
Chapter 10

TOWARDS SECURE XML FEDERATIONS

Lingyu Wang, Duminda Wijesekera and Sushi! Jajodia

Abstract The integration of isolated XML repositories has drawn more and more interest
recently. In this paper, we propose XMLfederations to provide global e-services
while preserving the necessary autonomy and security of each individual repos­
itory. First we show a logical architecture of XML federations, which is adapted
from the common architecture of traditional federated databases according to the
unique requirements of XML federations. On the basis of the architecture, we
address security issues of XML federations, especially the authentication and
authorization of federation users. We point out several problems in applying
existing access control schemes and give our solutions.

Keywords: XML, federated database system, information integration, database security

1. Introduction
Recently, the continuing demand for information sharing has shifted inter­

est from stand-alone XML repositories to interconnected and large-scale co­
operative XML systems [8, 10]. The seamless and secure integration of iso­
lated XML repositories presents new research challenges in many respects. In
this paper, we adapt the mature techniques developed in traditional Federated
Database Systems (FDBSs) for this purpose. FDBS has been recognized as
a practical approach to integrate traditional databases while retaining the au­
tonomy and security of each participant. An FDBS is a collection of coopera­
tive but autonomous component database systems integrated to various degrees
[17J. An XMLfederation can be regarded as a special FDBS composed of sev­
eral stand-alone component XML repositories (or simply components) and a
federation as the common interface to provide global e-services.

The coexistence of cooperation and autonomy in XML federations makes
them suitable for use in extensive real-world scenarios, ranging from civil­
ian and military coalitions to non-governmental conglomerates and from e­
business providers to e-government organizations. XML federations have ad-

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2003
E. Gudes et al. (eds.), Research Directions in Data and Applications Security

10.1007/978-0-387-35697-6_26

http://dx.doi.org/10.1007/978-0-387-35697-6_26

118 DATA AND APPLICATIONS SECURITY

vantages over either a collection of interoperable XML systems with no inte­
gration or a centralized XML system leaving no autonomy for each participant.
For example, an XML federation formed by travel agencies, hotels, restaurants,
and car rental companies provides a user with convenient all-in-one traveling e­
services. In the case of interoperable XML systems, users will have to interact
with each company respectively and coordinate the outcomes by themselves.
On the other hand, it is unrealistic for hotels, restaurants, or car rental compa­
nies to unconditionally hand over their own business to serve travelers only.

XML federations bring many unique research challenges, among which we
specially address logical architecture and access control issues. Logical archi­
tecture forms the foundation for further studies of XML federations, includ­
ing the study of security-related issues. We describe an architecture based on
existing practices in traditional FDBSs and the unique requirements of XML
federations. We then investigate several access control schemes proposed for
traditional FDBSs. We show some new issues in applying them to XML fed­
erations and give our solutions. Among issues we address are:

• When a component authenticates a federation user, how can the authen­
tication be reliably done with all of the communications going through
the untrusted federation?

• How can the federation achieve fine-grained access control with only the
knowledge of the schema and how can components authorize federation
users without knowing them?

• When the federation switches user identities in accessing components,
how can components be convinced about what really happens if the fed­
eration can collude with federation users to gain unauthorized accesses?

The rest of the paper is organized as follows. Section 2 reviews basic con­
cepts and related works in traditional FDBSs and access control in isolated
XML repositories. Section 3 proposes a logical architecture for XML federa­
tions. Section 4 addresses the authentication and access control issues of XML
federations. Finally Section 5 concludes the paper.

2. Basic Concepts and Related Work

2.1 Federated Database System

An FDBS is a collection of cooperating yet autonomous component database
systems[17]. Component databases are heterogeneous in many aspects, such
as data models, query languages, and access control policies. Moreover, se­
mantic heterogeneity arises because the same or similar data items may have
different interpretations or intended uses among component databases. Ac­
cording to the degree of integration, two classes ofFDBSs are defined in [17],

Wang, Wijesekera & Jajodia 119

namely, loosely coupled FDBSs and tightly coupled FDBSs. A loosely coupled
FDBS is rather like a collection of inter-operable database systems. A tightly
coupled FDBS creates the federation at design time and actively controls the
accesses through the federation. In the rest of this paper, we assume a tightly
coupled FDBS and refer to it as an FDBS unless stated otherwise.

