
developing diffeomorphic transformation models that
cannot fold or tear. However, topological differences
arise frequently. In intersubject medical image registra-
tion, for example, it is not uncommon for an anatom-
ical feature in one person to be entirely missing in
another. The same problem can arise even intrasubject,
say, before and after surgery to remove a tumor.
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Synonyms

Image Mosaicing; Panoramic stitching

Related Concepts

�Environment Mapping

Definition

Image stitching is the process of combining multiple
overlapping images to generate a new image with a
larger field of view than the originals.

Background

Image stitching can enhance the capabilities of an
ordinary camera, enabling the capture of larger field-
of-view, higher-resolution images. A popular example
is the construction of panorama images by seamlessly
combining several images of a scene taken from the
same point (This process is known as panoramic stitch-
ing, which refers to the special case of image stitch-
ing for rotational motion). By capturing images with
variable exposure settings, it can also be used to gen-
erate images with a higher dynamic range than the
originals.

Stitching techniques were originally used in pho-
togrammetry to produce maps from aerial and
satellite images. Early techniques involved manual
specification of matching images and control points
(correspondences) between them [1]. Later methods
used automated image alignment [2, 3] and interactive
viewers to visualize the results [4]. Modern stitching
pipelines offer fully automated operation [3], seam
selection [5], and photometric, as well as geometric
alignment [6].

http://dx.doi.org/10.1007/978-0-387-31439-6_100014
http://dx.doi.org/10.1007/978-0-387-31439-6_100015
http://dx.doi.org/10.1007/978-0-387-31439-6_100016


I 386 Image Stitching

Image Stitching, Fig. 1 Panoramic stitching. Images are first
geometrically aligned (using a rotational motion model in this
case). Photometric alignment is used to compensate for bright-
ness variations between the images, and the final panorama is

rendered using seam selection and pyramid blending. (a) Half
of the images aligned. (b) All images aligned using bundle
adjustment. (c) After photometric alignment, seam selection and
blending

A typical pipeline for image stitching consists of the
following stages (see Fig. 1):
1. Estimating two-frame motion and discovering over-

laps between the images
2. Global alignment (e.g., using bundle adjust-

ment [7])
3. Photometric alignment and seam selec-

tion/deghosting
4. Rendering the final panorama with blending and/or

tone mapping

Theory and Applications

Image stitching is possible when a one-to-one map-
ping exists between the source image coordinates.
Two commonly occurring examples are: (1) a camera
rotating about it’s optical center and (2) cameras view-
ing a planar scene. If the cameras are assumed to

be rectilinear, the image coordinates are related by a
homography

Qu2 D H12 Qu1 ; (1)

where Qu1; Qu2 are the homogeneous coordinates in
image 1 and 2 and H12 is a 3 � 3 matrix that encodes
the relative camera positions. For example, in the
rotational case, H12 is given by

H12 D K2R2RT
1 K�1

1 ; (2)

where R1;R2 are the rotation matrices of cameras 1
and 2 and K1;K2 contain the intrinsic parameters.

A typical image stitching approach begins by
robustly estimating H12 from correspondences of local
image features [8]. A standard method is to use
the RANSAC algorithm [9] to sample the space
of transformation hypotheses, for all images with a
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sufficiently large number of feature matches. One can
then reason about the adjacency relationships and rec-
ognize panoramas by making a match/no-match deci-
sion for each pair and finding connected components
in the resulting graph of image matches [3].

After pairwise alignment, gaps and inconsistencies
can still exist. Bundle adjustment [7] can be used to
minimize projection errors between feature matches
in all images and generate globally consistent results.
Best results are achieved by parameterizing in terms
of the intrinsic and extrinsic parameters of the cam-
eras (e.g., rotation, focal length, radial distortion) [2].
Direct methods [10] (using all of the pixel data instead
of only feature points) may optionally be used for
accurate final registration.

Once the images are geometrically aligned, the
remaining task is to render a seamless output view.
The appropriate render surface may depend on the
images being aligned: rectilinear renderings (preserv-
ing straight lines) might be best for stitching planar
surfaces such as whiteboards, spherical or cylindrical
render surfaces are popular for wide-angle panoramas.
Multiperspective renderings can be used to preserve
important geometric properties in the output [11].

Ideally, one can capture or estimate irradiance
values per pixel, and given perfect alignment, these
would be equal in all images overlapping a given ray.
In practice, however, several sources of error con-
tribute toward differences in the recorded radiances.
Some common examples are parallax due to motion
of the camera center, errors or unmodeled parameters
in the camera pose estimate, and moving objects in the
scene. Several algorithms have been developed to elim-
inate the visual seams that result. The best approaches
find seam lines which minimize differences between
image intensities or radiances [12], and smoothly inter-
polate between images using pyramid blending [13] or
gradient domain fusion [5]. The final results can be
tone mapped for display.

An example of an automated capture system
capable of stitching gigapixel panoramas with
feature-based alignment, seam selection, and dynamic
tone mapping is given in [14].
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Related Concepts

�Plenoptic Function

Definition

Image-based lighting [1, 2] is a rendering technique to
compute the reflection from a 3D object lit in a distant
environment, represented as an image, typically in the
form of a cubemap (Fig. 1).

Background

Due to the computational expense of global illumi-
nation (e.g., radiosity and Monte Carlo ray tracing),
most real-time graphics systems are depth-buffering
based and only support local illumination. This hurts
the realism of the rendered images. Environment map-
ping [1, 3] is proposed to simulate the reflection
of the surrounding environment on an object surface
(Fig. 1). The enclosing environment is assumed to
be infinitely far away (distant environment) because
all surface points on the object are assumed to be lit
by the same environment. Due to the high computa-
tional expense, early implementations of environment
mapping account only for the light contribution along
the mirror reflection direction. Hence, most surfaces
rendered by the environment mapping are over-shiny.

Image-based lighting can be regarded as a more com-
prehensive realization of the environment mapping, by
accounting not only the light contribution along the mir-
ror reflection but also the whole enclosing sphere. The
surface reflectance property (bidirectional reflectance
distribution function, BRDF) is also considered so as to
render not only shiny or glossy surfaces but also most
kinds of surfaces. Moreover, the environment maps are
usually captured as high dynamic range (HDR) images
to further increase thephotorealism.Note that the image-
based lighting remains work even low-dynamic range
(LDR) environment maps are used instead.

Theory

Extending from accounting only the mirror reflec-
tion direction to the whole enclosing sphere drasti-
cally increases the computational expense. Hence, the

challenge is how to efficiently compute the following
integration for each surface point:

I.x; s/ D
Z

�

Lin.!/�.x; !; u/v.x; !/.! � n/d! (1)

where x is the current surface point of interest; � is
the surrounding environment (the distant environment
map); ! is the incoming light direction; u is the view-
ing direction from x towards the eye; I is the reflected
light; Lin.!/ is the incoming light contribution along
direction !, in other words, a point in the environment
map; v is the visibility function; � is the BRDF; and n

is the surface normal at x. Note that Lin, �, and v are
spherical functions.

One way to evaluate the above integration is to
approximate the environment map by a much smaller
number (say m) of point light sources. The position
and color of the point lights are obtained by importance
sampling of the environment map [4]. In other words,
the above integration is approximated by a summation
of light contribution of m point lights. The rendered
image can simply be generated by adding m images,
each rendered by illuminating the scene with a point
light source.

By adopting the image-based relighting tech-
niques [5], the above integration can be evaluated more
efficiently. The idea is to first encode the spherical
function with basis functions. This effectively con-
verts a huge spherical function (table) into a coefficient
vector si as follows. Since the basis functions Bi are
known, they need not be stored:

S.!/ �
kX

i

siBi .!/ (2)

where S is a spherical function and k is the total num-
ber of basis functions, which is much smaller than the
number of entries in the original spherical table.

By embedding �.x; !; u/v.x; !/.! �n/ into a spher-
ical function C , both C and Lin can be encoded with
the same basis and stored as two coefficient vectors, ci
and li , respectively. If the selected basis functions are
orthonormal, the above integration (Eq. 1) can be sim-
ply evaluated as a dot product between two coefficient
vectors [1],

I �
kX

i

ci li (3)

http://dx.doi.org/10.1007/978-0-387-31439-6_7
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Image-Based Lighting, Fig. 1 Image-based lighting assumes
the object being rendered is enclosed by an image-based envi-
ronment positioned infinitely far away, or equivalently, the

object is infinitesimally small. The environment map is typically
represented as a cubemap

Basis Functions
The key to efficient image-based lighting is to select an
appropriate basis for representing the spherical func-
tions. Various bases have been proposed for image-
based relighting [5]. They are directly applicable to
image-based lighting.

A pioneer work is proposed by Nimeroff et al. [6].
They efficiently relit the scene under various natural
illumination (overcast or clear skylight). The illumina-
tion function is decomposed into a linear combination
of steerable functions.

Principal component analysis is naturally a poten-
tial choice for basis function [7]. Singular value
decomposition can be used to extract a set of eigen-
images from the input reference images. The desired
image can then be synthesized by a linear combination
of these basis images given a set of coefficients [8, 9]
if all surfaces are Lambertian.

Earlier works do not consider the spherical nature
of the illumination computation. Wong et al. [5, 10]
chose the spherical harmonic basis, which is com-
monly used for compressing BRDF. Pleasant rendering
results are obtained with 16–25 basis functions. How-
ever, spherical harmonic is also well known in over-
smoothing the high-frequency signal (e.g., shadow)
in the original spherical function, leading to low-
frequency results.

To achieve all-frequency rendering, Haar wavelet
basis is proposed [11]. It may introduce visual artifact
when the distant environment contains a dominant but

small-size spot. The cause of such artifact is due to the
digitization of the spherical function and the limited
reconstruction involving only important wavelet coef-
ficients.

Spherical radial basis function (SRBF) [12–14] is
another approach to capture all-frequency signal. The
local support nature of SRBF allows its implementa-
tion to be very efficient and simple. The multiscale
spherical radial basis function [15] avoids the visual
artifact of the Haar wavelet basis while remains able to
achieve all-frequency rendering.

Application

Image-based lighting can be applied to produce realis-
tic rendering for both off-line movie production or real-
time computer games. The parallel nature of image-
based lighting (all surface points have to evaluate Eq. 1
independently) facilitates its real-time realization on
modern graphics processing unit (GPU).
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Synonyms

Three dimensional Modeling from Images

Definition

Image-based modeling refers to the process of using
two-dimensional images to create three-dimensional
models. These models often consist of a geometric
shape and a texture map defined over this shape.

Background

Three dimensional models are mathematical represen-
tations of three dimensional objects or scenes. These
models are useful for various applications such as sim-
ulation, robotics, virtual reality, and digital entertain-
ment. Automatically creating these models has been
an important research topic since the early days of
computer vision.

Broadly speaking, there are two schools of image-
based modeling methods. One group employs range
sensor for shape modeling, while the other group uses
pure images with binocular or multi-view stereo. One
of the origins of the first group is [1], which devel-
oped a technique to automatically generate a virtual
three dimensional model by observing actual objects
along the line of physics-based paradigm. Recently,
this direction of research has been accelerated by
the development of handy range sensor, such as the
Microsoft Kinect and other consumer depth cameras.
A representative work from the other group of pure
image-based method is [2], which introduced an inter-
active method to model architectural scenes by fitting
geometric primitives to the input images. This direc-
tion of research is later generalized to model more
general objects. Typically, a cloud of 3D points is first
recovered from the input images. A detailed and pre-
cise shape representation is then derived from these
points, and a texture map is created to represent the
color of each point on the shape. This process is
illustrated in Figure 1.

The process of obtaining 3D points from input
images is known as 3D reconstruction. It is a well-
studied problem, and most of the relevant theoretic
results are summarized in this handbook [4]. There are
also a number of well-established 3D reconstruction
software systems such as [5–7]. Though the recon-
structed 3D points can be used directly for certain
measurements, most of applications require polygonal
meshes, NURBS surfaces, or solid shape models. 3D
modeling is the process of creating these shape models

http://dx.doi.org/10.1007/978-0-387-31439-6_100105
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Image-Based Modeling, Fig. 1 A typical pipeline of image-based modeling. In the left is one of the input image. In the middle is
the set of reconstructed 3D points. In the right is a rendering of the recovered 3D model of the scene (These pictures are from [3])

from 3D points and 2D images. This modeling process
can be automatic or interactive. The prior knowledge
of the shape to be modeled often plays an important
role in this process. A comprehensive review of recent
modeling techniques can be found in [8].

In image-based modeling, the appearance of a
shape is often modeled by specifying a color for
each point on the shape. These colors can be stored
in a so-called texture map. Essentially, this rep-
resentation assumes the surface is Lambertian and
its Bidirectional Reflectance Distribution Function
(BRDF) is a constant, that is, the color. In compar-
ison, appearance modeling dedicates to model both
the shape and precise surface reflectance properties.
More details of appearance modeling can be found
in [9].

Theory

In this short chapter, we only focus on the process of
creating shape models from 3D points and 2D images.
One way to generate these shape models is to obtain
a minimal surface automatically from the input data.
The minimal surface is a surface that minimizes a
functional of the following form

Z Z
wds:

Here, ds is the infinitesimal surface element and w is
the consistency of the surface according to the input 3D
points and 2D images. This consistency can be simply
the Euclidean distance between the surface and the set
of 3D points. Given a set of points P , Zhao et al. [10]
defined w as d.x;P/ which is the smallest distance

between a surface point x and other points in the set
P . This functional is then minimized by the level set
method [11]. Faugeras and Keriven [12] defined w as a
function of both the surface position x and its normal
direction n to facilitate the surface modeling. Lhuillier
and Quan [13] further incorporated image reprojection
errors and silhouettes in this function w.

