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ABSTRACT

Motivation: Recently, a new type of expression data is being

collected which aims to measure the effect of genetic variation on

gene expression in pathways. In these datasets, expression profiles

are constructed for multiple strains of the same model organism under

the same condition. The goal of analyses of these data is to find

differences in regulatory patterns due to genetic variation between

strains, often without a phenotype of interest in mind. We present a

newmethodbasedonnotions of tight regulationanddifferential expres-

sion to look for sets of genes which appear to be significantly affected

by genetic variation.

Results: When we use categorical phenotype information, as in the

Alzheimer’s and diabetes datasets, our method finds many of the

samegene sets as gene set enrichment analysis. In addition, our notion

of correlated gene sets allows us to focus our efforts on biological pro-

cesses subjected to tight regulation. In murine hematopoietic stem

cells, we are able to discover significant gene sets independent of a

phenotype of interest. Some of these gene sets are associated with

several blood-related phenotypes.

Availability: The programs are available by request from the authors.

Contact: cye@bioinf.ucsd.edu

1 INTRODUCTION

1.1 Background

When microarrays were first introduced 10 years ago, researchers

were attracted to the high throughput nature of the technology that

enabled them to examine the activity of all genes in a cell simul-

taneously. The original promise of using this technology to quickly

generate biologically relevant and verifiable hypotheses has yet to

be fully realized. Ironically, much of the initial work has focused on

the reduction of whole genome expression data to the identification

of individual genes that exhibit differential expression. The most

common such studies compare the expression levels of individual

genes between two spatial or temporal conditions; or between dis-

eased (e.g. cancerous) and normal cells. Various statistical tests are

used to assess the significance of differential expression by com-

paring individual genes to the rest of the genes. Using these single-

gene approaches, researchers have identified many genes critical to

the function of various biological processes including the yeast cell

cycle (Spellman et al., 1998) and the onset of human breast cancer

(Perou et al., 2000).

Because most biological processes involve the complex inter-

action and regulation of multiple genes, identifying differentially

expressed sets of genes has important advantages over identifying

individual genes. Many genes may individually exhibit marginal

differential expression but may have a significant combined effect

on phenotypic outcome. The most common gene set method directly

extends single-gene approaches by:

(1) Ordering the complete list of genes, L, according to their

evidence for differential expression.

(2) Examining the occurrence of a predefined gene set S to

determine whether it is overrepresented in the top portion of

the list, B, relative to the complete list L.

(3) Computing a P-value usually based on the Fisher’s exact test

or its large-sample approximation x2 test.

Numerous software and web sites perform this sort of analysis,

most often by using Gene Ontology as the source of gene sets.

Examples include GENMAPP (Dahlquist et al., 2002), CHIPINFO
(Zhong et al., 2003), GOMINER (Zeeberg et al., 2003), ONTO-
TOOLS (Draghici et al., 2003), FUNCASSOCIATE (Berriz et al.,
2003) and EASE (Hosack et al., 2003).
This approach is reasonable but has at least three shortcomings.

First, by considering only those genes that belong to a gene set,

others not in the set and their relative positions in the gene list

are disregarded. Second, significant genes are arbitrarily selected

using a threshold leading to different results from using different

thresholds. Third, and most importantly, once B and S have been

picked, the actual measure of differential expression (or other

scores) associated with each gene is disregarded and any additional

information, including correlation between gene expression levels is

ignored (Pavlidis et al., 2004).
Exploiting the correlation structure between genes is an alternate

approach of utilizing microarray data. It has been shown in

previous studies that correlated expression levels between genes

are directly associated with functional relationships such as physical

interactions and common regulatory mechanisms (Eisen et al.,
1998). As such, expression level correlation has been used to identi-

fy new functional modules and gene sets.

A promising new technique, gene set enrichment analysis (GSEA)

uses binary phenotype information (e.g. samples belonging to two

classes) and a new statistic similar to the Kolmogorov–Smirnov

statistic to evaluate microarray data at the level of gene sets. The

method avoids many of the problems of single-gene approaches by

determining whether members of a gene set S tend to occur toward

the top (or bottom) of the entire gene list L, in which case the gene�To whom correspondence should be addressed.
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set is correlated with the phenotypic class distinction. This approach

eliminates some of the single-gene biases and detects differentially

expressed gene sets whose individual members are not necessarily

differentially expressed under the single-gene model. The steps are

(1) construct a ranked list L of genes based on correlation between

their expression and class distinction using any suitable metric

(signal-to-noise ratio), (2) given an a priori defined set of genes

S, calculate an enrichment score (ES) that reflects the degree to

which a set S is overrepresented at the extremes (top or bottom)

of the entire ranked list L, (3) estimate the statistical significance of

the ES score by using an empirical phenotype-based permutation

test procedure that preserves the complex correlation structure of

the gene expression data and (4) correct for multiple testing by

normalizing the ES score for each gene set to account for the

size and then calculating the FDR for each normalized enrichment

score.

