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Abstract. G protein coupled receptors (GPCRs) are one of the most prominent 
and abundant family of membrane proteins in the human genome. Since they 
are main targets of many drugs, GPCR research has grown significantly in re-
cent years. However the fact that only few structures of GPCRs are known still 
remains as an important challenge. Therefore, the classification of GPCRs is a 
significant problem provoked from increasing gap between orphan GPCR se-
quences and a small amount of annotated ones. This work employs motif distil-
lation using defined parameters, distinguishing power evaluation method and 
general weighted set cover problem in order to determine the minimum set of 
motifs which can cover a particular GPCR subfamily. Our results indicate that 
in Family A Peptide subfamily, 91% of all proteins listed in GPCRdb can be 
covered by using only 691 different motifs, which can be employed later as an 
invaluable source for developing a third level GPCR classification tool. 
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1 Introduction 

G protein coupled receptors (GPCRs) represent the largest family of membrane pro-
teins in the human genome. As their dysfunction contributes to some of the most pre-
valent human diseases, they are of exceptionally high interest in various areas includ-
ing the drug industry as more than 50% of modern drugs have GPCRs as their main 
targets [1].  An important property of the GPCRs is that certain aminoacid residues 
are well conserved across specific families [2]. This property has been utilized in 
numerous studies, such as synthesizing new GPCRs [3-6], and developing family 
classifiers. In addition, all GPCRs share a particular structural framework. Structure 
of a G-protein-coupled receptor comprises seven α-helical transmembrane domains, 
an extracellular N-terminus, and an intracellular C-terminus [7]. 

GPCRs are activated by a diverse range of ligands such as small peptides, amino 
acid derivatives, taste, light or smell [8]. The general classification for GPCRs in 
vertebrates is as follows: rhodopsin-like (Family A), secretin-like (Family B),  
glutamate-like (Family C), Adhesion and Frizzled/Taste2 [9, 10]. In addition to this 
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classification, there are 4 levels of classification down in classification tree. Family A 
is the family of highest interest from a pharmaceutical research perspective as besides 
being more than 80% of all human GPCRs are in this family alone [11], the number 
of sequences in this family is significantly higher than the others. Therefore, we will 
also emphasize our efforts on peptides subfamily, which belong to Family A.   

Due to their significant roles and their importance in drug design, it is highly cru-
cial to be able to distinguish which ligands a specific GPCR interacts with and which 
regions of the sequence have a particularly crucial role in ligand binding. However, 
this process is complex, and it is not easy to identify corresponding regions. Despite 
the significant amount of pharmaceutical research done in this field, 3D structures of 
only few GPCR structures are known [9], whereas there are large numbers of GPCR 
primary sequences have been identified [12]. Therefore, in order to identify and cha-
racterize the novel receptors, it is crucial to develop in silico methods that only work 
with primary sequences to determine the ligand binding sites and motifs of these nov-
el receptors.  

Additional serious challenge is the classification of orphan GPCR sequences. An 
orphan GPCR is a sequence that has high similarity to known and annotated GPCR 
sequences but nothing is known about its structure, physiologic function or the acti-
vating ligand. As the difference between the number of annotated sequences and the 
number of identified sequences raises, so does the number of orphan GPCRs. Besides, 
considering the contribution of GPCRs to cancer initiation, growth and metastatic 
spread, identification of orphan GPCRs and revealing the pathways related with these 
GPCRs is placed in the spotlight as prime candidates for cancer prevention and treat-
ment and the orphan GPCRs are of very high interest as they are not yet identified. 
Therefore, it is essential to find the rules that cover most of the GPCR sequences  
especially those in the Family A, which is the family most relevant to human drug 
design. In this work, we will focus utterly on motif coverage within the Peptides sub-
family, which belongs to Family A. 

As a quick summary, there are two dominant goals for in silico GPCR researches: 
first is to classify GPCR sequences according to their subfamilies, and second is to 
identify the key ligand-receptor binding sites and family specific motifs using only 
the protein sequence information.  Unlike many of the previous efforts, major con-
cern of this work is only 3rd level classification of GPCR sequences and exploration 
and analysis of the presence of any layered motifs that are effective in the determina-
tion of sub-subfamily classes. Hence, this work is concerned with not only aiming for 
an in silico motif mining for GPCR classification but also providing a valuable source 
of conserved motifs for experimentalists and other groups working in 3rd level GPCR 
classification. 

1.1 Related Work 

There are many current GPCR classification methods involving various machine 
learning techniques. One of the most common methods employed in GPCR classifica-
tion is support vector machines (SVM). In this sense, GPCRpred server [13] is based 
on 20 different SVMs for different levels of classification where the feature vectors 
are derived from the dipeptide arrangement of each protein. As reported in [14], SVM 
classification gives better results compared to BLAST and profile HMMs with around 
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90% valid classification level. However, there are several failures attached with this 
approach as it misses the physiochemical properties of the receptors which are vital in 
determining the matching ligand, leading to inaccurate results. 