The minimal surface-based approach works well
when the points are dense and the surface is smooth.
However, it has difficulties to model discontinuous
surfaces such as hair fibers (linear structure), clothes
(open surface patches), tree branches (tree and frac-
tal structure), or buildings (regular axis aligned boxes).
There are many existing methods which are designed
to exploit the prior knowledge of a shape to facil-
itate modeling. Wei et al. [14] modeled hair by
“growing” 3D smooth curves guided by 3D points
and images. Bhat et al. [15] used videos to obtain
the parameters of a cloth simulation system. Tan et
al. [16] recovered some basic branch elements from
the 3D points and used them to generate a fractal
branch structure. Xiao et al. [17, 18] identified build-
ing facades and repetitive structures on these facades
to model streets. Furukawa et al. [19, 20] assumed
the scene consists of mutual orthogonal planes at dif-
ferent depth to model buildings. Though generating
good results, these methods are limited to model the
type of surface that matches their underlying prior
shape assumption. A general modeling method is still
missing to handle all these different data in a unified
framework.

Application

Image-based modeling can be applied in autonomous
robotics to generate a three-dimensional map of their
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environment for path/action planning. It can also be
used in industry vision for product quality inspec-
tion. The three-dimensional models can also be applied
in digital entertainment such as games and movies.
Recently, Google Earth and Microsoft Virtual Earth
start to provide 3D map services, which can be a very
good test bed of large-scale image-based modeling
techniques.
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Synonyms

Image-based rendering (IBR)

Related Concepts

�Light Field; �Lumigraph; �Plenoptic Function

Definition

Image-based rendering (IBR) refers to a collection
of techniques and representations that allows 3D
scenes and objects to be visualized and manip-
ulated in a realistic way without full 3D model
reconstruction.
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Background

One of the primary goals in computer graphics is pho-
torealistic rendering. Motivated by the difficulties in
achieving full photorealism with conventional 3D and
model-based graphics, image-based rendering which
works directly with real images has proposed as an
alternative approach to reduce the rendering and cap-
turing complexity. Depending on how the images
are being taken and the auxiliary information, such
as depths, etc., required, a number of image-based
representations supporting different viewing free-
dom and functionalities are available. These range
from the familiar two-dimension (2D) panoramas to
more sophisticated representations such as the four-
dimension (4D) light fields [9], lumigraphs [8], and
variants, which are special cases of the radiance
received at every viewing position, visual angle, wave-
length, and time, called the plenoptic function.

The rendering of novel views can therefore be
viewed as the reconstruction of the plenoptic func-
tion from its samples. Image-based representations
are usually densely sampled high-dimensional data
with large data sizes, but their samples are highly
correlated. Because of the multidimensional nature
of image-based representations and scene geometry,
much research has been devoted to the efficient cap-
turing, sampling, rendering, and compression of IBR.

Theory

Representation
In IBR, new views of scenes are reconstructed from a
collection of densely sampled images or videos. Exam-
ples include the well-known panoramas [5], light fields
[9], lumigraph [8], layered depth images [13], concen-
tric mosaics (CM) [14], etc. Figure summarizes the
concept of CM and light field (see the sections on light
field, lumigraph, and plenoptic function for more illus-
tration). The reconstruction problem (i.e., rendering)
is treated as a multidimensional sampling problem,
where new views are generated from densely sampled
images and depth maps instead of building accurate 3D
model of the scenes.

Depending on the functionality required, there is
a spectrum of IBR as shown in Fig. . They differ
from each other in the amount of geometry informa-
tion of the scenes/objects being used. At one end of the

spectrum, like traditional texture mapping, very accu-
rate geometric models of the scenes and objects say
generated by animation techniques is used, but only
a few images are required to generate the textures.
Given the 3D models and the lighting conditions, novel
views can be rendered using conventional graphic
techniques. Moreover, interactive rendering with mov-
able objects and light sources can be supported using
advanced graphic hardware.

At the other extreme, light field or lumigraph ren-
dering relies on dense sampling (by capturing more
image/videos) with no or very little geometry infor-
mation for rendering without recovering the exact
3D models. An important advantage of the latter is
its superior image quality, compared with 3D model
building for complicated real world scenes. Another
important advantage is that it requires much less
computational resources for rendering regardless of
the scene complexity because most of the quanti-
ties involved are precomputed or recorded. This has
attracted considerable attention in the computer
graphic community in developing fast and efficient
rendering algorithms for real-time relighting and soft-
shadow generation [2, 12, 19, 22].

Broadly speaking, image-based representations can
be classified according to the geometry information
used into three main categories: (1) representations
with no geometry, (2) representations with implicit
geometry, and (3) representations with explicit geome-
try. 2-D panoramas, McMillan and Bishop’s plenoptic
modeling [11], and 3D concentric mosaics and light
fields/lumigraph belong to the first category, and they
can be viewed as the direct interpolation of the plenop-
tic function. Layere-based, object-based representa-
tions [4], pop-up light [16] using depth maps fall into
the second. Finally, conventional 3D computer graphic
models and other more sophisticated representations
[7, 21, 22] belong to the last category. Although these
representations also sample the plenoptic function, fur-
ther processing of the plenoptic function has been
performed to infer the scene geometry or surface prop-
erty such as bidirectional reflectance distribution func-
tion (BRDF) of objects. Such image-based modeling
approach has emerged as a more promising approach
to enrich the photorealism and user interactivity of
IBR. Moreover, since 3D models of the scenes are
unavailable, conventional image-based representations
are limited to the change of viewpoints and sometimes
limited amount of relighting. Recently, it was found
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Concentric mosaic

By constraining camera motion to

planar concentric circles, concentric

mosaic can be created by

compositing slit images taken at

different locations of each circle.

Light field

Using this 2D array of images,

light field is possible to render

different views of the object or

scene at different viewing

angles.

Image-Based Rendering, Fig. 1 Concentric mosaic and light field [3]

Image-Based Rendering, Fig. 2 Spectrum of IBR representations

that real-time relighting and soft-shadow computation
are feasible using the IBR concepts and the associated
3D models using precomputed radiance transfer (PRT)
[19] and precomputed shadow fields [22].

Earlier image-based representations are usually
static, and their extension usually requires multiple
camera arrays. Much research has been devoted to the
capturing, compression, transmission, and processing
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of these dynamic representations. For a review as of
2007, see [17].

Rendering
Rendering refers to the process of rendering of new
views from the images and possibly other auxiliary
information captured in the representations. For early
image-based representations which do not employ any
geometry information, rendering can be done simply
by image blending as in panoramas [5] and ray-space
interpolation in light field [9]. In ray-space interpola-
tion, each ray that corresponds to a target screen pixel
is mapped to nearby sampled rays. Figure 4a shows
the example renderings of a simplified light field using
ray-space interpolation [17]. For more sophisticated
representations which use more geometry information
such as layered depth images [13], surface light field
[21], and pop-up light field [16], graphics hardware has
been exploited to accelerate the rendering process. The
geometry information can either be implicit that relies
on positional correspondences or explicit in the form
of depth along known lines-of-sight or 3D coordinates.
Representations of the former usually involve weakly
calibrated cameras and rely on image correspondences
to render new views, say by triangulating two reference
images into patches according to the correspondences
as in joint view triangulation (JVT) [10]. These include
view interpolation, view morphing, JVT, and trans-
fer methods with fundamental matrices and trifocal
tensors. Representations employing explicit geometry
include sprites, relief textures, layered depth images
(LDIs), view-dependent texture, surface light field,
pop-up light field, shadow light field, etc.

In general, the rendering methods can be broadly
classified into three groups [17]: (1) point-based, (2)
layer-based, and (3) monolithic.

Point-Based Rendering works on 3D point clouds
or point correspondences, and typically each point
is rendered independently. Points are mapped to the
target screen through forward mapping and variants.
For the 3D point X in Fig. 3, the mapping can be
written as

X D Cr C �rPrxr D Ct C �tPtxt (1)

where xt and xr are homogeneous coordinates of the
projection of X on target screen and reference images,

respectively. C and P are camera center and projec-
tion matrix, respectively, and � is a scale factor. Since
Ct , Pt , and the focus length ft are known for the tar-
get view, �t can be computed using the depth of X .
Given xr and �r , one can compute the exact position
of xt on the target screen and transfer the color accord-
ingly. Gaps or holes may exist due to magnification and
disocclusion, and splatting techniques have been pro-
posed to alleviate this problem. The painter’s algorithm
is frequently used to avoid the problem of the mapping
of multiple pixels from the reference view to the same
pixel in the target view.

Layered Techniques usually discretize the scene
into a collection of planar layers with each layer con-
sisting of a 3D plane with texture and optionally a
transparency map. The layers can be thought of as a
continuous set of polygonal models, which is amenable
to conventional texture mapping and view-dependent
texture mapping. Usually, each layer is rendered using
either point-based or polygon meshes as in mono-
lithic rendering techniques before being composed in
the back-to-front order using the painter’s algorithm
to produce the final view. Layer-based rendering is
also easier to implement using graphic processing
unit (GPU). Since the rendering of IBR requires very
low complexity, it is even possible to perform the
calculation using CPU by working on individual layer
or object [4].

Monolithic Rendering usually represents the
geometry as continuous polygon meshes with textures,
which can be readily rendered using graphics hard-
ware. The 3D model normally consists of vertices,
normals of vertices, faces, and texture mapping coor-
dinates. The data can be stored in a variety of data
formats. The most popular formats are .obj, .3ds, .max,
.stl, .ply, .wrl, .dxf, etc.

Relighting, shadow generation, and interactivity
have played an increasingly important role in 3D
interactive rendering. The most popular algorithms
are shadow mapping, shadow volume, ray tracing,
precomputed radiance transfer, precomputed shadow
field, etc. Some of them have better rendering qual-
ity, while others are more efficient for real-time ren-
dering. Thanks to the development of GPU, basic
lighting, and shading algorithms like shadow map-
ping and shadow volume have been realized on the
fly. Modern GPUs can even offer programmable ren-
dering pipelines for customized rendering effects and
“shader” is a set of software instructions running on
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Image-Based Rendering, Fig. 4 Example renderings using
(a) ray-space interpolation [17], (b) forward mapping in layered
representation (with two layers – dancer and background) [4], (c)

monolithic rendering using 3D polygonal mesh (left) estimated
by multiview stereo and real-time rendering with shadow light
field technique on GPU [23]

these GPUs to control the pipelines. Using shader pro-
gramming, high-quality shadow rendering algorithms
like precomputed shadow field can be done in real
time. Figure 4 shows example renderings of the three
techniques, and Fig. 5 summarizes the types of repre-
sentations and rendering in IBR called the geometry-
rendering matrix.

Compression
In general, there are two approaches to reduce the
data size of image-based representations. The first one
is to reduce their dimensionality, often by limiting
viewpoints or scarifying some realism. Panoramas
and concentric mosaics are such examples. The
second approach is to exploit the high correlation
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Image-Based
Rendering, Fig. 5
Geometry-rendering matrix

(i.e., redundancy) within the representation using
waveform coding or model-based techniques. The
scene geometry may be used explicitly or implic-
itly. The second approach can be further classified
into four broad categories: pixel-based methods,
disparity compensation/prediction (DCP) methods,
model-based/model-aided methods, and object-based
approach.

In pixel-based methods, the correlation between
adjacent image pixels is exploited using conventional
techniques such as vector quantization and trans-
form coding. In the DCP methods, scene geometry
is utilized implicitly by exploiting the disparity of
image pixels, resulting in better compression perfor-
mance. (Disparity refers to the relative displacement
of pixels in images taken at adjacent physical loca-
tions.) Model-based/model-aided approaches recover
the geometry of the objects or scene in coding the

observed images. The models and other information
such as prediction residuals or view-dependent texture
maps are then encoded. In the object-based approach,
the representations are segmented into IBR objects,
each with its image sequences, depth maps, and other
relevant information such as shape information. The
main advantage is that it helps to reduce the render-
ing artifacts and hence the required sampling rate. For
additional references, see the section on light fields.

Unlike conventional video coding, higher
dimensional image-based representations such as 3D
concentric mosaics (CMs) require random access at
the line level, whereas the 4D light field and lumigraph
require random access at the pixel level. It is usually
time-consuming to retrieve and decode a single line or
pixel from the compressed which is of variable length
due to entropy coding. This is referred to as the “ran-
dom access problem” of IBR and is usually tackled
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Image-Based Rendering, Fig. 6 Comparison of different
image-based representation and compression methods in terms
of their complexity. The ease of random access increases as the

dimension of plenoptic function decreases, while the complexity
and potential for compression both increase with the dimension.
DCP disparity compensation/prediction, VQ vector quantization

by grouping the compressed data of several basic
units for rendering (such as lines in CMs or image
blocks in light fields) together and employ pointers
to locate them efficiently. Moreover, interdependence
of decoding resulting from DCP should be reduced to
avoid decoding excessively unnecessary intermediate
data. This is also required for selective transmission
or decoding of the compressed representations due
to their large bandwidth and storage requirement.
A simple comparison of difficult image-based repre-
sentations and compression methods in terms of their
complexities, compression ratios, and ease of random
access is shown in Fig. 6. For more information, see
[15, 17] and references in the light field section.

Application

The potential for photorealistic visualization and sim-
plicity in rendering of IBR has tremendous appeal.
They have already found applications in architectural
modeling [6], cultural heritage preservation [23], vir-
tual tour, and digital museum [18], multiview TV
[3, 4], etc. Other potential applications include dig-
ital edutainment, E-commerce and photorealistic

modeling, and real-time rendering in computer graph-
ics and mobile devices. Another emerging application
is view synthesis in 3D and multiview videos and
display.