The major advantage of GSEA is the ability to identify

differentially expressed gene sets while preserving the correlation

structure of the gene expression data avoiding a potential source

of false positives. Tian et al. (2005) presents a potential solution

by performing separate statistical tests based on two different but

nevertheless related null hypotheses. Although statistically sound,

such an approach makes the computation of a P-value difficult.

1.2 ‘Tightly regulated’ gene sets

Recently, a new type of expression data is being collected which

aims to measure the effect of genetic variation on gene expression

of pathways (Morley et al., 2004; Bystrykh et al., 2005). In these

datasets, expression data are collected from multiple strains of

the same model organism under the same condition. The goal of

analyses of these data is to identify differences in regulatory

patterns due to genetic variation between strains. Previous gene

set based methods, including GSEA, identify sets of genes which

are highly variable across the strains and correlated with a pheno-

type of interest. An example of such a pathway is shown in

Figure 1a. However, these types of datasets motivate a new notion

of differential expression, tightly regulated gene sets, where differ-

entially expressed genes are highly correlated within the strains. In

this phenomenon, a set of genes is expressed at a different level

of activity in each strain and may represent a different level of

activity of a pathway. Figure 1b shows an example of a tightly

regulated pathway.

In this paper, we formalize the notions of tight regulation and

differential expression to generate two null hypotheses. First, we

present a new method for identifying tightly regulated gene sets

based on a correlation statistic. Second, we introduce a more general

method of identifying differential expression to specifically handle

whole genome expression data over different strains of a model

organism without requiring a phenotype. From Figure 1, we see that

our two notions of significance for a gene set capture different

information. A differentially expressed gene set has contrasting

vertical bands. Figure 1a and b both have a high ratio of genes

differentially expressed while Figure 1c has only a few genes

differentially expressed. A tightly regulated gene set has a smooth

horizontal gradient. This pattern is observed in Figure 1b but not in

Figure 1a and c.

We apply our methods to three datasets, two of which have been

previously analyzed with other gene set based methods allowing

us to directly compare our results. The first dataset is a diabetes

expression profiling study of a binary phenotype [17 individuals

with normal glucose tolerance (NGT) versus 18 individuals with

Type 2 Diabetes Mellitus (DM2)]. The second dataset is an

Alzheimer’s expression profiling study of a continuous phenotype

where 31 individuals were quantified by their MiniMental State

Examination (MMSE) scores. These individuals are also clinically

divided into four categories: control, incipient, moderate and severe.

Finally, we apply our methods to a dataset containing expression

profiles of hematopoietic stem cells (HSCs) from 22 strains of

recombinant inbred mice.

2 METHODS

2.1 Hypothesis testing framework

The overall objective of our approach is to identify gene sets that are dif-

ferentially expressed and tightly regulated. This gives us two null hypotheses

as follows:

(1) Hypothesis D0: The genes in a gene set show the same pattern of

differential expression compared with the rest of the genes.

(2) Hypothesis T0: The genes in a gene set show the same amount of

correlation as the rest of the genes.

Notice two important differences in our framework. First, neither hypothesis

explicitly requires phenotype information althoughmany different notions of

differential expression can be applied, including those involving phenotypes.

Second, empirically these two hypotheses show very little correlation (data

not shown).

2.2 Identifying tightly regulated pathways

We use the Kendall Tau to look for tightly regulated gene sets. Unlike the

Pearson and Spearman correlations, there is an intuitive, graphical inter-

pretation of the Kendall Tau. Given two genes, we create two ranked lists of

the strains based on the expression levels of each gene. In graph theoretic

terms, we are creating a bipartite graph with the strains representing the two

sets of vertices. Each strain from one ranked list is connected to the same

strain in the other ranked list by an edge.

