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Summary. Duality now plays an important role in the theory of optimum structures
but has not been given adequate detailed consideration within this context. The paper
makes a limited attempt to satisfy this requirement through a generalization of the
associated duality theory by formulating the structural optimization as a fractional
program. This provides some new forms for the dual objective function and crystalizes
some of the intrinsic problems associated with dual structural programs.

1. Introduction. Duality theory has played an important role in the development of
structural optimization theory and the associated computer-based solution algorithms.
Normally the problems examined have centered on the minimum-weight design of struc-
tures subject to a variety of behavioral constraints which are of practical importance in the
fabrication of aerospace structures.

Early applications of the theory [1] show that certain formulations may be conve-
niently described in terms of the standard duality theory of linear programming. Unfortu-
nately, many problems do not fit into this category and recent efforts have been devoted to
the use of the more complex nonlinear duality theory. An early and somewhat straight-
forward application was to check the validity of the popular stress-ratioing method and to
providing a corrective strategy when the method converges towards non-optimal solutions
[2]. Recently Templeman [3] has attempted a more comprehensive exploitation of the dual
problem to provide a rapidly convergent algorithm for the optimum design of general pin-
jointed frameworks.

In view of these efforts it is appropriate to attempt a generalization of the theory, and
the present paper is concerned with employing duality in fractional programming to
generalize some aspects of structural optimization duality theory. In particular we seek to
generalize a dual form proposed by Bartholomew [4], originally for frameworks, which
gives a closer bound than the usual formulation on local optima. Since many structural
optimization problems can be described in terms of homogeneous polynomials when cast
in fractional form, this formulation is adhered to in the sequel. Thus, we examine the
duality theory of fractional programming where the various functions are assumed to be
positively homogeneous polynomials. The paper in some ways constitutes a special case of
the known theory of duality in fractional programming [5-9]. Although the functions
employed in the next section are described in terms of polynomials, after the problem
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formulation the initial discussions relate to general fractional programs; only subsequently
is the argument entirely particularized to polynomials forms.

2. Duality theory. Although optimized designs can be sought for a wide range of
structural configurations, the chief characteristics associated with this class of problem
appear in the simple case of the minimum-weight design of pin-jointed frameworks.
Taking the specific case of a stress- and displacement-constrained structure, a typical
problem is to find a vector of bar cross-sectional areas x* = (xi*, x2*, ■ • • , xr*)' which
minimize the weight

fV(x) = £ Pthxt
i = l

subject to displacement constraints

Aj>Aj=£ SliX)^M) (/=1,2

and stress constraints

fft > \Sl{x)/xi\ (/' = 1,2, •••/•)

where Aj represents a nodal displacement; St is the force in the /th bar due to the applied
loads; stJ is the force in bar i due to the application of a unit load at they'th node; /, , p, are
the length and weight/unit volume respectively and Et denotes Young's modulus. In the
case of statistically determinate structures the bar forces are independent of the cross-
sectional areas and are functions of the applied loads only. For this structure the problem
has a linear objective function with nonlinear polynomial constraints. When statically
indeterminate structures are considered the situation is more complex as the bar forces are
no longer independent of bar areas, but the basic mathematical structure of the constraints
is preserved. An alternative formulation suggested by convexity requirements involves
new design variables which are the inverse of bar cross-sectional areas, i.e. z, = \/xt (/' = 1,
2, • • • /•). Problems involving statically determinate structures are now described by
nonlinear objective function subject to linear constraints. Comparable changes occur
when the transformation is applied to the statically indeterminate case.

For more complex situations the finite-element method would be employed in calcu-
lating the structural responses under the action of the design loads. The finite-element
method permits the analysis of complex structures and the imposition of a wide range of
constraints which together reflect a more realistic spectrum of design cases. For more
complex structures the simple objective functions appropriate to frameworks can be
replaced by higher-order functions which in some cases may be empirically derived.
Nevertheless, for many design situations the basic mathematical structure given above is
preserved and thereby allows the problem to be formulated as a fractional programming
problem described in terms of polynomial functions. An additional pleasing feature,
indicated by the framework example, is that these polynomials are often positively
homogeneous.

On this basis a useful general form for the structural optimization problem is given by
considering both the objective function and the constraints to be described in terms of
fractional functions. Hence we are seeking a vector of design variables x* = (xi, x2, • • • ,
xr)' which minimize

W(x) = f(x)/h{x) (2.1)
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subject to

Uj ^ gj(x)/lj(x)

where f(x) is a homogeneous polynomial of order n, h(x) is a homogeneous polynomial of
order q, gj(x) are homogeneous polynomials of order m(j = 1, • • ■ t), lj{x) are homoge-
neous polynomials of order p (j = 1, • • ■ t), and

h(x) > 0, lj(x) >0 (j = 1, • • • t).