Access control in an FDBS is more complicated than in centralized data­
bases due to authorization autonomy, which allows component databases to
have control over their shared data [11, 13-15,20]. The degree of such control
divides access control in an FDBS into three classes. For full authorization
autonomy, component databases authenticate and authorize federation users
as if they are accessing component databases directly. In the other extreme,
low authorization autonomy fully trusts and relies on the federation to au­
thenticate and authorize federation users. The compromise between those two
cases, namely medium authorization autonomy, provides component databases
with partial control of their shared resources, using the technique called subject
switching.

2.2 Access Control of XML Documents

Proposals for access control of XML documents can be found in [2, 5-7, 9,
12, 16]. Access control of XML documents differs from traditional access con­
trol along two dimensions, subject and object. From the subject perspective,
the popUlation of users in the context of XML documents is usually dynamic
and may span a variety of locations [3]. The traditional authentication based on
user identity-password pair is usually insufficient and inconvenient. Creden­
tials such as digital certificates are used in authentication to prove both identi­
ties and attributes of users. From the object perspective, the rich structure of
XML documents demands fine-grained access control capabilities. The desired
granularity of access control on XML documents may range from schemata to
instances and from documents to elements or attributes.

Access control for XML documents is based on authorization rules con­
sisting of subject, object, action, access, and other extensions. Most propos­
als adopt a view-based approach, where an XML view containing only the
authorized content is computed from the original XML document according
to applicable authorization rules. The issues of under-specification or over­
specification, which mean that either insufficient or conflicting authorization
rules are specified, are addressed in [7] and [12]. The propagation of autho­
rizations from an element to its descendents is supported by either a global
policy [12] or specific policies defined inside access control rules [2, 7, 16].
Detailed algorithms for computing the XML view are given in [7, 12, 16]. The
problem of specifying subjects with their attributes is addressed in an XML­
based language, called x-Sec in [2]. An extension to traditional access control,

120 DATA AND APPLICATIONS SECURITY

called provisional authorization, is proposed in [16] to add richer semantics to
XML access control.

3. Logical Architecture for XML Federations

In this section, we propose a logical architecture for XML federations. This
is a fundamental step towards the further understanding of various design is­
sues in XML federations, including the security issues that we will address in
the next section. The five-level architecture proposed in [17] for the traditional
FDBSs needs to be adapted according to the unique requirements of XML fed­
erations. As an example, in the traditional FDBS, the local schema in each
component DBS must be transformed into a common data model to eliminate
or reduce the heterogeneity caused by different data models. In XML federa­
tions, this schema translation process is unnecessary since all component XML
repositories share the same XML standard (although the schemata of compo­
nents still need to be transformed to reduce semantic heterogeneity).

Figure 1 illustrates the logical architecture for XML federations. The archi­
tecture contains three class of modules, data, schema, andprocess. In Figure 1,
the data modules are represented by ovals, schema by rectangles, and processes
by unbounded text. The portion of the figure in dotted lines indicates it is op­
tional in the architecture. Each module of the architecture is discussed next.

Component DBS (Optional) and Component XML Repository
An XML federation is applicable to both the integration of existing XML
repositories and the migration of the traditional FDBS. The optional
component DBS models the traditional databases that join an XML fed­
eration through the processes of data mapping and schema mapping. A
component XML repository is a stand-alone XML repository to be inte­
grated into an XML federation.

Local, Component, and Export XML Schema
A local XML schema is the collection of schemata used by the local
XML repository to represent the structure and relationship among local
XML documents. A local XML schema could simply be the collection
of document type declarations (DTDs) [18]) of local XML documents.
A local XML schema usually does not contain sufficient information for
integration.

A Component XML schema is based on, but different from a local XML
schema. Auxiliary semantics in addition to those conveyed in a local
XML schema may need to be extracted when placing a component into
the grand picture of an XML federation. For example, a local XML
schema may need to be enhanced to eliminate semantic heterogeneity,
which is not a problem until integration. Figure 2 gives a simple ex-

Wang, Wijesekem 3 Jajodia

, , , ,
Data : Schema :

Mapping 1 MapPing!

.. L. ______________ !..

(Component DBS \1
......

, ,
\ ... - - - ---------- __ ..

, ,
Data 1 Schema

Schema
Integration

Mapping: Mapping , ,
: I

, .. -'---------------..
:' Component DBS : \
, IJ
' _-----------____ ... ,1

Federation

Components

Figure 1. Logical architecture for XML federations.