Formally, given two genes i and j each with n expression values, one from

each strain, the Kendall Tau is defined as:

tðYi‚YjÞ ¼
1 � 2c

mðm � 1Þ/2 ‚

where c is the number of crossings in our bipartite graph andm is the number

of strains. The specific statistic we use to evaluate gene sets is the sum of

squares of all pairwise Kendall coefficients for a given gene set,

k ¼
Xn

i¼1

Xn

j¼1

ðtðYi‚YjÞÞ2:

To assess the significance of this statistic for a given gene set, we construct

2000 random gene sets with the same cardinality as our original gene set and

recompute k. A P-value is then computed from the permutations.

2.3 Identifying differentially expressed pathways

2.3.1 ANOVA and variance For datasets that include categorical

phenotype information, we use a linear mixed effects ANOVA model to

rank the genes based on their F statistic. We use the MAANOVA R package

and specify the gene-specific model as:rigr ¼ Gþ Si þ Ii þ eirwhere the

indicies track array (i), gene (g) and measurement (r); G is the average

intensity associated with a particular gene; S is the effects associated

with different samples or conditions (i.e. normal versus type 2 diabetes

patients); I is the individual random effect of multiple individuals from a

Whole genome expression data

e85

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/23/2/e84/203391
by guest
on 26 July 2018



particular sample (i.e. five diabetes patients); and 2 is the residual. We

compute the following F statistic:

F ¼ ðrss0 � rss1Þ/ðdf 0 � df 1Þ
rss1/df 1

‚

where rss0, df0 and rss1, df1 are the residual sums of squares and degrees of

freedom for the null and alternative models, respectively. A P-value based

on the normal distribution is returned by MAANOVA (Cui and Churchill,

2003).

For datasets that do not have clear categorical phenotype information, we

look for differential expression based on the variance of the gene expression

values of each gene. This is mostly applicable to whole genome expression

data of different individuals from the same model organism.

2.3.2 The Mann-Whitney test To compute over-representation of a

gene set in a ranked list, either derived from a linear ANOVA model or by

computing the variance of the expression levels, we use the Mann–Whitney

statistic. This non-parametric test uses the entire list to compute the statistic,

an advantage over Fisher’s exact test or the x2 approximation. Given a

ranked list of genes, we expect genes from those gene sets exhibiting dif-

ferential expression to cluster at the top of the list.

Formally, given am · nmatrix representing a microarray experiment with

m strains and n genes, we first rank the genes based on their differential

expression. We now take each gene set of interest S and compute the Mann–

Whitney score where genes belonging to the set are compared with genes not

in set. The alternate hypothesis is that those genes belonging to our gene set

tend to show up higher on the list than other genes. The null hypothesis is that

genes belonging to our gene set should be evenly distributed with respect

(a)

(b) (c)

Fig. 1. The figure shows a two-way clustering of samples and genes in three different gene sets. (a) TheGOoxygen and reactive oxygen speciesmetabolism gene

set is differentially expressed as evidenced by the sharp contrasting vertical lines but not tightly regulated as seen by the sharp contrasting horizontal lines. (b) The

KEGG gap junction pathway is both differentially expressed (P < 0.009) and tightly regulated (P < 0.0005) in murine hematopoietic stem cells. (c) The KEGG

cytokine–cytokine receptor interaction pathway is neither tightly regulated nor differentially expressed in murine hematopoietic stem cells.
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to all other genes. We use the R statistics package to compute the Mann–

Whitney statistic and its associated P-values which are based on normal

approximations (R Development Core Team, 2005).

3 RESULTS

To find correlated gene sets, we measure the amount of correlation

between each pair of genes in the set. We use as a statistic the sum

of the square of the correlation coefficients. For a gene set S, we
first compute the correlation coefficients (Kendall Tau) for each

pair of genes, cij. Then, we square each coefficient and sum the

squares, C ¼
Pn

i¼1

Pn
j¼1 ðcijÞ2. Finally, we normalize this statistic

by the number of elements in the gene set. To assess the significance

we generate 2000 gene sets with the same number of genes as S, and
recompute the statistic. A P-value is computed based on these

iterations.

When we have groupings of individuals based on phenotype,

for example, normal versus diabetic or severe versus incipient

Alzheimer’s, we use an ANOVA-based approach to look for dif-

ferentially expressed gene sets. First, we construct a mixed-effect

ANOVAmodel treating the effects due to disease state and variation

among individuals as two fixed effects. Our null hypothesis is that

gene expression does not vary between the groups. With this model,

we use a F-statistic to measure how differentially expressed each

gene is between the groups. If we do not have phenotypic groupings,

as is the case for our murine expression data, we use the variance

to measure differential expression for each gene. We rank each gene

based on one of the two statistics for differential expression and use

the Mann–Whitney statistic to detect significant gene sets, i.e. those

with many genes occupying the top of the list.