Another common approach to GPCR classification is usage of Hidden Markov Mod-
els (HMM). PRED-GPCR [15] server uses this approach with employing 265 signature 
profile HMMs in the classification of GPCR sequences. However, HMM based predic-
tion methods are not optimal in predicting subfamilies. In addition, likewise SVM based 
methods, HMM-based methods also bears the problem of opaqueness, yet they are not 
straightforward to discover key ligand interacting sites of the receptors. 

In addition to these techniques, a HMM/SVM hybrid method is utilized for GPCR 
classification. Named the GRIFFIN Project [16], this project combines the efficiency 
of HMM-based prediction with predictive power of SVM.  

In addition to these widely used methods, there were also some other methods 
[17,18] proposed which use a number of metrics to make classification efforts more 
successful and summarize the amino acids of a sequence in a number of continuous 
parameters. Additionally, Davies et al. [19] proposed a method using 10 different 
classification algorithms, which employs the structural and physiochemical properties 
of amino acids, to perform a hierarchical GPCR sequence classification. In this me-
thod, best resulting classification method at each level is employed in progressing 
down the classification tree. Even though, they have various superiorities, all these 
methods lack the necessary transparency to determine the key ligand receptor interac-
tion sites and identify specific residues. 

In overall, current methods in GPCR prediction are suffering mainly from opaque-
ness of models and impossibility of extracting information out of models in addition 
to classification. Identifying key interaction sites conserved in families, sub-families 
or sub-sub families will be beneficial in classification of orphan GPCR sequences. 
Hence, this work mainly aims to extract possible ligand-receptor interaction sites for 
each sub-subfamily via identifying the key motifs that cover protein families. 

2 Methods 

In order to form our training set, we have obtained 304 peptide subfamily sequences 
from GPCRdb, which includes 32 different sub-subfamilies, such as angiotensin, 
bombesin, and bradykinin. We aimed to find covering motifs for each of these sub-
subfamilies via our pattern recognition method. 

Our proposed method in this work can be summarized as follows: 

1. Motif distillation by Motif Specificity Measure  
2. Distinguishing Power Evaluation of distilled motifs 
3. Motif selection with general weighted set cover problem 

Briefly, motif distillation step is used to discriminate family specific motifs from ran-
domly generated pool of motifs. Subsequently, distinguishing power evaluation 
(DPE) of the distilled motifs is used to determine the efficiency of the motifs in sub-
subfamily classification with assigned DP score value to enable comparison between 
each other. Lastly, DP score assigned top selected motifs are used in general weight 
set cover problem to find out the smallest set of motifs that can cover the maximum 
amount of proteins located in peptide subfamily. 
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2.1 Amino Acid Grouping 

It is commonly known that there 20 amino acids present considering the proteins. It is 
challenging to determine fixed length conserved motifs within a protein family using 20-
letter amino acid alphabet. Through the evolution, families binding to the same ligand 
change their sequence while preserving the physicochemical properties of the binding site 
the same. Therefore, it is very difficult to find identical binding signals within a family. To 
be able to capture similar motifs, which are different in their sequence, a common ap-
proach is to reduce this 20-letter alphabet to a smaller number by grouping the similar 
amino acids together. At this stage, there are several basic physicochemical properties 
such as hydrophobicity, charge, and mass, which can be used as an origin of grouping. For 
our approach, Sezerman grouping of amino acids is used, which is proposed at Cobanoglu 
et al. [20], and its efficiency tested over other amino acid grouping techniques [21].  

Table 1. The amino acid grouping scheme in Sezerman's grouping 

Groups A B C D E F G H I J K 
Amino Acids IVLM RKH DE QN ST A G W C YF P 

2.2 Motif Definition and Motif Specificity Measure 

The sequence information without any feature selection cannot be used to perform 
any rule extraction. The main idea behind motif specificity measure is within a sub-
subfamily, certain length aminoacid sequences at specific positions of the same  
exocellular region would be preserved in comparison to sequences of other sub-
subfamilies. The main idea behind this project is that amino acids might be funda-
mental to the binding process since otherwise they would not have been conserved. 
The motifs are essential to represent some location specific properties of the se-
quences, as the objective of this study is to determine key interaction sites as well as 
extracting set of rules for classification. For this purpose, motifs used in this work are 
defined similar to the motifs proposed by Cobanoglu et al. [20], which includes in-
formation of triplet of residues, the exocellular region of occurrence (n-terminus, 
exoloop1, exoloop2 or exoloop3) and lastly the position of first residue of triplet rela-
tive to the length of the amino acid sequence. In order to determine the transmem-
brane regions reported in the motif definition, we used TMHMM tool [22].  

In general, total number of possible motifs is over hundreds of thousands; never-
theless, most of them occur very infrequently. The ideal motif would be the one that 
occurs in all the sequences that belongs to a particular sub-subfamily but never in a 
sequence from another sub-subfamily. In other words, motifs that are unique to a sub-
subfamily would be rewarded, whereas motifs that occur either in few sequences or 
numerous sub-subfamilies, would be penalized. The Term Frequency Inverse Docu-
ment Frequency (TF-IDF) [23] weight is a metric that measures the occurrences of a 
word in a family in relation to the overall number of the family members, thus enabl-
ing determination of highly family specific motifs.  TF-IDF is designed for a parallel 
purpose and considered as a valid tool at text mining applications, and in this work, 
the pre-defined TF-IDF weights are used in defining the Motif Specificity Measure, 
originally with detailed definitions given in Cobanoglu et al. [20]. In short, as its 
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name suggests, motif specificity measure quantifies the specificity of a motif to a 
family; hence, indicates that the motif is a random motif or a possibly useful one. 