The Lagrangian function associated with this minimization problem is given by

( Sj(x )L(x, X) = W(x) + Z h
j-1

and normally one hopes that this function is convex. Unfortunately, with (2.1), unless
there is an exceptional form for the function h(x), the Lagrangian is, at best, pseudoconvex
in the design variables, i.e.

VxL(x, X)(x* - x) > 0 => L(x*, X) > L(x, X).

As may be easily demonstrated, the pseudo-convexity property requires that the functions
/(■*)» gj(x) be convex and h{x), lj(x) concave. Thus, in order to complete the definition of
the optimization problem (2.1) additional statements are required concerning the design
variables and functions:

(a) x* (E X" where X°CRr is an open convex set;
{b) f(x): X" -» R is convex and differentiate on X°\
(c) gj(:c): X° —► R' are convex and differentiate on X°\
(d) h(x): X° —> R is concave and differentiable on X°\
(e) lj(x): X° -> R' are concave and differentiable on X°.

For this problem the Kuhn-Tucker sufficient optimality conditions [5] require that

J Kx*) \ f fgjjx*) \ (g](x*) \
U(**)/ ;h J \lj(x*) ') ' V lj(x*) "V-0>

~ Uj) = Xj*~ °'X*(EX°, j = (l,2, ■■■()■

Using these conditions, we can now proceed to derive a suitable duality theory and, to aid
progress, the set W is introduced, where

W = {(*, A)|* EX0, X ER', VxL(x,X) = 0}.
Following Bector [7], a weak duality theorem can now be defined.
Theorem: Let x £ X" and (x*, X*) £ W and satisfy the Kuhn-Tucker conditions; then
f(x*)/h(x*) > L(x*, X*).

Proof: Set 00(x) = f(x)/h(x), 0/x) = (gj{x)/lj(x)) — uJf (j = 1, • ■ • t) and hence the
functions <f)t(x) are pseudoconvex. Thus

<t>0{x) > <t>o(x*) - V0O(X*)(X - X*)

because (x*, X*) £ W. Then

V0o(x*) = - £ Xj*V<t>j(x*).
j-1
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Hence

<t>o(x) ^ 4>o(x*) + 2 \j*V<pj(x*)(x - X*).
7 = 1

The Lagrangian function is pseudoconvex and this implies Xj*(t>j{x) > X/cA/x*); thus

<t>0{x) > </>„(**) + £ \j*(<Pj(x*) - <t>j(x))
J = 1

m

> L(x*, X*) - £ \j*Hx) > L(X*, X*)
j = i

or

f(x)/h(x) > L(x*, \*).
Based on this theorem a suitable dual problem is obtained by requiring the maximization
of the Lagrangian function for (x, X) £ W.

Differentiating L(x, X) with respect to the design variables for (x, X) £ W and using
Euler's theorem gives

or

(Z2>

Substituting this equation into the Lagrangian function generates a dual objective func-
tion of the form

h(x) (m - p) h(x) fTi

or

n(v \ -> _ (m-p-n + q) f(x) A
Cm-p) h{x) h" ( }

Thus the dual problem is to maximize (2.3) subject to Eqs. (2.2) and the positivity of the
Lagrangian multipliers X; (j = 1, • • • 0-

An alternative form for the objective function (2.3) is found by noting [4] that a linear
structure can always be scaled. That is, a specific vector of design variables x can be
uniformly scaled to produce a new design vector sx. Thus we have the scale factor as a free
variable in the dual objective (2.3) which can be maximized with respect to this factor.
Putting the scale factor explicitly into (2.3) gives

{m-p-n + q) f(x) _
(m - p) h(x)

where F = ^j-iXjUj . Differentiating in terms of s and solving yields

~[p-m) = (" ~ 9) I(X)
{p-m) h(x)F
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which can then be used to derive the alternative dual objective function of the form

f(x) j{n - q) /(x)
h(x) \(p — m) h(x)F> @A)

Whilst Bartholomew has shown [4] that (2.4) can provide a closer bound on the local
optimum in the minimum weight design of frameworks, we note that it is less generally
applicable than (2.3).

Taking some simple specific examples, the stress-constrained framework studied by
Hemp [1] requires that h(x), lj(x) are deleted and that n = m = 1, whereupon (2.3) and
(2.4) provide the same dual objective function —F. For a displacement-constrained
framework using cross-sectional areas as the design variables q = 0, p = 2, m = 1 and (2.4)
gives

Infix) \n
/(*)

whilst (2.3) provides the form

(1 + n)f(x) - F.
For minimum-volume designs with a fixed layout, n = 1 and the above reduce to the
expressions given by Bartholomew [4],

3. Conclusions. Although the previous section has generalized some aspects of the
duality theory of structural optimization, it also highlights some of the intrinsic problems.
In particular, the requirements of convexity and concavity on the constitutive functions
are particularly severe. Many of the problems encountered in structural design do not
satisfy these conditions and the use of duality theory in these cases is of limited value.
Nevertheless, at points close to a local optimum the theory is still valid and valuable as a
terminating criterion in structural optimization algorithms.
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