Given these two statistical tests for tight regulation and differ-

ential expression, we can identify statistically significant gene sets

using either statistic. When we computed these two statistics on the

diabetes dataset, we were encouraged to see that there is very little

correlation between the P-values (r ¼ 0.136).

3.1 Example I: diabetes—NGT versus DM2

As a proof of concept, we first reanalyze the diabetes dataset ori-

ginally reported in (Mootha et al., 2003). This dataset consists of
whole genome expression profiles from 35 individuals, 17 of whom

have NGT and 18 of whom have DM2. We consider the same 323

gene sets reported in (Mootha et al., 2003) compiled from various

databases including BioCarta, GenMAPP and GO.

When we compare our methods with GSEA, we notice some

interesting similarities and differences. Table 1 shows all significant

gene sets using our method (sorted by the average rank of

their P-values) and the GSEA method (P < 0.05). The gene set

implicated in the original GSEA paper (Subramanian et al.,
2005) and a follow up (Tian et al., 2005), OXPHOS, is the second
highest scoring gene set using our approach while it is only mar-

ginally significant using the GSEA approach (P < 0.01). In addition

to OXPHOS, we identify several more gene sets related to oxida-

tive phosphorylation, including MAP00190 and KEGG: electron

transport chain. Figure 2 shows a clustering of the top scoring

gene sets. The represented biological processes include oxidative

phosphorylation, proteasome degradation, carbon fixation and

metabolism and cell–cell signaling. Some of these processes,

including carbon fixation and pyruvate metabolism, are known to

be differentially perturbed in diseased individuals (Randle et al.,

1964). Others, especially the signaling pathways, are interesting

potential biological targets because not only are they differenti-

ally expressed in diseased individuals, they are also tightly

regulated, which suggests that a small number of regulatory

elements govern the behavior of the pathway and the outcome of

the phenotype.

3.2 Alzheimer’s data

Another dataset analyzed by Tian et al. (2005) considers a group

of Alzheimer’s patients. Blalock et al. (2004) performed gene

expression experiments on 22 Alzheimer’s disease (AD) patients

and 9 controls. In addition to the clinically diagnosed categories

of incipient, moderate and severe, each of these patients also have

a Mini Mental Status Exam score which is a reliable index of

AD-related cognitive status at a given point in time.

Using a database of gene sets compiled from BioCarta, KEGG,

GENMAPP and GO (Tian et al., 2005), we perform two separate

analyses to identify differentially expressed genes. First, we use

ANOVA and the discrete phenotype to rank genes based on their

differential expression with respect to the groupings. Second, we

rank the genes based on the variance of their expression values. For

each ranked list, we then use the Mann–Whitney test to identify top

scoring gene sets. To identify tightly regulated gene sets, we use the

same sum of squares correlation statistic as before and compute

P-values based on 2000 permutations.

All methods used in this analysis detected an overwhelming

number of significant gene sets, many of which appear to have

housekeeping functions. Table 2 shows representative gene sets

from the top 25 clusters and their respective statistics. We find

some of the same gene sets identified in (Tian et al., 2005) including
cation transporter activity (GO:0008324). Interestingly, an accom-

panying gene set, calcium ion transport (GO:0006816) is not dis-

covered by our methods. Closer examination reveals that although

the calcium ion transport gene set is slightly differentially expressed

(P < 0.096), it is not tightly regulated (P < 0.96). In other words,

Table 1. Significant diabetes gene sets
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although most of the proteins involved in calcium ion transport

are channel proteins, the regulation might actually occur at the

level of the ATP-dependent molecular transporter. This hypothesis

is supported by the identification of numerous gene sets involved in

metabolism including the cation-transporting ATPase activity

gene set (GO:0019829). Several mitochondrial-related gene sets

are also discovered supporting the pathogenesis of AD due to

defects in these gene sets (Hinerfeld et al., 2004). Gene sets invol-
ving gluconeogenesis and glycolysis, two processes known to be

involved in neurodegenerative disorders, are also among the top

scoring sets.

Finally, of note is that many KEGG pathways involving neuro-

degenerative diseases, including the Alzheimer’s pathway and the

Neurodegenerative Diseases pathway are differentially expressed

under one criterion (ANOVA) but not under another (variance).

These pathways include many genes such as APP, APOE and

PSEN whose activity has been well documented to be associated

with Alzheimer’s.