Open Problems

Though there has been substantial progress in captur-
ing, representing, rendering, and modeling of scenes,
the ability to handle general complex scenes remains
challenging for IBR. A substantial amount of work is
still required to ensure robustness in handling reflec-
tion translucency, highlights, depth estimation, captur-
ing complexity, object manipulation, etc. Since IBR
uses images for rendering, interacting with IBR rep-
resentations remains challenging. Recent approaches
have focused on using advanced computer vision tech-
niques, such as stereo/multiview vision and photomet-
ric stereo, and depth sensing devices to extract more
geometry information from the scene so as to enhance
the functionalities of IBR representations. While there
has been considerable progress in relighting and inter-
active rendering of individual real static objects, such
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operations are still difficult for real and complicated
scenes. For dynamic scenes, the huge amount of data
and vast amount of viewpoints to be provided present
one of the major challenges to IBR. Advanced algo-
rithms for processing and manipulation of the high-
dimensional representation to achieve such function as
object extraction, model completion, scene inpainting,
etc., are all major challenges to be addressed. Finally,
the efficient transmission, compression, and display of
dynamic IBR and models are also urgent issues await-
ing for satisfactory solution in order for IBR to estab-
lish itself as an essential media for communication and
presentation.
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Definition

Incident light measurement is the recording of incom-
ing illumination at a given scene point or in a given
scene.

Background

The distribution and intensity of light incident upon
a surface point or in a scene affects the amount of
reflected radiance to the camera and more generally the
appearance of objects. Knowledge of the incident light
can aid in shape recovery through photometric analysis
techniques such as shape-from-shading and photomet-
ric stereo, or may be used in reducing appearance
variation caused by lighting. Various methods have
been used for measurement of incident light. Different
from algorithms for illumination estimation, incident
light measurement does not infer lighting from indirect
scene cues such as shading, but rather obtains direct
observations of the light sources.

Methods for incident light measurement typically
introduce a probe or a sensor into the scene to view the
incoming radiance. In general, the probes are mirrored
spheres that allow for precise readings of light from
a broad range of incident directions. Besides light-
ing distribution, the color of incident illumination may
be measured using a color calibration target such as
a white reference standard. Unlike illumination esti-
mation methods, light measurement with such devices
often allows for accurate recovery of both direct illu-
mination from light sources and more subtle indirect
illumination from reflected light within the scene.

Some techniques are intended to measure incident
light at a certain scene point. Excluding the effects of
light occluders, these methods equivalently measure

far lighting that originates from distant light sources
and is considered to be uniform throughout the scene.
Other methods are more general in that their measure-
ments also determine the location and brightness of
near light sources, whose illumination varies within the
scene. Such methods utilize triangulation, usually from
two or more probes or sensors placed in the scene, to
locate the positions of local light sources.

Methods

Several methods for incident light measurement are
described in the following.

Spherical Probes
To measure distant illumination or the light incident
at a given scene point, a common approach is to
place a mirrored spherical probe at the scene point.
From the reflections on the sphere, the corresponding
directions of the incident light are computed from the
known surface orientation of each sphere point and
the mirror reflection property, which states that the
incident angle of light is equal to the reflected light
angle. Incident lighting environments of various scenes
were measured in this manner by Debevec [1]. High
dynamic range imaging was used to obtain accurate
measurements of relative light source brightness.

To recover spatially variant incident lighting due to
local light sources, Powell et al. [2] used three mirrored
spheres at known relative positions to triangulate light
source locations. For triangulation, correspondences
need to be computed among the mirrored reflections
of the spheres. Illumination color is also measured
from the color of diffuse reflections on the spheres.
Zhou and Kambhamettu [3] also employed triangula-
tion, but instead computed correspondences in a stereo
image pair of a single sphere. Shifts in specular reflec-
tions as seen from the two stereo viewpoints indicate
the distance of light sources. Here, the spheres also
exhibit diffuse reflection, which provides information
on light intensities. Using this setup, they later pro-
posed a method [4] based on ray tracing and convex
hull computation to measure a more general light
source model [5].

Hemispherical Imaging
An alternative to lighting probes is to directly place
sensors within the scene. Drettakis et al. [6] employed

http://dx.doi.org/10.1007/978-0-387-31439-6_516
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image mosaicing of several snapshots captured within
the scene to form a panoramic image of the incident
lighting. Sato et al. [7] instead used a pair of omnidi-
rectional cameras, each outfitted with a fish-eye lens.
Correspondences in the omnidirectional images are
computed with an omnidirectional stereo algorithm to
obtain a 3D model of the incident lighting, and high
dynamic range imaging is used to measure the intensity
of radiance.

Color Calibration Target
The incident light color may be measured by inserting
a white reference standard into the scene. Deviations
from white of the reflected light indicate the color
of illumination. This approach to measuring incident
lighting color is described by Barnard et al. [8] for their
construction of an image dataset for computational
color constancy. Directional variations in illumination
color may be measured by imaging the white reference
standard at different orientations.

Application

Incident light measurement is often employed for
augmented reality [1, 7], to ensure that inserted vir-
tual objects exhibit an appearance consistent with the
scene’s illumination environment. Measurements of
real-world lighting have also been utilized in com-
puter graphics applications to give rendered objects a
more natural appearance. Applications of light color
measurement include evaluation of color constancy
algorithms [8] and spectral reflectance recovery using
multiple illumination colors [9].
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Definition

Given an image and a region � inside it, the inpaint-
ing problem consists in modifying the image values
of the pixels in � so that this region does not stand
out with respect to its surroundings. The purpose of
inpainting might be to restore damaged portions of
an image (e.g., an old photograph where folds and
scratches have left image gaps) or to remove unwanted
elements present in the image (e.g., a microphone
appearing in a film frame). See Fig. 1. The region
� is always given by the user, so the localization
of � is not part of the inpainting problem. Almost
all inpainting algorithms treat � as a hard constraint,
whereas some methods allow some relaxing of the
boundaries of �.

This definition, given for a single-image problem,
extends naturally to the multi-image case; therefore,
this entry covers both image and video inpainting.
What is not however considered in this text is sur-
face inpainting (e.g., how to fill holes in 3D scans),
although this problem has been addressed in the
literature.

Background

The term inpainting comes from art restoration, where
it is also called retouching. Medieval artwork started
to be restored as early as the Renaissance, the motives
being often as much to bring medieval pictures “up
to date” as to fill in any gaps. The need to retouch
the image in an unobtrusive way extended natu-
rally from paintings to photography and film. The
purposes remained the same: to revert deterioration
(e.g., scratches and dust spots in film) or to add or
remove elements (e.g., the infamous “airbrushing” of
political enemies in Stalin era USSR). In the dig-
ital domain, the inpainting problem first appeared
under the name “error concealment” in telecommu-
nications, where the need was to fill in image blocks
that had been lost during data transmission. One of
the first works to address automatic inpainting in a
general setting dubbed it “image disocclusion” since
it treated the image gap as an occluding object that
had to be removed, and the image underneath would
be the restoration result. Popular terms used to denote
inpainting algorithms are also “image completion” and
“image fill-in.”

Application

The extensive literature on digital image inpainting
may be roughly grouped into three categories: patch-
based, sparse, and PDEs/variational methods.

From Texture Synthesis to Patch-Based Inpainting
Efros and Leung [14] proposed a method that, although
initially intended for texture synthesis, has proven most
effective for the inpainting problem. The image gap is
filled in recursively, inwards from the gap boundary:
each “empty” pixel P at the boundary is filled with
the value of the pixel Q (lying outside the image gap,
that is, Q is a pixel with valid information) such that
the neighborhood‰.Q/ of Q (a square patch centered
in Q) is most similar to the (available) neighborhood
‰.P / of P . Formally, this can be expressed as an
optimization problem:

Output.P / D Value.Q/; P 2 �; Q … �;

Q D arg min d.‰.P /;‰.Q//; (1)

where d.‰.P /;‰.Q// is the sum of squared dif-
ferences (SSD) among the patches ‰.P / and ‰.Q/

(considering only available pixels):

d.‰1;‰2/ D
X

i

X

j

j‰1.i; j /�‰2.i; j /j2; (2)

and the indices i; j span the extent of the patches (e.g.,
if ‰ is an 11�11 patch, then 0 � i; j � 10). Once P is
filled in, the algorithm marches on to the next pixel at
the boundary of the gap, never going back to P (whose
value is, therefore, not altered again). See Fig. 2 for
an overview of the algorithm and Fig. 3 for an exam-
ple of the outputs it can achieve. The results are really
impressive for a wide range of images. The main short-
comings of this algorithm are its computational cost,
the selection of the neighborhood size (which in the
original paper is a global user-selected parameter but
which should change locally, depending on image con-
tent), the filling order (which may create unconnected
boundaries for some objects), and the fact that it cannot
deal well with image perspective (it was intended to
synthesize frontal textures; hence, neighborhoods are
compared always with the same size and orientation).
Also, results are poor if the image gap is very large and
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Inpainting, Fig. 1 The inpainting problem. Left: original image. Middle: inpainting mask �, in black. Right: an inpainting result
(Figure taken from [20])

Inpainting, Fig. 2 Efros and Leung’s algorithm overview
(figure taken from [14]). Given a sample texture image (left),
a new image is being synthesized one pixel at a time (right). To
synthesize a pixel, the algorithm first finds all neighborhoods in

the sample image (boxes on the left) that are similar to the pixels
neighborhood (box on the right) and then randomly chooses one
neighborhood and takes its center to be the newly synthesized
pixel

disperse (e.g., an image where 80 % of the pixels have
been lost due to random salt and pepper noise).

Criminisi et al. [12] improved on this work in two
aspects. Firstly, they changed the filling order from
the original “onion-peel” fashion to a priority scheme
where empty pixels at the edge of an image object
have higher priority than empty pixels on flat regions.
Thus, they are able to correctly inpaint straight object
boundaries which could have otherwise ended up dis-
connected with the original formulation. See Fig. 4.
Secondly, they copy entire patches instead of single
pixels, so this method is considerably faster. Several
shortcomings remain, though, like the inability to deal
with perspective and the need to manually select the
neighborhood size (here, there are two sizes to set, one
for the patch to compare with and another for the patch
to copy from). Also, objects with curved boundaries
may not be inpainted correctly.

Ashikhmin [2] contributed as well to improve on
the original method of Efros and Leung [14]. With
the idea of reducing the computational cost of the

procedure, he proposed to look for the best candidate
Q to copy its value to the empty pixel P not search-
ing the whole image but only searching among the
candidates of the neighbors of P which have already
been inpainted. See Fig. 5. The speedup achieved with
this simple technique is considerable, and also there
is a very positive effect regarding the visual quality
of the output. Other methods reduce the search space
and computational cost involved in the candidate patch
search by organizing image patches in tree structures,
reducing the dimensionality of the patches with tech-
niques like principal component analysis (PCA), or
using randomized approaches.

While most image inpainting methods attempt to
be fully automatic (aside from the manual setting of
some parameters), there are user-assisted methods that
provide remarkable results with just a little input from
the user. In the work by Sun et al. [27], the user must
specify curves in the unknown region, curves corre-
sponding to relevant object boundaries. Patch synthesis
is performed along these curves inside the image gap,
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Inpainting, Fig. 3 Left:
original image, inpainting
mask � in black. Right:
inpainting result obtained
with Efros and Leung’s
algorithm, images taken from
their paper [14]

Inpainting, Fig. 4 Left:
original image. Right:
inpainting result obtained
with the algorithm of
Criminisi et al. [12], images
taken from their paper

by copying from patches that lie on the segments of
these curves which are outside the gap, in the “known”
region. Once these curves are completed, in a pro-
cess which the authors call structure propagation, the
remaining empty pixels are inpainted using a technique
like the one by Ashikhmin [2] with priorities as in
Criminisi et al. [12]. Barnes et al. [5] accelerate this
method and make it interactive, by employing random-
ized searches and combining into one step the structure
propagation and texture synthesis processes of Sun
et al. [27].

The Role of Sparsity
After the introduction of patch-based methods for tex-
ture synthesis by Efros and Leung [14], and image
inpainting by Criminisi et al. [12], it became clear

that the patches of an image provide a good dictio-
nary to express other parts of the image. This idea
has been successfully applied to other areas of image
processing, for example, denoising and segmentation.

More general sparse image representations using
dictionaries have proven their efficiency in the con-
text of inpainting. For instance, using overcomplete
dictionaries adapted to the representation of image
geometry and texture, Elad et al. [15] proposed an
image decomposition model with sparse coefficients
for the geometry and texture components of the image
and showed that the model can be easily adapted for
image inpainting. A further description of this model
follows.

Let u be an image represented as a vector in R
N .