<!ELEMENT records (student*) >
<!ELEMENT student (name+.score?) >
<!ELEMENT name #PCDATA >
<!ELEMENT score #PCDATA >
<!ATTLIST soore maxSoore (101100) "100">
<!ATTLIST student id

<records>
<student id="I23456789">

<name> Bob</name>

ID #REQUIRED>

<soore maxScore="1O"> 1O.0<lsoore>
</student>

</records>

<!ELEMENT records (student') >
<!ELEMENT student (namc+.score?) >
<!ELEMENT name #PCDATA >
<!ELEMENT score #PCDATA >
<!ATTLIST score fractalDigit(O.lll.OllO.O) ''O.!''>
<!ATTLIST student id ID #REQUIRED>

<records>
<student id="I23456789">

<name> Bob</name>
<score fractalDigit="O. I"> 1O.0</soore>

<lstudent>
<!reoords>

Figure 2. Semantic heterogeneity in the XML federation.

121

ample of semantic heterogeneity, where the same tag yields different
semantics. Figure 2 shows two XML documents that belong to two dif­
ferent components. Both XML documents are valid according to their
local schemata, which are simply DTDs in this case. However, the score

122 DATA AND APPLICATIONS SECURITY

"10.0" has different interpretations due to the lack of semantics in both
local schemata.

The XML-Schema [19] proposed by W3C suits the needs of both the lo­
cal XML schema and the component XML schema. The XML-Schema
has the advantage of having the functionality above or beyond DTDs and
the flexibility of allowing for more extensions than DTDs. As stated by
the W3C XML-Schema Working Group, the XML-Schema makes explicit
information which may have been implicit in the original document,
such as normalized and/or default values for attributes and elements
and the types of element and attribute information items. This explicit
information is especially important in the context of the XML federation
since the issues of heterogeneity usually originate from implicit seman­
tics missing from the local XML schema. Using the XML-Schema in
XML federations also benefits from widely available software packages
and standards like XSLT in transforming among schemata, because the
XML-Schema is in XML format. Figure 3 gives a simple example of
applying the XML-Schema in XML federations. The figure shows an
exponent XML schema in XML-Schema format, which is transformed
from the two local XML schemata in Figure 2. Note that the missing
semantics in the local schemata have been added as the restrictions on
the simple data type decimal, which becomes explicit information.

The Export XML schema allows components to conveniently customize
their shared information. Each export XML schema is a subset of the
component XML schema obtained through the process of schema prun­
ing. By using multiple export schemata, a component XML repository
may share only part of its resources or different resources for different
applications in a federation.

Federated and External XML Schemas
The Federated XML schema integrates export schemata from participant
component XML repositories. Multiple federated XML schemata can
be defined in an XML federation corresponding to a different class of
applications. Each external XML schema is a subset of a federated XML
schema. Since a federated XML schema is usually large and complex in
structure, it is convenient to define different external XML schemata for
different groups of federation services or users. Compared to mUltiple
federated XML schemata, an external XML schema is an effort towards
finer grained schemata, which can be regarded as a view defined for each
federated XML schema. External XML schemata are obtained by prun­
ing of the federated XML schema.

Data and Schema Mappings
Data and schema mappings convert the data and schema of traditional

Wang, Wijesekera fj Jajodia

<xs:schema xmlns:xs=''http://www.w3.orgl2001lXMLSchema''>
<xs:elernent narne="records">

<xs:complexType >
<xs: sequence>

<xs:element narne="student" type="StudentType"/>
<lxs:sequence>

<lxs:complexType>
<xs:complexType narne="StudentType>

<xs: seq uence>
<xs:e1ement narne="narne" type="xs:string"/>
<xs:elernent narne="score" type="xs:score" IIlinOccurs="O"/>

<lxs:sequence>
<xs:attribute narne="id" type="xsd:ID" use="required"/>

<lxs:complexType>
<lxs:element>
<xs:simpleType narne="score">

<xs:restriction base="xs:decimal">
<xs:totalDigits value='3 'I>
<xs:fractionDigits value='l'l>
<xs:lIlinInc1usive value='O.O'l>
<xs:maxJnclusive value='lOO.O'l>

<lxs:restriction>
<xs:simpleType>

<lxs:schema>

Figure 3. Using XML schema in XML federations.