3.3 Mouse HSC data

Finally, we apply our gene set analysis methods to an expression

profiling study of HSCs from 30 BXD mice strains. We do not use

the ANOVA model for differential expression because we do not

have a definitive grouping of the individuals based on any one

phenotype. Instead, we look for evidence of differential expression

using the variance of the corrected expression levels. To compare

our approach to the GSEA method, we compute the correlation

between each gene and a known blood phenotype, the cycling of

HSC after 7 days using the Fisher’s Z-score. We use the gene sets

from Tian et al. (2005).
Table 3 shows representative gene sets from the top 25 scoring

clusters. Many of these gene sets represent housekeeping genes but

we note some interesting candidates. The hypoxia signaling path-

way, which includes genes such as HIF-1, a well known transcrip-

tion factor that targets growth factors such as VEGF and EPO shows

evidence of differential expression (P < 0.001) and tight regulation

(P < 0.006). The growth factors in turn promote HSC development
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Fig. 2. This dendrogram of the top ranking gene sets. We see several clusters of gene sets roughly grouped by biological process, including oxidative

phosphorylation, carbon fixation and metabolism, proteasome degradation, and cell–cell signaling.
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and differentiation. Although GSEA does not find the hypoxia sig-

naling pathway (P < 0.688), it is able to find the KEGG insulin

signaling pathway which contains the SHIP inositol phosphatase,

Inpp5d, an important negative regulator of cytokine and immune

receptor signaling. Absence of SHIP has been shown to affect the

homeostasis and regeneration of murine HSCs (Helgason et al.,
2003). Interestingly, insulin, IGF-1 and hypoxia have all been

shown to stimulate HIF-1 leading one to speculate as to the complex

nature of the regulatory network (Fukuda et al., 2002). We also find

the KEGG gap junctions pathway Figure 1b (ranked #25) which

contains connexin 43, a gene that is involved in multiconnexin-

expressing stromal support of hematopoietic progenitors and

stem cells (Cancelas et al., 2000). The information exchange medi-

ated by stromal and HSC interaction has been implicated in stem

cell differentiation and development (Orlic et al., 2001; Rosendaal
et al., 1994).
Both GSEA and our method find two gene sets related to active

transport (GO:0015399 and GO:0015077) which are not known to

be related to any blood phenotypes. When we perform the GSEA

analysis using two other phenotypes (stem cell frequency and con-

currence of peripheral blood CD4%), we find some interesting

results. Using stem cell frequency as the phenotype, these two

gene sets are ranked 6 and 9 having P-values of P < 1.98E-09
and P < 1.48E-08, close to those found using the HSC turnover

phenotype. However, when we use the concurrence of peripheral

blood phenotype, the two gene sets are ranked 554 and 451 with

P-values of P < 0.69 and P < 0.40. From the GSEA results, we see

that these two gene sets are correlated with some phenotypes but not

others. This result supports what we were able to find using expres-

sion data alone.

4 DISCUSSION

We have introduced a new method for analyzing gene sets based on

the intuitive notions of tight regulation and differential expression.

We first presented an approach to look for tightly regulated gene

sets using correlation statistics. By considering the correlation struc-

ture of gene sets, we are restricting ourselves to only those gene

sets that have pathway-like properties. This allows us to use gene

sets from sources such as Gene Ontology, where biological path-

ways are not well represented, to their full potential. This is evident

when we analyzed the Alzheimer’s dataset. We found that while

many gene sets associated with calcium ion channels are differen-

tially expressed but not tightly regulated, other gene sets associated

with the ATP-dependent calcium transporter are both differentially

expressed and tightly regulated. This result suggests a regulatory

mechanism at the level of the transporter and not the channel

proteins.

Table 2. Significant Alzheimer’s gene sets Table 3. Significant mouse hematopoietic stem cell gene sets
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We have also presented a more general framework for finding

differentially expressed gene sets which is more appropriate for

genome wide expression data over genetically similar individuals

or strains of model organisms where clear phenotypic classes are

absent and regulatory pattern differences are due to genetic vari-

ation. Our approach allows us to detect these subtle differences

in expression of individuals which can then be used to look for

associated phenotypes (Ghazalpour et al., 2005) as well as eQTLs
in genetic variation studies (Bystrykh et al., 2005). In murine HSCs,

we were able to find two active transport gene sets independent of

phenotype information. Their correlation with phenotypes were

then verified using a popular gene set based approach.
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