Let the matrices Dg and Dt of sizes N � kg and
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Inpainting, Fig. 5 Ashikhmin’s texture synthesis method
(figure taken from [2]). Each pixel in the current L-shaped neigh-
borhood generates a shifted candidate pixel (black) according to
its original position (hatched) in the input texture. The best pixel
is chosen among these candidates only. Several different pixels
in the current neighborhood can generate the same candidate

N � kt represent two dictionaries adapted to geome-
try and texture, respectively. If ˛g 2 R

kg and ˛t 2 R
kg

represent the geometry and texture coefficients, then
u D Dg˛g C Dt˛t represents the image decomposi-
tion using the dictionaries collected in Dg and Dt . A
sparse image representation is obtained by minimizing

min
.˛g;˛t /WuDDg˛gCDt˛t

k˛gkp C k˛tkp; (3)

where p D 0; 1. Although the case p D 0 represents
the sparseness measure (i.e., the number of nonzero
coordinates), it leads to a nonconvex optimization
problem whose minimization is more complex. The
case p D 1 yields a convex and tractable optimiza-
tion problem leading also to sparseness. Introducing
the constraint by penalization (thus, in practice, relax-
ing it) and regularizing the geometric part of the

decomposition with a total variation semi-norm penal-
ization, Elad et al. [15] propose the variational model:

min
.˛g;˛t /

k˛gk1 C k˛tk1 C �ku �Dg˛g �Dt˛tk22
C �T V.Dg˛g/; (4)

where T V denotes the total variation, �; � > 0. This
model can be easily adapted to a model for image
inpainting. Observe that u � Dg˛g � Dt˛t can be
interpreted as the noise component of the image and
� is a penalization parameter that depends inversely
on the noise power. Then the inpainting mask can be
interpreted as a region where the noise is very large
(infinite). Thus, if M D 0 andD 1 identify the inpaint-
ing mask and the known part of the image, respectively,
then the extension of (4) to inpainting can be written as

min
.˛g;˛t /

k˛gk1 C k˛tk1 C �kM.u �Dg˛g �Dt˛t /k22
C �T V.Dg˛g/: (5)

Writing the energy in (5) using ug WD Dgu, ut WD
Dtu as unknown variables, it can be observed that
˛g D DC

g ug C rg, ˛t D DC
t ut C rt , where DC

g ;DC
t

denote the corresponding pseudoinverse matrices and
rg; rt are in the null spaces of Dg and Dt , respectively.
Assuming for simplicity, as in Elad et al. [15], that
rg D 0, rt D 0, the model (5) can be written as

min
.˛g;˛t /

kDC
g ugk1 C kDC

t utk1
C �kM.u� ug � ut /k22 C �T V.ug/: (6)

This simplified model is justified in Elad et al. [15] by
several reasons: it is an upper bound for (5), it is eas-
ier to solve, it provides good results, it has a Bayesian
interpretation, and it is equivalent to (5) if Dg and Dt

are non-singular or when using the `2 norm in place
of the `1 norm. The model has nice features since it
permits to use adapted dictionaries for geometry and
texture and treats the inpainting as missing samples,
and the sparsity model is included with `1 norms that
are easy to solve.

This framework has been adapted to the use of dic-
tionaries of patches and has been extended in several
directions like image denoising, filling in missing pix-
els (Aharon et al. [1]), color image denoising, demo-
saicing, and inpainting of small holes (Mairal et al. [21]
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Inpainting, Fig. 6 An inpainting experiment taken from Ogden et al. [24]. The method uses a Gaussian pyramid and a series of
linear interpolations, downsampling, and upsampling

and further extended to deal with multiscale dictionar-
ies and to cover the case of video sequences in Mairal
et al. [22]. To give a brief review of this model, some
notation is required. Image patches are squares of size
n D pn � pn. Let D be a dictionary of patches rep-
resented by a matrix of size n � k, where the elements
of the dictionary are the columns of D. If ˛ 2 R

k is
a vector of coefficients, then D˛ represents the patch
obtained by linear combination of the columns of D.
Given an image v.i; j /, i; j 2 f1; : : : ; N g, the purpose
is to find a dictionary OD, an image Ou, and coefficients
Ǫ D f Ǫ i;j 2 R

k W i; j 2 f1; : : : ; N gg which minimize
the energy

min
.˛;D;u/

�kv � uk2 C
NX

i;jD1

�i;j k˛i;j k0

C
NX

i;jD1

kD˛i;j � Ri;juk2; (7)

where Ri;ju denotes the patch of u centered at
.i; j / (dismissing boundary effects), and �i;j are
positive weights. The solution of the nonconvex prob-
lem (7) is obtained using an alternate minimiza-
tion: a sparse coding step where one computes ˛i;j

knowing the dictionary D for all i; j , a dictionary
update using a sequence of one rank approxima-
tion problem to update each column of D (Aharon
et al. [1]), and a final reconstruction step given by the
solution of

min
u

�kv � uk2 C
NX

i;jD1

k OD˛i;j � Ri;juk2: (8)

Again, the inpainting problem can be considered as
a case of nonhomogeneous noise. Defining for each
pixel .i; j / a coefficient ˇi;j inversely proportional to
the noise variance, a value ofˇi;j D 0 may be taken for
each pixel in the inpainting mask. Then the inpainting
problem can be formulated as

min
.˛;D;u/

�kˇ ˝ .v � u/k2 C
NX

i;jD1

�i;j k˛i;j k0

C
NX

i;jD1

k.Ri;j ˇ/˝ .D˛i;j �Ri;j u/k2; (9)

where ˇ D .ˇi;j /
N
i;jD1 and˝ denotes the elementwise

multiplication between two vectors.
With suitable adaptations, this model has been

applied to inpainting (of relatively small holes), to
interpolation from sparse irregular samples and super-
resolution, to image denoising, to demosaicing of color
images, and to video denoising and inpainting, obtain-
ing excellent results; see Mairal et al. [22].

PDEs and Variational Approaches

All the methods mentioned so far are based on the
same principle: a missing/corrupted part of an image
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Inpainting, Fig. 7 Amodal completion: the visual system auto-
matically completes the broken edge in the left figure. The
middle figure illustrates that, here, no global symmetry pro-
cess is involved: in both figures, the same edge is synthesized.
In such simple situation, the interpolated curve can be mod-
eled as Euler’s elastica, that is, a curve with clamped points and
tangents at its extremities and with minimal oscillations

can be well synthetized by suitably sampling and copy-
ing uncorrupted patches (taken either from the image
itself or built from a dictionary). A very different point
of view underlies many contributions involving either a
variational principle, through a minimization process,
or a (non necessarily variational) partial differential
equation (PDE).

An early interpolation method that applies for
inpainting is due to Ogden et al. [24]. Starting from
an initial image, a Gaussian filtering is built by iterated
convolution and subsampling. Then, a given inpainting
domain can be filled in by successive linear interpo-
lations, downsampling, and upsampling at different
levels of the Gaussian pyramid. The efficiency of such
approach is illustrated in Fig. 6.

Masnou and Morel proposed in [23] to interpolate
a gray-valued image by extending its isophotes (the
lines of constant intensity) in the inpainting domain.
This approach is very much in the spirit of early works
by Kanizsa, Ullman, Horn, Mumford, and Nitzberg
to model the ability of the visual system to complete
edges in an occlusion or visual illusion context. This
is illustrated in Fig. 7. The general completion pro-
cess involves complicated phenomena that cannot be
easily and univocally modeled. However, experimental
results show that, in simple occlusion situations, it is
reasonable to argue that the brain extrapolates broken
edges using elastica-type curves, that is, curves that
join two given points with prescribed tangents at these
points, a total length lower than a given L, and mini-
mize the Euler elastica energy

R j�.s/j2ds, with s the
curve arc length and � the curvature.

The model by Masnou and Morel [23] general-
izes this principle to the isophotes of a gray-valued
image. More precisely, denoting Q� a domain slightly
larger than �, it is proposed in [23] to extrapolate the
isophotes of an image u, known outside � and valued

in Œm;M �, by a collection of curves f�tgt2Œm;M� with no
mutual crossings, that coincide with the isophotes of u
on Q� n� and that minimize the energy

Z M

m

Z

�t

.˛ C ˇj��t jp/ds dt: (10)

Here ˛; ˇ are two context-dependent parameters. This
energy penalizes a generalized Euler’s elastica energy,
with curvature to the power p > 1 instead of 2, of all
extrapolation curves �t , t 2 Œm;M �.

An inpainting algorithm, based on the minimization
of (10) in the case p D 1, is proposed by Masnou and
Morel in [23]. A globally minimal solution is com-
puted using a dynamic programming approach that
reduces the algorithmical complexity. The algorithm
handles only simply connected domains, that is, those
with no holes. In order to deal with color images, RGB
images are turned into a luma/chrominance represen-
tation, for example, YCrCb, or Lab, and each channel
is processed independently. The reconstruction process
is illustrated in Fig. 8.

The word inpainting, in the image processing con-
text, has been coined first by Bertalmío, Sapiro,
Caselles, and Ballester in [6], where a PDE model is
proposed in the very spirit of real paintings restora-
tion. More precisely, u being a gray-valued image to
be inpainted in �, a time-stepping method for the
transport-like equation

ut D r?u � r	u in �, (11)

u given in �c

is combined with anisotropic diffusion steps that are
interleaved for stabilization, using the following diffu-
sion model:

ut D '
.x/ jruj r � ru

jruj ; (12)

where '
 is a smooth cutoff function that forces the
equation to act only in �, and r � .ru=jruj/ is the cur-
vature along isophotes. This diffusion equation, which
has been widely used for denoising an image while
preserving its edges, compensates any shock possi-
bly created by the transport-like equation. What is the
meaning of Eq. (11)? Following Bertalmío et al. [6],
	u is a measure of image smoothness, and station-
ary points for the equation are images for which 	u
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Inpainting, Fig. 8 (a) is the
original image and (b) the
image with occlusions in
white. The luminance channel
is shown in figure (c). A few
isophotes are drawn in
figure (d), and their
reconstruction by the
algorithm of Masnou and
Morel [23] is given in
figure (e). Applying the same
method to the luminance, hue,
and saturation channels yields
the final result of figure (f)

is constant along the isophotes induced by the vector
field r?u. Equation (11) is not explicitly a transport
equation for 	u, but, in the equivalent form,

ut D �r?	u � ru; (13)

it is a transport equation for u being convected by
the field r?	u. Following Bornemann and März [9],
this field is in the direction of the level lines of 	u,
which are related to the Marr-Hildreth edges. Indeed,
the zero crossings of (a convoluted version of) 	u are
the classical characterization of edges in the celebrated
model of Marr and Hildreth. In other words, as in the
real paintings restoration, the approach of Bertalmío
et al. [6] consists in conveying the image intensities
along the direction of the edges, from the boundary of
the inpainting domain � toward the interior. The effi-
ciency of such approach is illustrated in Fig. 9. From
a numerical viewpoint, the transport equation and the
anisotropic diffusion can be implemented with clas-
sical finite difference schemes. For color images, the
coupled system can be applied independently to each
channel of any classical luma/chrominance represen-
tation. There is no restriction on the topology of the
inpainting domain.

Another perspective on this model is provided
by Bertalmío, Bertozzi, and Sapiro in [7], where
connections with the classical Navier-Stokes equation

of fluid dynamics are shown. Indeed, the steady-state
equation of Bertalmío et al. [6],

r?u � r	u D 0;

is exactly the equation satisfied by steady-state
inviscid flows in the two-dimensional incompress-
ible Navier-Stokes model. Although the anisotropic
diffusion equation (12) is not the exact counterpart of
the viscous diffusion term used in the Navier-Stokes
model for incompressible and Newtonian flows, a lot
of the numerical knowledge on fluid mechanics seems
to be adaptable to design stable and efficient schemes
for inpainting. Results in this direction are shown in
Bertalmío et al. [7].

Chan and Shen propose in [10] a denois-
ing/inpainting first-order model based on the joint min-
imization of a quadratic fidelity term outside � and a
total variation criterion in �, that is, the joint energy

Z

A

jrujdxC �

2

Z

�

ju � u0j2dx;

with A �� � the image domain and � a Lagrange
multiplier. The existence of solutions to this prob-
lem follows easily from the properties of functions
of bounded variation. As for the implementation,
Chan and Shen look for critical points of the energy
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Inpainting, Fig. 9 An experiment taken from Bertalmío et al. [6]. Left: original image. Middle: a user-defined mask. Right: the
result with the algorithm of [6]

Inpainting, Fig. 10 An experiment taken from Chan and
Shen [10]. Left: original image. Right: after denoising and
removal of text

using a Gauss-Jacobi iteration scheme for the lin-
ear system associated to an approximation of the
Euler-Lagrange equation by finite differences. More
recent approaches to the minimization of total vari-
ation with subpixel accuracy should nowadays be
preferred. From the phenomenological point of view,
the model of Chan and Shen [10] yields inpainting
candidates with the smallest possible isophotes. It is
therefore more suitable for thin or sparse domains.
An illustration of the model’s performances is given
in Fig. 10.

Turning back to the criterion (10), a similar penal-
ization on Q� of both the length and the curvature of all
isophotes of an image u yields two equivalent forms,
in the case where u is smooth enough (see Masnou and
Morel [23]):

Z C1

�1

Z

fuDtg\ Q�
.˛ C ˇj�jp/ds dt

D
Z

Q�
jruj

�
˛ C ˇ

ˇ
ˇ
ˇ̌r � ru

jruj
ˇ
ˇ
ˇ̌
p�

dx: (14)

There have been various contributions to the numer-
ical approximation of critical points for this criterion.
A fourth-order time-stepping method is proposed by
Chan et al. in [11] based on the approximation of
the Euler-Lagrange equation, for the case p D 2,
using upwind finite differences and a min-mod for-
mula for estimating the curvature. Such high-order
evolution method suffers from well-known stability
and convergence issues that are difficult to handle.