123

databases to those of XML repositories, Very often, databases of dif­
ferent data models already exist before the need for integration arises;
hence, data and schema mappings are essential steps towards integrat­
ing them into XML federations. Some techniques for data and schema
mappings can be found in [4].

Pruning, Transformation, and Integration of Schema
The pruning and transformation of schema are used to generate com­
ponent XML schema, export XML schema, and external XML schema.
The process can be implemented with proprietary methods or standard
XSLT processors. However, the implementation must be based on the
semantics of component XML repositories. While the automation of
those processes is necessary, human intervention is still essential due to
the lack of semantics in most schemata.

The schema integration techniques in [1] could be adapted for appli­
cation in XML federations. The standard XSLT transformation can be
used for schema integration if the XML-Schema is used for export XML
schemata. As stated in [17], the common format of an export schema
is critical for schema integration, which must be capable of representing
rich semantics. The integration process is indeed guided by those seman-

124 DATA AND APPLICATIONS SECURITY

...
Authentication

Federation
Access Control

External Schema

Federated Schema

/ ------Authentication

Access Control

Export Schema

Component Schema

Local Schema

Access Control

Authentication

XML Component
Repository

Authentication

Access Control

...... Export Schema

Component Schema

L
(Local

User

Local Schema

Access Control

Authentication

XMLCom ponent
ory Reposit

Figure 4. Access control scenario in XML federations.

tics rather than the syntax of schemata. Emerging standards, including
the XML-Schema, are promising candidates for this purpose.

4. Access Control in XML Federations

In this section, we address the access control problem in XML federations
on the basis of the logic architecture presented above. The access control sce­
nario in XML federations is shown in Figure 4.

We state our assumptions as follows. We only consider federation users
accessing the federation, since access control of local users in components is
the same as that discussed in Section 10.2. When a human acts as both a fed­
eration user and a local user at the same time, issues such as the inference
problem (sensitive information may be derived by combining the query results
from both the federation and its components) may arise. Those issues are out
of the scope of this paper. We assume federation bases its query processing on
a schema. When some data of components are replicated in a federation, its
access control is more like the local data in its components and is not addressed
here. We assume an administrative paradigm in our study since most works
on access control of XML documents do so. We do not consider conflicting
authorization rules between the federation and components [13]. We assume
that XML federations may collect personal information through authentication
and keep them as user profiles. We also assume that each component trusts

Wang, Wijesekera fj Jajodia 125

a federation for data confidentiality and integrity, that is, once the requested
data is provided by components, a federation will honestly process and present
the final outcome only to the user who requests it. However, malicious feder­
ation users may collude with a federation to obtain unauthorized accesses to
components under the identity of normal users.

The main issues of access control in XML federations can be described by
the following questions about the authentication and authorization of a federa­
tion user in response to hislher queries: Who authenticates the federation user?
Who authorizes himlher? How could the authentication and authorization be
reliably done? The answers to the first two questions lead to several access
control schemes proposed in [14]. However, applying those schemes to XML
federations causes some problems that are either ignored in the literature or
specially pertain to this case. To address those problems, first we need some
notations for the conciseness of our discussions.

XML Federation We use the pair < F, Ci > for an XML federation
consisting of n components, where F is the federation and each Ci (i =
1,2, ... ,n) is a component. We use FU (or FUi) as a federation user
and CUi (or cub as a local user accessing Ci. projile(X) is the set
of profiles (collection of properties about a user) of a of users X
satisfying projile(0) = 0, where X E {{FUi }, {CUn, 0}. q is a
query posed by any FU on F, and qi is the portion of q that should be
processed by Ci according to the federated schema.

Authentication auth(X, Y) denotes authentication. X E {F, Cd is
the authenticator, and Y E {{ FUj }, { CU!}} is the set of users being
authenticated. auth(X, Y) returns Y' Y , where the authentication
succeeds for any y E Y' and fails for all y E Y \ Y'. switch(FU, Ci, q)
is the process of subject switching, which returns {CU!}.

Authorization Rp and Ri are the authorization rules of F and Ci, re­
spectively. V(X) returns an XML file containing the information re­
quested by query X, where X E {q, qi}. We use L:: Vi to represent the
view integration process at F, where each Vi is an XML file returned
by Ci . P(projile(X), V, R) is the process of view pruning l for the
purpose of authorization, where X E {{FUj}, {CU!}, 0} is the set of
users who initiate the request, V is the XML file to be pruned, and R is
the authorization rules. The process returns the pruned XML file. We
require P(0, V, R) = 0 for any V and R, and P(projile(X), V,0) = V
for any X.