A model, slightly different from (14), is tackled by
Ballester et al. in [4] using a relaxation approach. The
key idea is to replace the second-order term r � ru

jruj
with a first-order term, depending on an auxiliary vari-
able. More precisely, Ballester et al. study in [4] the
minimization of

Z

Q�
jr �� jp.aCbjrG�uj/dxC˛

Z

Q�
.jruj�� �ru/dx;

under the constraint that � is a vector field with sub-
unit modulus and prescribed normal component on the
boundary of Q�, and u takes values in the same range as
in �c. Clearly, � plays the role ofru=jruj, but the new
criterion is much less singular. As for G, it is a regular-
izing kernel introduced for technical reasons in order
to ensure the existence of a minimizing couple .u; �/.
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The main difference between the new relaxed criterion
and (14), besides singularity, is the term

R
Q� jr � � jp

which is more restrictive, despite the relaxation, than
R
Q� jruj

ˇ
ˇ̌r � ru

jruj
ˇ
ˇ̌p

dx. However, the new model has

a nice property: a gradient descent with respect to
.u; �/ can be easily computed and yields two coupled
second-order equations whose numerical approxima-
tion is standard. Results obtained with this model are
shown in Fig. 11.

The Mumford-Shah-Euler model by Esedoglu and
Shen [16] is also variational. It combines the cele-
brated Mumford-Shah segmentation model for images
and the Euler’s elastica model for curves. Being u0 the
original image defined on a domain A, and � 	 A

the inpainting domain, Esedoglu and Shen propose to
find a piecewise weakly smooth function u, that is
a function with integrable squared gradient out of a
discontinuity set K 	 A, that minimizes the criterion

Z

An�
�ku�u0k2dxC

Z

AnK
� jruj2dxC

Z

K

.˛Cˇ �2/ds;

where ˛; ˇ; �; � are positive parameters. The result-
ing image is not only reconstructed in the inpainting
domain ˝ , but also segmented all over A since the
original image is not imposed as a hard constraint.

Two numerical approaches to the minimization of
this model are discussed in Esedoglu and Shen [16]:
first, a level set approach based on the representation of
K as the zero-level set of a sequence of smooth func-
tions that concentrate, and the explicit derivation, using
finite differences, of the Euler-Lagrange equations
associated with the criterion; second, a �-convergence
approach based on a result originally conjectured by
De Giorgi and recently proved by Röger and Schätzle
in dimensions 2,3. In both cases, the final system of
discrete equations is of order four, facing again difficult
issues of convergence and stability.

More recently, following the work of Grzibovskis
and Heintz on the Willmore flow, Esedoglu et al. [17]
have addressed the numerical flow associated with the
Mumford-Shah-Euler model using a promising con-
volution/thresholding method that is much easier to
handle than the previous approaches.

Tschumperlé proposes in [28] an efficient second-
order anisotropic diffusion model for multivalued
image regularization and inpainting. Given a R

N -
valued image u known outside �, and starting from

an initial rough inpainting obtained by straightforward
advection of boundary values, the pixels in the inpaint-
ing domain are iteratively updated according to a finite
difference approximation to the equations

@ui

@t
D trace.T r2ui /; i 2 f1; � � � ; N g:

Here, T is the tensor field defined as

T D 1

.1C �min C �max/˛1
vmin ˝ vmin

C 1

.1C �min C �max/˛2
vmax ˝ vmax;

with 0 < ˛1 << ˛2, and �min, �max, vmin, vmax are
the eigenvalues and eigenvectors, respectively, of G
 �PN

iD1rui ˝ rui , being G
 a smoothing kernel andPN
iD1rui ˝ rui the classical structure tensor, which

is known for representing well the local geometry
of u. Figure 12 reproduces an experiment taken from
Tschumperlé [28].

The approach of Auroux and Masmoudi in [3] uses
the PDE techniques that have been developed for the
inverse conductivity problem in the context of crack
detection. The link with inpainting is the following:
missing edges are modeled as cracks, and the image
is assumed to be smooth out of these cracks. Given
a crack, two inpainting candidates can be obtained as
the solutions of the Laplace equation with Neumann
condition along the crack and either a Dirichlet or a
Neumann condition on the domain’s boundary. The
optimal cracks are those for which the two candidates
are the most similar in quadratic norm, and they can be
found through topological analysis, that is, they corre-
spond to the set of points where putting a crack mostly
decreases the quadratic difference. Both the localiza-
tion of the cracks and the associated piecewise smooth
inpainting solutions can be found using fast and simple
finite difference schemes.

Finally, Bornemann and März propose in [9] a first-
order model to advect the image information along
the integral curves of a coherence vector field that
extends in � the dominant directions of the image
gradient. This coherence field is explicitly defined,
at every point, as the normalized eigenvector to the
minimal eigenvalue of a smoothed structure tensor
whose computation carefully avoids boundary biases
in the vicinity of @�. Denoting c the coherence field,
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Inpainting, Fig. 11 Two
inpainting results obtained
with the model proposed by
Ballester et al. [4]. Observe in
particular how curved edges
are restored

Inpainting, Fig. 12 An inpainting experiment (the middle image is the mask defined by the user) taken from Tschumperlé [28]

Bornemann and März show that the equation c�ru D 0

with Dirichlet boundary constraint can be obtained
as the vanishing viscosity limit of an efficient fast-
marching scheme: the pixels in � are synthesized one
at a time, according to their distance to the boundary.
The new value at a pixel p is a linear combination
of both known and previously generated values in a
neighborhood ofp. The key ingredient of the method is
the explicit definition of the linear weights according to
the coherence field c. Although the Bornemann-März
model requires a careful tune of four parameters, it is
much faster than the PDE approaches mentioned so far
and performs very well, as illustrated in Fig. 13.

Combining and Extending PDEs and Patch Models
In general, most PDE/variational methods that have
been presented so far perform well for inpainting
either thin or sparsely distributed domains. However,

there is a common drawback to all these methods:
they are unable to restore texture properly, and this
is particularly visible on large inpainting domains, for
instance, in the inpainting result of Fig. 12 where the
diffusion method is not able to recover the parrot’s
texture. On the other hand, patch-based methods are
not able to handle sparse inpainting domains like in
Fig. 14, where no valid squared patch can be found
that does not reduce to a point. On the contrary,
most PDE/variational methods remain applicable in
such situation, like in Fig. 14 where the model pro-
posed by Masnou and Morel [23] yields the inpainting
result. Obviously, some geometric information can be
recovered, but no texture.

There have been several attempts to explicitly com-
bine PDEs and patch-based methods in order to handle
properly both texture and geometric structures. The
contribution of Criminisi et al. [12] was mentioned
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Inpainting, Fig. 13 An inpainting experiment taken from Bornemann and März [9], with a reported computation time of 0.4 s

Inpainting, Fig. 14 A picture of a mandrill, the same picture
after removal of 15 � 15 squares (more than 87 % of the pixels
are removed), and the reconstruction with the method introduced

by Masnou and Morel [23] using only the one-pixel-wide infor-
mation at the squares’ boundaries

already. The work of Bertalmío et al. [8] uses an addi-
tive decomposition of the image to be inpainted into a
geometric component that contains all edges informa-
tion, and a texture component. Then the texture image
is restored using the Efros and Leung’s algorithm
of [14], while the geometric image is inpainted follow-
ing the method proposed in Bertalmío et al. [6] (several
subsequent works have proposed other methods for
the individual reconstruction of each component). The
final image is obtained by addition of the restored tex-
ture and geometric components. In a few situations
where the additive decomposition makes sense, this
approach does indeed improve the result and extends
the applications domain of inpainting.

In Komodakis and Tziritas [20], the authors com-
bine variational and patch-based strategies by defining
an inpainting energy over a graph whose nodes are
the centers of patches over the image. The inpainting
energy has two terms, one being a texture synthesis
term and the other measuring the similarity of the over-
lapping area of two neighboring patches (centered on

nodes which are neighbors in the graph). By mini-
mizing this energy with belief propagation, a label
is assigned to each node, which amounts to copying
the patch corresponding to the label over the position
of the node. The results are very good on a variety
of different images (e.g., Fig. 1), and the method is
fast. Some potential issues are the following: there is
no assurance that the iterative process converges to a
global minimum, and visual artifacts may appear since
the method uses a fixed grid and entire patches are
copied for each pixel of the mask.

The work by Drori et al. in [13] does not involve
any explicit geometry/texture decomposition, but the
search for similar neighborhoods is guided by a prior
rough estimate of the inpainted values using a multi-
scale sampling and convolution strategy, in the very
spirit of Ogden et al. [24]. In addition, in contrast with
many patch-based methods, the dictionary of valid
patches is enriched using rotations, rescalings, and
reflections. An example extracted from Drori et al. [13]
is shown in Fig. 15.
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Inpainting, Fig. 15 An
experiment from Drori
et al. [13] illustrating the
proposed multiscale
diffusion/patch-based
inpainting method. The
upper-left image is the
original, the upper-right
image contains the mask
defined by the user, the
bottom-left image is the result,
and the bottom-right image
shows what has been
synthesized in place of the
elephant

Beyond Single-Image Inpainting
All the methods mentioned above involve just a single
image. For the multi-image case, there are two possi-
ble scenarios: video inpainting and inpainting a single
image using information from several images.

Basic methods for video inpainting for data trans-
mission (where the problem is known as “error
concealment” and involves restoring missing image
blocks) and for film restoration applications (dealing
with image gaps produced by dust, scratches, or the
abrasion of the material) assume that the missing data
changes location in correlative frames and therefore
use motion estimation to copy information along pixel
trajectories. A particular difficulty in video inpainting
for film restoration is that, for good visual quality of
the outputs, the detection of the gap and its filling in
are to be tackled jointly and in a way which is robust
to noise, usually employing probabilistic models in a
Bayesian framework; see, for example, the book by
Kokaram [19].

Wexler et al. [29] propose a video inpainting
algorithm that extends to space-time the technique
of Efros and Leung [14] and combines it with the
idea of coherence among neighbors developed by
Ashikhmin [2]. First, for each empty pixel P , they
consider a space-time cube centered in P , compare

it with all possible cubes in the video, find the most
similar, and keep its center pixel Q, which will be
the correspondent of P . For each cube the informa-
tion considered and compared is not only color but
also motion vectors. Then, instead of copying the
value of Q to P , they copy to P the average of all
the values of the shifted correspondents of the neigh-
bors of P : for instance, if R is at the right of P ,
and S is the correspondent of R, then the pixel to
the left of S will be involved in the average to fill
in P . This is based on the idea by Ashikhmin [2],
see Fig. 5. The shortcomings of this video inpaint-
ing method are that the results present significant blur
(due to the averaging), it seems to be limited only to
static-camera scenarios (probably due to the simple
motion estimation procedure involved) and periodic
motion without change of scale, and the computa-
tional cost is quite high (due to the comparison of
3D blocks).

Shiratori et al. [26] perform video inpainting by
firstly inpainting the motion field with a patch-based
technique like that of Efros and Leung [14] and then
propagating the colors along the (inpainted) motion
trajectories. The method assumes that motion infor-
mation is sufficient to fill in holes in videos, which
is not always the case (e.g., with a static hole over a
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Inpainting, Fig. 16 Top row: some frames from a video. Middle row: inpainting mask � in black. Bottom row: video inpainting
results obtained with the algorithm of Patwardhan et al. [25]

static region). The results present some blurring, due
to the bilinear interpolation in the color propagation
step.

Patwardhan et al. [25] propose a video inpainting
method consisting of three steps. In the first step they
decompose the video sequence into binary motion lay-
ers (foreground and background), which are used to
build three image mosaics (a mosaic is the equivalent
of a panorama image created by stitching together sev-
eral images): one mosaic for the foreground, another
for the background, and a third for the motion infor-
mation. The other two steps of the algorithm perform
inpainting, first from the foreground and then from
the background: these inpainting processes are aided
and sped up by using the mosaics computed in the
first step. See Fig. 16 for some results. The algorithm
is limited to sequences where the camera motion is
approximately parallel to the image plane and fore-
ground objects move in a repetitive fashion and do
not change size: these restrictions are imposed so
that a patch-synthesis algorithm like that of Efros and
Leung [14] can be used.

Hays and Efros [18] perform inpainting of a single
image using information from a database with several
millions of photographs. They use a scene descriptor

to reduce the search space from two million to two
hundred images, those images from the database which
are semantically closer to the image the user wants to
inpaint. Using template matching, they align the 200
best matching scenes to the local image around the
region to inpaint. Then they composite each match-
ing scene into the target image using seam finding
and image blending. Several outputs are generated so
the user may select among them, and the results can
be outstanding; see Fig. 17. The main shortcoming of
this method is that it relies on managing and operat-
ing a huge image database. When the algorithm fails,
it can be due to a lack of good scene matches (if the
target image is atypical), or because of semantic viola-
tions (e.g., failure to recognize people, hence copying
only part of them), or in the case of uniformly tex-
tured backgrounds (where this algorithm might not
find the precise same texture in another picture of the
database).

Open Problems

Inpainting is a very challenging problem, and it is far
from being solved; see Fig. 18. Patch-based methods
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Inpainting, Fig. 17 Left: original image. Middle: inpainting mask �, in white. Right: inpainting result obtained with the method
by Hays and Efros [18], images taken from their paper

Inpainting, Fig. 18 An example where no inpainting method
seems to work. (a) Original image, from the database provided
by Hays and Efros [18]. (b) In white, the mask to be inpainted,
which is not the initial mask proposed by Hayes and Efros but
derives from the fuzzy mask actually used by their algorithm.