1 We represent the processes of view-computing and view-pruning separately, while they are sometimes
integrated as one process.

126 DATA AND APPLICATIONS SECURITY

Scheme 1: Federation Authentication - Component Authentication and
Authorization

In this scheme, FU is first authenticated by F, and is further authenticated
and authorized by each Ci. This is elaborated with the following formula:

V = 2::i P(profile(auth(F, {FU}) n auth(Ci, {FU})), V (qi), Ri)
This scheme corresponds to local authentication in a traditional FDBS. As

stated in [14], this scheme preserves full authorization autonomy since each Ci
knows who is accessing which part of its resources. On the other hand, it was
considered cumbersome because each FU may have to go through multiple
authentications auth(Ci, {FU}) for every q it submits. However, there are
actually more problems with this scheme than just multiple authentications.
How would Ci be convinced that auth(Ci,{FU}) is reliable when Ci and
FU have to interact through the untrusted F? For example, F may store any
credential submitted by FU1 and replay it later for another malicious FU2 . It
is also possible that F sends qi to Ci on behalf of the authenticated FU1, while
q is actually submitted by FU2 . Our solution to these problems is illustrated
as follows. Note that we use [X]k for the public-key encryption of X using
k, {X}k for the digital signature of X using k, and h(X) for the hash of X
(various standards are available for encryption, signature, and hash, which are
not discussed here).

1. FU ---+ F, F ---+ Ci : request for authentication
2. F Ci : random number ri
3. FU F : digital certificate of Ci containing its public key ki, ri
4. FU ---+ F, F ---+ Ci : [credential of FU, ri, session key kslki
5. FU ---+ F : q, {h(q)}ks
6. F ---+ Ci : q, qi, {h(q)}ks

In the above procedure, steps 1 to 4 are executed when FU initiates a new
session, and steps 5 and 6 are executed whenever FU submits a new query
q. We briefly explain how this scheme works. First, the confidentiality of the
credential of FU is achieved through the encryption with ki in step 4, which
means F cannot learn this credential from the messages it receives. Second,
the uniqueness of the credential during each session is achieved by including
ri in step 4, that is, F is not able to store and replay the credential for the au­
thentication of other users. Finally, because each following query q submitted
by FU in the same session is digitally signed with ks, which is only known to
FU and Ci, the integrity of q is achieved in that F cannot alter q or replace it
with another query (submitted by other users). Some details are not shown in
the procedure. Each session ends through either the time-out enforced by C i or
a termination request submitted by FU. Query q and the partial query results
returned by each Ci are still sent to F in the clear, which is essential for F to
process them. The client software module is required to automate the process

Wang, Wijesekera & Jajodia 127

of authentication, and its integrity during distribution must be guaranteed. Al­
though our solution shares some ideas of public key-based network protocols
like SSL, those protocols do not directly apply to our problem (they are used
to secure the network communications).

While Scheme 1 might be useful for the case that Ci does not trust F for
authentication and authorization, each Ci must keep track of every FU. This
may not always be feasible considering that the population of FU is very dy­
namic in XML federations. In the following two schemes, authentication is
only done by F and Ci trusts F for authentication.

Scheme 2: Federation Authentication - Component Authorization
In this scheme, FU is authenticated by F and authorized by each Ci respec­

tively. This is summarized as:
V = Ei P(profile(auth(F, {FU})), V(qi), Ri)
This scheme provides each Ci with authorization autonomy and releases it

from the burden of keeping track of each FU. The problem we need to address
is how Ci could authorize FU without knowing all details about it.

Our solution is profile-based authorization. We describe the basic idea with­
out giving all the details. We require each authorization rule Ri to be defined
on the basis of the attributes included in user profiles, instead of user identi­
ties. After F authenticates FU, it forwards profile(auth(F, {FU}) to Ci. Ci
then extracts the attributes required for authorization from the profile. A profile
could be formatted as a special XML file so its processing can be done through
XSLT processors. Profile-based authorization is more suitable for XML fed­
erations than for traditional FDBSs, because most existing practices of access
control for XML documents base authorization on roles, organizations, loca­
tions, or other attributes, which collectively form a user profile.