(c) Result courtesy of D. Tschumperlé using the algorithm
from [28]. (d) Result courtesy of T. März and F. Bornemann
using the algorithm from [9]. (e) Result using a variant of the
algorithm from Criminisi et al. [12]. (f) Result from Hays and
Efros [18]

work best in general, although for some applica-
tions (e.g., very spread, sparsely distributed gap �)
geometry-based methods might be better suited. And
when the image gap lies on a singular location, with
surroundings that cannot be found anywhere else, then
all patch-based methods give poor results, regardless
if they consider or not geometry. For video inpaint-
ing the situation is worse; the existing algorithms are
few and with very constraining limitations on camera
and object motion. Because video inpainting is very
relevant in cinema postproduction, in order to replace

the current typical labor intensive systems, important
developments are expected in the near future.
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Yuri Boykov
Department of Computer Science, University of
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Synonyms

Labeling; Object extraction; Partitioning; Segmenta-
tion; Semiautomatic; User-assisted; User-guided

Related Concepts

�Dynamic Programming

Definition

Interactive image segmentation is a (near) real-time
mechanism for accurately marking/labeling an object
of interest based on visual user interface (VUI)
specifying seeds, rough delineation, partial labeling,
bounding box, or other constraints. Semiautomatic
interactive segmentation methods incorporate vari-
ous generic image cues and/or object-specific feature
detectors in order to facilitate acceptable results with
minimum user efforts.
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Background

The most basic object extraction techniques like
thresholding (Fig. 1) and region growing are based
on simple but very fast heuristics. The spectrum of
applications for such techniques is limited as they are
prone to many problems, most notably leaking as in
Fig. 2. Despite significant problems, thresholding and
region growing are widely known due to their simplic-
ity and speed. For example, they could be easily run on
personal computers available 15–20 years ago. More
recent generations of commodity PCs allow much
more robust segmentation techniques, which rely on
optimization of some segmentation cost function, or an
energy. An energy functional should define an explicit
measure of goodness for evaluating any specific seg-
mentation result. The main goal of optimization is to
find the best segmentation with respect to the speci-
fied criteria. In the context of interactive segmentation,
the energy can embed some soft and hard constraints
specified by the user.

Discrete Segmentation Functionals

Many discrete optimization methods for interactive
segmentation are based on classical combinatorial
optimization techniques: dynamic programming (DP)
or s/t graph cuts. In general, these approaches are
guaranteed to find the exact global minimum solu-
tion in finite (low-order polynomial) number of steps.
There are no numerical convergence issues (e.g., oscil-
lations), and they work in near real time even on a
single CPU. For efficiency, these methods are often
implemented using the simplest 4-neighbor grids. In
theory, this basic approach may generate some dis-
crete metrication artifacts, but they are rarely observ-
able on real images. Increasing the neighborhood size
(e.g., to eight neighbors) adequately addresses the
problem [8, 9].

Graph-path segmentation models are designed for
2D image segmentation. Intelligent scissors [2], also
known as live wire in the medical imaging commu-
nity [3], requires user to place seeds on the desired
object boundary; see Fig. 3. The algorithm connects
these seeds by computing the shortest path on a graph
where edges (or nodes) are image weighted according
to local contrast (intensity gradient). Such weighting

makes paths “stick” to image boundaries. The shortest
paths from each new seed to all other image pixels
can be pre-computed in O.n logn/ time. Then, an opti-
mal path from any mouse position to the seed can be
previewed in real time.

This method evaluates segmentation boundary as
a path between two seeds (see Fig. 4a) using energy
functionals like

E.Ps;t / D
X

fp;qg2Ps;t

wpq (1)

where Ps;t is a set of adjacent edges from source
seed s to terminal seed t and edge weights wpq 
 0

are segmentation boundary costs based on some local
measure of intensity contrast across edge fp; qg. One
example of weights wpq is

wpq / 1

1C jrI � npq j2 � jjp � qjj

where rI is image gradient, vector npq is a normal
to edge fp; qg, and jjp � qjj is the geometric length
of edge fp; qg. Factor jjp � qjj differentiates diagonal
edges from horizontal and vertical edges on grids with
higher connectivity, which can reduce the grid bias.

There is a number of other interactive segmenta-
tion methods based on efficient DP-based optimiza-
tion algorithms. For example, the methods in [10, 11]
compute globally optimal cycles (closed contours),
minimizing ratios of different measures of segment’s
boundary and region. For example, [11] can find a
segment with the largest average contrast on its bound-
ary. (Ratio of some cumulative contrast measure and
the boundary length.) Optimization of ratio functionals
evaluating boundary’s curvature was addressed in [12].
Graph-cut segmentation models: Boykov and Jolly [5]
and Boykov and Funka-Lea [6] proposed an object
extraction functional for N-dimensional images that
evaluates boundary and region properties of seg-
ments as

E.xj�/ D �
X

pWxpD0

ln Pr.Ipj�0/ �
X

pWxpD1

ln Pr.Ipj�1/

C
X

fp;qg2N
wpq � Œxp ¤ xq� (2)

where Œ�� are Iverson brackets, variables xp are binary
object/background labels at pixels p, parameters
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Interactive
Segmentation, Fig. 1
Image thresholding segments
a subset of pixels with
intensities in a certain range,
for example, fp W Ip < T g in
(c). Some threshold T works
only if there is no overlap
between the object and
background intensities. The
images above are from [1]

original image intensity histogram thesholding result

a b

0 63 127 191 255

c

original image leaking problem

a b

Interactive Segmentation, Fig. 2 Region growing is a greedy
heuristic often associated with the leaking problem. Segment
S is initialized by some seed in the object of interest (lake).
Adjacent pixels q are iteratively added to S as long as some

“growing” criteria are met, for example, jjIq � Ipjj < T for
some neighbor p 2 S . A single low-contrast spot on the object
boundary (horizon) will make the lake leak into the sky (b)

� D f�0; �1g define object and background intensity
distributions, and edge weights wpq are a cost of
discontinuity between a pair of neighboring pixels. For
example,

wpq / exp

�
�jrI � epqj

2


2

�
� 1

jjp � qjj

where epq is a unit vector collinear to edge fp; qg and

 is a parameter controlling sensitivity to intensity con-
trast that is often set according to the level of noise in
the image. Similarly to energy (1), the last term in (2)
evaluates the image-weighted length of the segmenta-
tion boundary. In contrast to edge weights in (1), the
weights above are based on intensity contrast along the
edge fp; qg; see Fig. 4b. Normalization by edge length
jjp � qjj is required for grids with higher connectivity,
reducing the grid bias [13].

The first two terms in (2) evaluate how well
pixel intensities inside the object and background seg-
ments fit the corresponding distributions. In general,
image intensity/color distributions could be extended
by more sophisticated features and appearance mod-
els, for example, texture. The appearance models
could be estimated from seeds or from prior data.
The grab-cut method in [7] also uses an iterative
EM-style scheme for additionally optimizing func-
tional E.xj�/ in (2) with respect to parameters � . In
this case, sufficiently good initial appearance mod-
els can be often estimated from a user-placed box
around the object. The graph-cut segmentation model
also extends to video; for example, see the snap-cut
method [14].

Functional (2) can be globally minimized over
binary variables x by low-order polynomial algo-
rithms from combinatorial optimization [15] that are
fast even on a single CPU. Also, there are efficient
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Interactive
Segmentation, Fig. 3
Intelligent scissors or
live-wire methods connect
seeds placed on object
boundaries. Optimal
segmentation boundary
(orange curve) can be
previewed for any mouse
position in real time

Seed Point

Previous
Live-Wire
Segments

Previous
Free Points

Current
Free Points

Current
Live-Wire
Segment

Free Point
Path

a path a cut

a b

Interactive Segmentation, Fig. 4 Segmentation on graphs.
The path-based methods [2–4] represent segmentation boundary
as a sequence of adjacent (green) edges (a). A path could connect
two seeds or form a closed cycle. The graph-cut methods [5–7]

assign to pixels different labels, for example, red and blue in
(b). Any such labeling implicitly defines a segmentation bound-
ary, which is a cut, as a collection of (green) edges between
differently labeled pixels

techniques [5, 6] for integrating interactive hard con-
straints (seeds) as in Fig. 5. Instead of segmentation
energy (2), graph-cut framework can also use various
ratio functionals [16].

Segmentation energy (2) works for N objects
(labels). In general, its optimization is NP-hard for
N > 2. An approximate solution with a factor of
2 optimality guarantee can be found via ˛-expansion
optimization algorithm [17]. Interestingly, impos-
ing some additional geometric constraints between
object boundaries (e.g., inclusion, exclusion, minimum
margin) may lead to exact polynomial optimization
algorithms [18–20].

Continuous Segmentation Functionals

Many popular interactive segmentation methods use
continuous representation of segments where bound-
aries are contours in R2 or surfaces in R3. Such
methods use either physics-based or geometric func-
tionals to evaluate such continuous segments. Tradi-
tionally, variational calculus and different forms of
gradient descent were used to converge to a local
minima from a given initial contour; see Fig. 6. This
motivates the general term, active contours, commonly
used for such methods. Recent convex formulations for
standard continuous regularization functionals [21, 22]
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Interactive Segmentation, Fig. 5 Interactive editing of seg-
ments via hard constraints (seeds) based on graph cuts [5, 6]. A
fragment of an original photo is shown in (a). Initial seeds and
segmentation are shown in (b). The results in (c)–(e) illustrate

changes in optimal segmentation as new hard constraints are
successively added. The computation time for consecutive cor-
rections in (c)–(e) is marginal compared to time for initial results
in (b)

initialization local minima

a b

Interactive Segmentation, Fig. 6 Snakes and other active
contour methods are initialized by rough delineation of the
desired object (a). Minimization of an energy associated with
the contour leads to a local minimum (b) with better alignment
to image boundaries

and development of continuous max-flow techniques
[23, 24] now also allow good quality approximations
of the global minima.

Physics-based segmentation models: Snakes
[25, 26], balloons [27], spline snakes [28], and
other methods explicitly represent object bound-
aries as an elastic band or a balloon. The band
is normally assigned an internal energy (elasticity
and stiffness) and a potential energy with respect
to some external field of predefined image forces
attracting the band to image boundaries, that is, loca-
tions with large intensity gradients. A user can also
place seeds defining additional attraction or repulsion
potentials.

Geometry-based segmentation models: Note that
two visually identical snakes appearing in the same
image position may have different internal elastic ener-
gies. In many cases this may contradict a natural
assumption that a segmentation result can be evaluated
only by its visible appearance (In some video appli-
cations the goal is to track specific points on a moving

segment, e.g. muscles of a beating heart. Physics-based
(e.g. elastic) segmentation energy is well motivated is
such cases). Based on this criticism of the physics-
based approach, [29, 30] proposed geodesic active
contour model evaluating contour C on a (bounded)
domain � via geometric functionals like

E.C / D
Z

int.C /

f1.p/ dp C
Z

�=int.C /

f0.p/ dp

C
Z

@C

g.s/ds (3)

which is similar to discrete model (2). The first two
integrals in (3) are over the interior and exterior regions
of C , and the third integral is the Riemannian length of
C under metric g. Image-based density function g, for
example,

g.p/ D 1

1C jjrI.p/jj2 ; 8p 2 �

shortens the length of contour C if it follows image
boundaries where the density is small. The geometric
length term in (3) is a continuous analogue of (1) and
the spatial smoothness term in (2); see [13].

Scalar functions f1 and f0 on � are interior and
exterior potentials based on some known appearance
models for the object and background regions. For
example, one can use fi .p/ D � ln Pr.Ipj�i / as
in (2). Similarly, these potentials could also enforce
user-placed hard constraints (seeds).

Geometric contours C can be represented as level
sets of some scalar embedding function u W � ! R1,
for example, C D fp 2 � W u.p/ D constg. This
approach avoids some numerical issues, for example,
the need for reparameterization, often associated with
explicit representation of contour points needed for
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physics-based bands. The level-set framework does
not pose any topological constraints on contours and
yields easy-to-implement gradient descent equations
for geometric energies like (3). More recently, geo-
metric energies like (3) are addressed with various
continuous convex formulations [24, 31, 32] that are
shown to converge to a good approximation of the
global minimum.

The continuous geometric models are very closely
related to discrete segmentation energies in the graph-
cut framework [8, 13]. One theoretical advantage of
the continuous formulations is absence of the grid bias.
Continuous numerical schemes guarantee certain con-
vergence rate, but some stopping threshold often needs
to be chosen. Current fast implementations of contin-
uous optimization methods, for example, [32], require
GPU acceleration.

Distance-Based SegmentationMethods

Many interactive segmentation techniques optimize
objective functions that are only indirectly related
to the visual appearance of the segments and their
boundaries. In particular, a large number of methods
compute optimal (image-weighted) distance functions
computed from seeds. For example, fast-marching
method [33] extracts the boundary reached at time T

by a front expanding with an image-weighted speed.
This can be seen as a generalization of region growing.
These ideas were extended in [34] where the segments
are Voronoi cells w.r.t. geodesic distance d.p; s/ from
the object and background seeds s 2 SO [ SB

x�
p D arg min

l2fO;Bg
min
s2Sl

d.p; s/

Their image-based metric is based on gradients of
the appearance models likelihoods instead of intensity
gradients. Distance transforms can also work as the
unary potentials in the segmentation models (2) and
(3); for example, see [35].

Instead of the standard min-sum geodesic distance
d.p; s/, many segmentation methods use other mea-
sures to compute Voronoi cells from the seeds. For
example, fuzzy-connectedness methods [36, 37] com-
pute Voronoi cells with respect to some max–min
affinity measure. Random walker [38] outputs Voronoi

cells for probabilistic distance function d.p; s/, mea-
suring the expected time of arrival for a random walk
fromp to s. Watershed method, for example, [39], con-
nect points to seeds using water-drop paths instead of
geodesics. Power watershed algorithm [40] unifies the
ideas of watershed and random walker.