This scheme is useful and efficient for the cases where coarse authorization
granularity of subjects is acceptable to components. Otherwise, if authoriza­
tions are given to each user differently, then this scheme does not apply. The
following scheme shifts this authorization burden to the federation.

Scheme 3: Federation Authentication and Authorization
In this scheme, each FU is authenticated and authorized by F. The au­

thorization is enforced by F through either pruning the partial results before
integrating them or pruning the integrated result. This is summarized as:

V = Ei P{profile{auth{F, {FU})), V(qd, Rp)
or
V = P(profile(auth(F, {FU})), Ei V(qd, Rp)
This scheme corresponds to the case of low authorization autonomy in tra­

ditional FDBSs. In [14], it is regarded as being able to benefit each compo­
nent DBS with the finer access control of the federation. However, one issue
arises when applying it to XML federations. As stated in Section 10.2, fine­
grained authorization is inherently necessary for XML documents. According

128 DATA AND APPLICATIONS SECURITY

to the logical architecture we proposed, F only knows the schemata of shared
resources, which may be insufficient for it to enforce any instance-level au­
thorizations. One solution is for F to import fine-grained authorization rules
from Gi. However, having fine-grained rules without having the associated
fine-grained data is still problematic. For example, assume that some instances
of an element in Gi are not intended to be shared with F under a default open
policy. In this case, the access should not be granted to any FU even though
there are no explicit prohibition rules for those instances. Enabling F to en­
force such types of authorization rules may lead to a substantial replication of
the data of Gi in F, which is in turn not acceptable due to the redundancy and
potential inconsistency of data. In summary, this scheme will be valid only
when the desired authorization granularity is feasible for F to enforce.

Scheme 4: Federation Authentication and Authorization with Subject
Switching

In this scheme, each FU is authenticated and authorized by F with subject
switching [20]. Each switched CU! is authenticated and authorized by Ci.
This is summarized as:
V = P(profile(auth(F, {FU})), Ei P(profile(auth(Ci, 8witch(FU, Ci,
q))), V(qi),Rd,RF)

Like Scheme 2, this scheme is a compromise between no trust and complete
trust of F for authentication and authorization. However, this scheme is unique
in that it provides authorization autonomy on the basis of accountability (i.e.,
the ability of F to testify about what happened) of subject switching. As long
as accountability is ensured, Gi retains control of the resources it shares with
F. The advantage compared to Scheme 3 is that no FU can be granted the
data that is not intended to be shared by Gi , even if F malfunctions in subject
switching. Compared to Scheme 1, Gi does not have the burden of knowing
every FU until it needs to audit the history of subject switching.

Unfortunately, the critical problem of this scheme, the accountability of sub­
ject switching, is not considered by the literature. Here we give our solution,
namely, delayed local authentication, as follows.

1. FU -+ F, F -+ Gi : request for authentication
2. F f-- Gi : random number ri
3. FU f-- F : digital certificate of Gi containing its public key ki' ri
4. FU -+ F, F keeps in log file Log, : [credential of FU, ri, session

key ks, timestamp ta]ki
5. FU -+ F, F keeps in Log, : q, {h(q), timestamp iI}ks
6. F -+ Ci : {CUd = 8witch(FU, Ci, q), q, qi
7. Ci keeps in log file Logi : {CUi}, q, qi, timestamp t2

Our solution is similar to the procedure in Scheme 1 except that Gi does not
authenticate each FU; instead, the credential information is logged by F in

Wang, Wijesekera f1 Jajodia 129

Log" as does each digitally signed q. When F switches to a local user CUi
and sends qi to Ci, Ci authenticates CUi and logs the requests. Accountability
is achieved because F cannot create a record for FU in Log, without the real
credential of FU. If F attempts to request accesses for CU2 under the identity
of CUI with subject switching, it will succeed for the time being. However,
either the signature of queries {h(q), tI}ks or the associated authentication
records for FUI to obtain ks will be missing in Log,> Ci may later discover
this violation by comparing Log, and Logi . Timestamps are logged to ensure a
session is correctly timed out by the client (Ci has no knowledge of sessions).
Note that although F could potentially delete or alter Log" this action only
exacerbates its situation in auditing.