SomeOpen Problems

Energy functionals like (2) and (3) represent only the
most standard ideas for evaluating segments. Accurate
evaluation of the higher-order geometric properties of
the boundary, for example, curvature [12, 41], remains
a difficult optimization issue. Shape priors for globally
optimal segmentation [42, 43] as well as enforcement
of topological constraints [44, 45] are largely open
problems.
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Interpretation of Line Drawings

�Line Drawing Labeling

Interreflections

Michael S. Langer
School of Computer Science, McGill University,
Montreal, QC, Canada

Synonyms

Mutual illumination

Related Concepts

�Bas-Relief Ambiguity; �Diffuse Reflectance;
�Radiance

Definition

Interreflections are reflections of light from one surface
to another surface.

Background

Surfaces are illuminated not just by light sources but
also by each other. These interreflections can provide
a significant component of surface illumination, espe-
cially in concavities or enclosures. Numerical methods
for computing interreflections were developed in the
early twentieth century to solve problems in heat trans-
fer such as in furnace design. The methods were devel-
oped further by the computer graphics community in
the 1980s to render global illumination for scenes with
Lambertian surfaces and later for scenes with specular
components [7, 8].

Theory

Interreflections can be described mathematically in
several equivalent ways. One way is to write the

reflected light as a sum of the light that is due to
the illumination that arrives at a surface directly from
the light source, plus the light that arrives from other
surfaces in the scene via interreflections. Suppose the
scene is composed of Lambertian surfaces with albedo
�.x/ varying across surfaces. Let Ls.x/ be the com-
ponent of x’s outgoing radiance that is due to direct
illumination from the source. Then the total radiance
L.x/ leaving x is the sum of Ls.x/ and the radiance
that is due to interreflections:

L.x/ D Ls.x/C �.x/
Z

S
L.y/K.x; y/dy: (1)

Here the integral is taken over all surface points y 2 S
in the scene, and the function K.x; y/ is a symmetric
weighting function that depends on the surface nor-
mals at x and y and on the distances between x and
y. K.x; y/ is zero if the x and y are not visible to each
other.

It is common to approximate Eq. (1) by using a
polygonal mesh surface whose facets have constant
radiance:

r D rs C PKr (2)

where r and rs are the vectors of total and direct radi-
ance, respectively, P is a diagonal matrix of albedos,
and K is called the form factor matrix. The above equa-
tions can be generalized to non-Lambertian surfaces as
well [7, 8].

A second approach is to consider the eigenfunctions
of K which are radiance functions that are invariant to
interreflections [9, 11]. These eigenfunctions are con-
centrated in surface concavities and at points of contact
between surfaces [10].

A third approach is to use ray tracing to follow
the light emitted from the source through successive
reflections or bounces in the scene. The nth reflection
serves as the source for the nC 1st reflection, and the
sum of all reflections gives an infinite series. For any
scene geometry and reflectance, it is possible to con-
struct a linear operator that can be applied iteratively
to decompose the interreflections into their n bounce
components [15]. Understanding the various bounces
is especially important for making finite approxima-
tions. For example, a two-bounce model has been used
to model how surface microfacets can account for non-
Lambertian reflection [14] and how color bleeding
occurs between surfaces in a concavity [5].

http://dx.doi.org/10.1007/978-0-387-31439-6_390
http://dx.doi.org/10.1007/978-0-387-31439-6_100173
http://dx.doi.org/10.1007/978-0-387-31439-6_542
http://dx.doi.org/10.1007/978-0-387-31439-6_533
http://dx.doi.org/10.1007/978-0-387-31439-6_526


I 424 Intrinsic Images

Application

Standard shape from shading and photometric stereo
methods consider only the direct illumination com-
ponent [6]. When interreflections are present, these
methods produce erroneous results [4]. It is possible to
extend these methods to account for interreflections by
first ignoring interreflections to obtain an approximate
solution and then iteratively updating the solution to
account for interreflections. This idea has been applied
to photometric stereo [12] and to shape from shading
for the special case that the surface is an unfolded book
in a photocopier [16].

The above applications assume the light sources
are known. But what if they are unknown? An impor-
tant fact that applies in this situation is the bas-relief
ambiguity [1]. When a Lambertian surface is illumi-
nated by direct illumination only, there exists a family
of scenes (shape, albedo, lighting) that all produce
the same image. With interreflections present, the bas-
relief ambiguity no longer exists [3]. One can estimate
the surface shape and reflectance similarly to above,
namely, by applying a photometric stereo method that
is designed for unknown lighting [17] and then iter-
atively updating the shape and reflectance to account
for interreflections [3].

Interreflections also arise in projector-camera sys-
tems. An image that is projected on a concave
screen will suffer from interreflections that will lower
the image contrast. This contrast reduction can be
compensated for, to some extent, by modifying the
originally projected pattern [2]. A related example
which involves active illumination of a 3D scene is
to obtain a small number of images of the scene by
illuminating it with a set of high-frequency projection
patterns such as checkerboards [13]. The interreflec-
tion components of the scene will have relatively low
spatial frequency and will be similar in the images.
This property allows one to decompose the image of
a fully illuminated scene into its direct component and
its interreflection component. Unlike most methods for
interreflections which assume Lambertian scenes, this
method allows for non-Lambertian surfaces and other
forms of reflections such as volume scattering.
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Related Concepts

�Image Decompositions
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Intrinsic Images, Fig. 1 These images show an example of an intrinsic image decomposition. In this decomposition, the intrinsic
images can be how the image in (a) can be decomposed into the albedo and shading images shown in (b) and (c), respectively

Definition

A set of images used to represent characteristics of a
scene pictured in an image, with each image represent-
ing one particular characteristic of the scene.

Background

Vision systems have been categorized into low- and
high-level processing, with high-level processing tak-
ing an object-centered approach [1]. In this catego-
rization, the role of low-level processing is to extract
basic characteristics at all locations in the image. These
characteristics are then used to find objects.

Intrinsic images are a method for representing the
low-level characteristics extracted from images. In the
intrinsic image representation, proposed by Barrow
and Tenenbaum in [2], one image represents each of
the characteristics being used in the system. The value
of each pixel represents the value of the characteristic
at each point in the scene.

The types of characteristics that are conveniently
expressed as intrinsic images include the illumination
of each point in the scene, the motion at each point, the
orientation of each point, the albedo, and the distance
from the camera.

Application

Starting with [3], the term intrinsic images have also
been used to refer to an image decomposition that
decomposes an observed image into intrinsic images
that can be recombined to recreate the observed image.
The most common decomposition is, into images, rep-
resenting the shading, or illumination, and albedo of
each point. Figure 1 shows an example of how the

image in Fig. 1a into shading and albedo images.
Mathematically, the decomposition is modeled as

Op D Ip � Rp

where Op is the the value of the observed image at
pixel p, I is the illumination image, and R is the
reflectance image.

In [3], Weiss recovers these intrinsic images from
a sequence of images where the illumination varies in
the scene. In [4] and [5], Tappen et al. use color and
gray-scale features to estimate the decomposition from
a single image.

Besides image decompositions, [6] proposes using
intrinsic images that represent properties like occlusion
boundaries and object depth.
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Intrinsic Parameters

�Intrinsics

Intrinsics

Zhengyou Zhang
Microsoft Research, Redmond, WA, USA

Synonyms

Intrinsic parameters

Related Concepts

�Camera Parameters (Intrinsic, Extrinsic)

Definition

Intrinsics, short for intrinsic parameters, refer to the
parameters belonging to the essential nature of a thing,
which is usually a camera in computer vision. The
intrinsic parameters of a camera include its focal
length, the aspect ratio of a pixel, the coordinates of
its principal point, and the lens distortion parameters.

See entry “�Camera Parameters” for more details.

Inverse Compositional Algorithm

Simon Baker
Microsoft Research, Redmond, WA, USA

Definition

The inverse compositional algorithm is a reformula-
tion of the classic Lucas-Kanade algorithm to make the
steepest-descent images and Hessian constant.

Background: Lucas-Kanade

The goal of the Lucas-Kanade algorithm is to minimize
the sum of squared error between a template image
T .x/ and a warped input image I.x/:

X

x

Œ T .x/� I.W.xIp// �2 ; (1)

where x D .x; y/T are the pixel coordinates, W.xIp/
is a parameterized set of warps, and p D .p1; : : : pn/

T

is a vector of parameters. The Lucas-Kanade algorithm
assumes that a current estimate of p is known and then
iteratively solves for increments to the parameters 	p,
i.e., approximately minimize

X

x

Œ T .x/� I.W.xIpC	p// �2 ; (2)

with respect to 	p and update the parameters

p  pC	p: (3)

Equation (2) is linearized by performing a first-order
Taylor expansion:

X

x

�
T .x/� I.W.xIp//� rI

@W
@p

	p
�2

: (4)

In this expression, rI D
�
@I
@x
; @I
@y

	
is the gradient of

image I and @W
@p is the Jacobian of the warp. Equa-

tion (4) has a closed-form solution as follows. The
partial derivative of the expression in Eq. (4) with
respect to 	p is

�2
X

x

�
rI

@W
@p

�T �
T .x/ � I.W.xIp// � rI

@W
@p

	p
�
:

(5)

Then denote

SDlk.x/ D rI
@W
@p

; (6)

the steepest-descent images. Setting the expression in
Eq. (5) to equal zero and solving give

	p D H�1
lk

X

x

SDT
lk.x/ E.x/ (7)

where Hlk is the n � n (Gauss-Newton approximation
to the) Hessian matrix

Hlk D
X

x

SDT
lk.x/ SDlk.x/ (8)

http://dx.doi.org/10.1007/978-0-387-31439-6_155
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Inverse Compositional Algorithm, Fig. 1 A schematic
overview of the inverse compositional algorithm. Steps 3–6
(light-color arrows) are performed once as a precomputation.
The main algorithm simply consists of iterating image warping

(Step 1), image differencing (Step 2), image dot products
(Step 7), multiplication with the inverse of the Hessian (Step 8),
and the update to the warp (Step 9). All of these steps can be
performed efficiently

and

E.x/ D T .x/� I .W.xIp// (9)

is the error image. The Lucas-Kanade algorithm con-
sists of iteratively applying Eqs. (7) and (3). Because
the gradient rI must be evaluated at W.xIp/ and the
Jacobian @W

@p at p, they both depend on p. Both the
steepest-descent images and the Hessian must there-
fore be recomputed in every iteration [1, 2].

The Inverse Compositional Algorithm

Baker and Matthews [3] proposed the inverse composi-
tional algorithm as a way of reformulating image align-
ment so that the steepest descent images and Hessian
are constant. Although the goal of the inverse com-
positional algorithm is the same as the Lucas-Kanade
algorithm (e.g., minimizing Eq. (1)), the inverse com-
positional algorithm iteratively minimizes

X

x

Œ T .W.xI	p//� I.W.xIp// �2 ; (10)
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with respect to 	p and then updates the warp

W.xIp/  W.xIp/ ıW.xI	p/�1: (11)

The expression

W.xIp/ ıW.xI	p/ � W .W.xI	p/Ip/ (12)

is the composition of 2 warps, and W.xI	p/�1 is the
inverse of W.xI	p/. The inverse compositional algo-
rithm iterates Eq. (10) and (11) and can be shown to be
equivalent to the Lucas-Kanade algorithm to first order
in 	p [3].

Performing a first-order Taylor expansion on
Eq. (10) gives

X

x

�
T .W.xI 0//C rT

@W
@p

	p� I.W.xIp//
�2

:

(13)

Assuming that W.xI 0/ is the identity warp, the mini-
mum of this expression is

	p D �H�1
ic

X

x

SDT
ic.x/ E.x/; (14)

where SDT
ic.x/ are the steepest-descent images with I

replaced by T :

SDic.x/ D rT
@W
@p

; (15)

Hic is the Hessian matrix computed using the new
steepest-descent images:

Hic D
X

x

SDT
ic.x/ SDic.x/; (16)

and the Jacobian @W
@p is evaluated at .xI 0/. Since there

is nothing in either the steepest-descent images or the
Hessian that depends on p, they can both be precom-
puted. The inverse composition algorithm is illustrated
in Fig. 1.

Application

The inverse compositional algorithm can be used
almost anywhere the Lucas-Kanade can be. In can be

applied to anything from simple translational motion to
dense optical flow. Perhaps the most significant appli-
cation is its use to speed-up the fitting or tracking of
active appearance models [4, 5].
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IP Camera

�Pan-Tilt-Zoom (PTZ) Camera

Irradiance

Fabian Langguth and Michael Goesele
GCC - Graphics, Capture and Massively Parallel
Computing, TU Darmstadt, Darmstadt, Germany

Related Concepts

�Radiance

Definition

Irradiance E is defined as the incident power of elec-
tromagnetic radiation on a surface per unit surface
area. It is expressed in watt per square meter (W �m�2).

Background

Irradiance is a concept from radiometry, the science of
measuring radiant energy transfer [1]. The equivalent

http://dx.doi.org/10.1007/978-0-387-31439-6_496
http://dx.doi.org/10.1007/978-0-387-31439-6_526
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Irradiance, Fig. 1 Geometric setting

concept in photometry is illuminance, with the key dif-
ference being that illuminance is adjusted to account
for the varying sensitivity of the human eye to different
wavelengths of light.

Theory

The irradiance at a surface point x is proportional to
the radiance L.x; �; �/ arriving at x from direction
.�; �/ with a geometric foreshortening factor cos � .
Taking into account the whole hemisphere above the
surface point, the irradiance is the integral over all
incoming directions

E.x/ D
Z

�;�

L.x; �; �/ cos � d�d�: (1)

� denotes the angle between the surface normal and the
incident direction .�; �/ (see Fig. 1).