5. Conclusions

In this paper, we described a logical architecture for integrating isolated
XML repositories into XML federations. We investigated the access control
issues of XML federations. We pointed out the new issues in applying existing
access control schemes to XML federations and gave our solutions. Future
work includes implementing a prototype of an XML federation and further
investigation of various security issues in XML federations.

Acknowledgments

This work was partially supported by the National Science Foundation un­
der grant CCR-0113515.

References

[1] Batini, C., Lenzerini, M. and Navathe, S. (1986). A comparative analysis
of methodologies for database schema integration. ACM Computing Sur­
veys, 18(4):323-364.

[2] Bertino, E., Castano, S., Ferrari, E. and Mesiti, M. (2000). Specifying and
enforcing access control policies for XML documents sources. World Wide
Web Journal, 3(3):139-151.

[3] Bonatti, P. and Samarati, P. (2000). Regulating service access and infor­
mation release on the web. In Proceedings of the Seventh ACM Conference
on Computer and Communications Security, pages 134-143.

[4] Collins, S., Navathe, S. and Mark, L. (to appear). XML schema mappings
for heterogeneous database access. Information and Software Technology
(Special Issue on Objects).

[5] Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati,
P. (2000a). Design and implementation of an access control processor for

130 DATA AND APPLICATIONS SECURITY

XML documents. In Proceedings of the Ninth International World Wide
Web Conference.

[6] Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati,
P. (2000b). Regulating access to semistructured information on the web.
In Proceedings of the IFIP-TCll International Conference on Information
Security.

[7] Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati, P.
(2000c). Securing XML documents. In Proceedings of the International
Conference on Extending Database Technology, pages 121-135.

[8] Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati, P.
(2001). Fine grained access control for SOAP e-services. In Proceedings of
the Tenth International Conference on the World Wide Web, pages 504-513.

[9] Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati, P.
(2002a). A fine-grained access control system for xml documents. ACM
Transactions on Information and System Security, 5(2): 169-202.

[10] Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati,
P. (2002b). Securing soap e-services. International Journal of Information
Security, 1(2):100-115.

[11] Dawson, S., Samarati, P., De Capitani di Vimercati, S., Lincoln, P.,
Wiederhold, G., Bilello, M., Akella, 1. and Tan, Y. (2000). Secure access
wrapper: Mediating security between heterogeneous databases. In Proceed­
ings of the DARPA Information Survivability Conference and Exposition
(DISCEX).

[12] Gabillon, A. and Bruno, E. (2001). Regulating access to XML doc­
uments. In Proceedings of the Fifteenth IFIP WG11.3 Conference on
Database and Applications Security, pages 311-328.

[13] Gudes, E. and Olivier, M. (1998). Security policies in replicated and
autonomous databases. In Proceedings of the Twelfth IFIP WG 11.3 Con­
ference on Database Security, pages 93-107.

[14] Jonscher, D. and Dittrich, K. (1994). An approach for building secure
database federations. In Proceedings of the Twentieth VLDB Conference,
pages 24-35.

[15] Jonscher, D. and Dittrich, K. (1995). Argos - a configurable access con­
trol system for interoperable environments. In Proceedings of the IFIP WG
11.3 Workshop on Database Security, pages 43-60.

[16] Kudo, M. and Hada, S. (2000). XML documents security based on pro­
visional authorization. In Proceedings of the Seventh ACM Conference on
Computer and Communications Security, pages 87-96.

Wang, Wijesekera & Jajodia 131

[17] Sheth, A. and Larson, 1. (1990). Federated database system for managing
distributed, heterogeneous, and autonomous databases. ACM Computing
Surveys, 22(3):183-236.

[18] WWW Consortium (2000). Extensible markup language (XML) 1.0.
Available at www.w3.orgffRIREC-xml.

[19] WWWConsortium (2001). XML schema 1.1. Available at www.w3.org/
XMLI Schema.

[20] Yang, 1., Wijesekera, D., and Jajodia, S. (2001). Subject switching al­
gorithms for access control in federated databases. In Proceedings of the
Fifteenth IFIP WG 11.3 Conference on Database and Applications Security,
pages 199-204.

	Chapter 10 TOWARDS SECURE XML FEDERATIONS
	1. Introduction
	2. Basic Concepts and Related Work
	2.1 Federated Database System
	2.2 Access Control of XML Documents

	3. Logical Architecture for XML Federations
	4. Access Control in XML Federations
	5. Conclusions
	Acknowledgments
	References