Application

For a camera with an optical lens and an aperture, the
image irradiance at a camera sensor is proportional to
the radiance L emitted from a small scene patch in the
form that

E D L
�

4

�
d

f

�2

cos˛4 (2)

where d is the aperture and f the focal length of
the lens. ˛ is the angle between the direction to the
observed patch and the principal ray of the camera.
For wide-angle lenses, the influence of ˛ often results
in a reduction of an image’s brightness at the corners

compared to the image center. This effect is also called
vignetting.

The pixel values of digital images are directly
related to the irradiance at the sensor of the camera
via the camera’s response curve [2, 3]. Many com-
puter vision techniques such as photometric stereo
use this fact to recover information about the scene
from the irradiance. Early works in this field include
[4] and [5].
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Related Concepts

�Curvature; �Curves in Euclidean Three-Space;
�Isotropic Differential Geometry in Graph Spaces

Definition

In many settings the conventional Euclidean differ-
ential geometry is not appropriate. A common case
involves “graphs,” an instance being images where the
carrier may be modeled as the Euclidean plane, but the
intensity domain is incommensurate. Isotropic differ-
ential geometry allows one to deal with such cases.

Background

Isotropic differential geometry became highly devel-
oped during the first half of the twentieth century,
mainly in German-speaking countries. The bulk of the
literature is still in German.

Theory

There are frequent cases in computer vision and image
processing in which the Euclidean E

3 setting from
classical differential geometry is not appropriate. A
simple example is an image, which may be thought
of as the Euclidean plane E

2, augmented with some
“intensity domain.” Intensities are nonnegative quanti-
ties that somehow reflect photon-catches in, e.g., CCD
devices. Usually the physical dimension is unclear
and considered irrelevant to the problem. Then the
structure of the intensity domain is most appropriately
modeled by the affine line A1, by considering the loga-
rithm of the intensity modulo some arbitrary constant.
But the E

2 � A
1-space is quite unlike E

3 as becomes
evident when one considers Euclidean rotations about
some axis in the image plane. Such rotations make no
sense because photon catches and lengths are incom-
mensurable physical quantities. The correct way to
proceed is to consider “image space” to be a fiber
bundle with base space E

2 and fibers A
1. Permissi-

ble transformations do not “mix” fibers, and Euclidean
rotations about axes in the image plane are not among
them.

This situation is typical in many contexts. The
simplest example is perhaps a graph y D f .x/,
where x and y are incommensurable physical quan-
tities. Although the graph is evidently a curve in the
xy-plane, it makes no sense to compute its Euclidean
curvature as the result will depend on irrelevant trans-
formations of the y-domain (Fig. 1).

A formal way to deal with such problems is to
treat the y-axis as an isotropic dimension. Then the
metric in the plane is essentially the separation in
the x-dimension, the y-separation being treated as
isotropic, i.e., nil. Thus the distance of points fx1; y1g
and fx2; y2g is taken to be x2 � x1. Notice that this
implies that points fx; y1g and fx; y2g with y1 ¤ y2
are at mutually zero distance, yet different. One denotes
such points “parallel” and assigns them the “special
distance” y2 � y1. Only parallel points have a special
distance, generic points only a proper distance. The
group of “isotropic motions”:

x0 D x C tx ; (1)

y0 D ˛x C y C ty; (2)

conserves proper distance and, in the case of parallel
points, special distance. This group is fit to replace the
group of Euclidean movements:

x0 D x cos˛ � y sin ˛ C tx; (3)

y0 D x sin˛ C y cos˛ C ty; (4)

and indeed has a somewhat similar (with important
differences!) structure.

One obtains this group if the xy-plane is interpreted
as the dual number plane. Dual numbers are complex
numbers z D x C "y, where the imaginary unit " is
defined as a nontrivial (i.e., not equal zero) solution of
the quadratic equation "2 D 0. Thus " ¤ 0 whereas
"2 D 0, from which one derives that neither " > 0, nor
" < 0. Thus one is forced to use intuitionistic logic,
for instance dropping the law of the excluded middle.
A concrete representation is by way of matrices:

z D x C "y D
�

x y

0 x

�
; (5)

then addition and multiplication of dual numbers may
be done by matrix algebra, similar to the conventional
complex numbers xC iy with imaginary unit i2 D �1,

http://dx.doi.org/10.1007/978-0-387-31439-6_405
http://dx.doi.org/10.1007/978-0-387-31439-6_644
http://dx.doi.org/10.1007/978-0-387-31439-6_780
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Isotropic Differential
Geometry in Graph
Spaces, Fig. 1 At left a
graph in red, and the graph
after a Euclidean rotation (in
blue). This obviously makes
no sense at all: the blue curve
is not even a graph anymore!
This is not a fiber bundle. At
right the red graph has been
subjected to an isotropic
rotation. This makes perfect
sense, one obtains another
graph. Notice that the points
move up and down along the
fibers of the fiber space, they
never leave their fiber, fibers
“do not mix”

Rotation in the Euclidean plane
(this makes no sense)

Isotropic rotation in a fiber bundle
(this makes good sense)

which are modeled through matrix algebra with the
matrices:

z D x C iy D
�

x �y
y x

�
: (6)

However, although perhaps less scary, these matrix
models are an unnecessary pain in hand calculations.

A linear transformation z0 D azCb with a D 1C"˛
and b D tx C "ty becomes:

z0 D .1C "˛/.x C "y/C .tx C "ty/ (7)

D .x C tx/C ".˛x C y C ty/;

(using "2 D 0), i.e., exactly the transformation
given above. Apparently the dual imaginary unit is an
“infinitesimal.” Indeed, the full Taylor expansion of a
function F about x is:

F.x C "h/ D F.x/C "hF 0.x/: (8)

Specifically, one has:

sin "� D "�; (9)

cos "� D 1; (10)

e"� D 1C "�; (11)

thus trigonometry becomes really convenient. The
polar representation of a dual number becomes:

z D x C "y D x.1C "
y

x
/ D jzje" arg z: (12)

The dual angle is arctany=x D y=x (notice that
an isotropic angle equals its tangent!), thus the angle
measure is parabolic instead of elliptic. Angles do
not repeat with period 2� as in the Euclidean plane,
but run between ˙1. Rotating the point 1 (that is
1C" 0) about the origin over an angle ˛ yields 1C" ˛,
thus the line x D 1 is (part of) a unit circle. This
brings one back to the original construction, and the
rotations do not “mix” the x and y dimensions in a
way that would be nonsense from the perspective of
physics.

The group of proper motions (translations and rota-
tions) of the dual plane leads to a differential geometry
of curves that differs from that of the Euclidean plane.
Consider the curve z.x/ D x C "y.x/. It is evidently
parameterized by arc length, for jzx j2 D 1. The tangent
is t.x/ D zx D 1 C "yx.x/, and is a unit vector, for
jt.x/j D 1. The unit normal is ", for tx.x/ D "yxx.x/

with (special) length yxx.x/. Thus the normal is con-
stant along the curve and useless for the purposes of
differential geometry. The slope of the tangent is well
defined though, the tangent subtends an angle yx.x/

with the x-axis. The derivative of this angle with arc-
length is yxx.x/, thus one concludes that the curve has
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Isotropic Differential Geometry in Graph Spaces, Fig. 2
Consider the local Taylor expansion of the red curve at the point
indicated by the white dot. The first order is the drawn black line,
the second-order approximation is the blue parabola. The center
of this “circle of the second kind” is indicated by the leftmost
dotted line. The other dotted line is the normal direction

curvature �.x/ D yxx.x/. Notice that it is a much
simpler expression than one has in the Euclidean plane,
which is:

k.x/ D yxx.x/

.1C yx.x/2/3=2
: (13)

As expected, the Euclidean and the dual curvatures
agree to first order, and for very shallow curves
(infinitesimally near the x-axis) the Euclidean curva-
ture degenerates to the dual curvature.

A curve:

z.x/ D "
.x � c/2

2R
; (14)

has curvature 1=R, thus a radius of curvature R and is
centered on x D c. It is evidently a circle in some
sense, though different from the circle encountered
above. One denotes x D ˙1 a unit circle of the first
kind, with center at the origin, "x2=2 a unit circle
of the second kind, centered at the origin. The local
second-order Taylor expansion of a curve is illustrated
in Fig. 2. It is a parabola with isotropic axis, thus a
“circle of the second kind.” It is the osculating circle to
the curve in the isotropic geometry. The radius of the
osculating circle is evidently the reciprocal of the sec-
ond derivative, thus a curve x C "y.x/ has curvature
yxx.x/ as argued above.

The differential geometry of curves and surfaces
in a fiber bundle E

2 � A
1 can be handled in a sim-

ilar manner. All expressions are much simpler than
those in Euclidean differential geometry, which is a
very useful property, apart from the advantage that they
make sense for a change. (Inappropriate applications of
expressions taken from Euclidean differential geome-
try occur very frequently in computer vision and image
processing. Although they certainly yield numerical
results, they strictly speaking make no sense.) Thus the
mean curvature of a surface fx; y; z.x; y/g in Monge
form becomes 2H D zxxCzyy , the Gaussian curvature
K D zxxzyy � z2xy , and so forth. Like in the planar case
discussed above, the normal is constant, and thus use-
less. One uses the spatial attitude of the tangent plane
instead. Any point of the surface may be mapped on the
unit sphere of the second kind z.x; y/ D .x2 C y2/=2

through parallelity of tangent planes. Even more con-
veniently, one notices that the xy-plane fx; y; 0g is the
stereographic projection of this sphere, thus confor-
mal, but most remarkably – because different from the
Euclidean case – also isometric. Thus the Gauss map
becomes

fx; y; z.x; y/g 2 E
2 �A

1 7! f�zx.x; y/; (15)

� zy.x; y/g 2 R
2;

a map that is familiar in computer vision as “gradi-
ent space.” Gradient space is often used by way of a
“linear approximation,” but it is really the exact Gauss
map (or “spherical image”) in terms of the appropriate
differential geometry.

The geometry of single isotropic space is well
understood, although almost all of the literature is in
German. The paper by Pottmann is the only refer-
ence in English on the general (space) setting, the
book by Yaglom (translated into English from Rus-
sian) is an excellent introduction to the geometry of
the dual plane.

Open Problems

This section introduced a very simple setting. In gen-
eral one may have to deal with a graph over a curved
surface. The paper by Pottmann gives some leads as
how to handle such more general cases.
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Synonyms

ICP

Definition

Iterative closest point (ICP) is a popular algorithm
employed to register two sets of curves, two sets of
surfaces, or two clouds of points.

Background

The ICP technique was proposed independently by
Besl and McKay [1] and Zhang [2] in two differ-
ent contexts. Besl and McKay [1] developed the ICP
algorithm to register partially sensed data from rigid
objects with an ideal geometric model, prior to shape
inspection. So this is a subset–set matching problem
because each sensed point has a correspondence in
the ideal model. Zhang [2] developed the ICP algo-
rithm in the context of autonomous vehicle navigation
in rugged terrain based on vision. His algorithm is
used to register a sequence of sensed data in order
to build a complete model of the scene and to plan
a free path for navigation. So this is a subset–subset
matching problem because a fraction of data in one
set does not have any correspondence in the other

set. To address this issue, Zhang’s ICP algorithm has
integrated a statistical method based on the distance
distribution to deal with outliers, occlusion, appear-
ance, and disappearance. However, both algorithms
share the same idea: iteratively match points in one
set to the closest points in another set and refine the
transformation between the two sets, with the goal of
minimizing the distance between the two sets of point
clouds.

Theory

The ICP algorithm is very simple and can be summa-
rized as follows:
• Input: two point sets, initial estimation of the trans-

formation
• Output: optimal transformation between the two

point sets
• Procedure: Iterate the following steps:

(i) Apply the current estimate of the transforma-
tion to the first set of points.

(ii) Find the closest point in the second set for each
point in the first transformed point set.

(iii) Update the point matches by discarding
outliers.

(iv) Compute the transformation using the updated
point matches, until convergence of the esti-
mated transformation.

Here are a few comments on this general algo-
rithm:
• Depending on the nature of the point sets, various

pose estimation techniques described in the earlier
sections can be used to compute the transformation
between the two sets.

• The step of finding the closest point to a given point
is generally the most time-expensive one. However,
this step can be easily parallelized.

• Many data structures can be used to accelerate the
finding of the closest point. They include k-D tree
and octree.

• Instead of using all points from the first set, a
selected subset of points (such as high curvature
points) can be used to speed up the process, with
only moderate sacrifice of the final accuracy.

• The above algorithm is not symmetric. Let point Op0
i

in the second set be the closest point to a point pi

in the first set. In the other direction, point pi is, in
general, not necessarily the closest point to Op0

i . In

http://dx.doi.org/10.1007/978-0-387-31439-6_100030
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order to make the algorithm symmetric, we can find
the closest point in the first transformed point set
for each point in the second set and add these point
matches to the overall set of matches. Better results
can then be obtained at the expense of additional
computational cost.

• When the ICP algorithm is applied to register curves
or surfaces, they need to be sampled. The final accu-
racy depends on the density of sampling. The denser
the sampling is, the higher the registration qual-
ity will be, but the more the computation will be
required.

For more detailed and extensive discussions on ICP, the
interested reader is referred to Sects. 7 and 8 of Zhang’s
paper [2].

There are several variants to the ICP algorithm.
A useful variation is to substitute the point-to-
point distance with point-to-plane distance [3].
The point-to-plane distance allows one surface to
slide tangentially along the other surface, making
it less likely get stuck in local minima. Consider
a point pi in the first set. Let point Op0

i in the sec-
ond set be its closest point. Let the surface normal at

point pi be ni (a unit vector). Then, the point-to-plane
distance measure is given by

di D nTi . Op0
i � pi/:

Surface normals can be precomputed to save
computation.
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