2.3 Distinguishing Power Evaluation 

Distinguishing power evaluation (DPE) method aims to determine the best motifs for 
classification in the training set. Main notion of DPE is repeatedly building decision 
trees from randomly partitioned test and training data, and looking for those motifs 
that occur very frequently in each of these decision trees [20]. During this process, 
DPE picks the motifs initially determined by TFIDF with the highest sub-subfamily 
specificity using the motif specificity measure.  

Apart from its specificity to a certain sub-subfamily, there is a need for an independent 
comparison criterion between motifs in their distinguishing power. To create such a 
comparable criterion for assessing a motif's importance in classification, DPE method 
calculates a distinguishing power (DP) score, which is simply the sum of the accuracies 
of the decision trees in which that motif occurs [20]. By this score, it is possible to identi-
fy the motifs with high information gain and which may be vital in classification. More 
detailed instructions on DPE can be found in Cobanoglu et al. [20]. 

In the use of DPE method, three different total number of motifs are tested,  250, 
500 and 1000 motifs, from the top of the list of distilled motifs with descending DP 
scores and assessed their power to cover the whole dataset, individually. 

2.4 General Weighted Set Covering Model 

DPE selected motif set contains various weak motifs that have a limited contribution 
in covering the subfamily dataset. These weak motifs may cause overlearning of train-
ing data. Therefore, frequently occurring and a complete sub-subfamily covering 
minimum set of motifs would be more reliable in correct classification of unseen data. 
Otherwise, motifs that have smaller coverage will optimize the performance on train-
ing data and decrease the accuracy of classification algorithm in unseen data.   

In order to achieve a minimum number of motifs that can explain maximum portion of 
each given sub-subfamily datasets, it has been implemented a general weighted set cover-
ing model on DPE selected motifs. For each motif, a set of proteins which have that mo-
tif is defined separately. Additionally, considering these sets, we applied general weight 
set covering model to determine the minimum number of motifs which cover all of the 
proteins in sub-subfamilies, but not all the sub-subfamilies. In detail, this model initially 
calculates occurrences of each motif in all dataset proteins and each sub-subfamily pro-
teins separately. Afterwards, calculated presence counts were used for calculating ratio1 
and assessing the weight, or importance, of that motif in sub-subfamily coverage. Motifs 
were then sorted according to their weights, and for each sub-subfamily, highest ranked 
motifs were selected until no further improvement in coverage occurs.  

Motif weights have been calculated via different weighting schemes including but 
not limited to equal weighting of motifs and maximum cardinality of motifs [26]; 
however, both of these criterions lack the information on specificity of a motif to a 
subfamily. In other words, these criterions do not provide sufficient information to 
distinguish subfamilies from each other, but they merely provide information on their 
presence in whole dataset. In order to overcome this problem, we used a maximum 
ratio1 criterion, which represents motif coverage in a particular family of proteins in 
comparison with its existence in all other families [24].  
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A weight of a motif for all sub-subfamilies based on maximum ratio1 criterion is 
calculated as:  

௜ܹ ൌ |௉௥௢௧௘௜௡௦ ௖௢௩௘௥௘ௗ ௜௡ ௦௨௕ି௦௨௕௙௔௠௜௟௬ ௜||௉௥௢௧௘௜௡ ௖௢௩௘௥௘ௗ ௜௡ ௪௛௢௟௘ ௦௨௕௙௔௠௜௟௬| ,  (1)        ݕ݈݂ܾ݅݉ܽݑܵ ݀݁ݐ݈ܿ݁݁ܵ ߳ ݅׊

where, i is a sub-subfamily in given subfamily dataset. According to this criterion, if a 
motif only appears in one subfamily with high coverage, which is a desirable result 
for classification purposes, its ratio1 value will be become 1, and it will be regarded 
as an important motif in the model. 

3 Experimental Results 

Associated DPE runs with motif count 250, 500 and 1000 resulted in 43%, 51%, and 
91% coverage of sub-subfamily proteins, respectively. In DPE count = 250 case, the set 
covering model only selected 174 motifs for maximum coverage, while for DPE count = 
500, there were 329 selected motifs selected. For DPE count = 1000 experiment, our 
model picked 691 motifs for maximum coverage, which as a result came out to be the 
most efficient DPE count. Full list of the motifs is available as supplementary material 
(Supplementary Table 1). Although increasing DPE motif count shows parallel behavior 
to the sub-subfamily coverage trend, each step increases in DPE motif count results in a 
significant increase in computational time. Besides, in order to avoid overlearning, we 
decided to keep motif count in a limit. Therefore, we chose DPE count = 1000 as our best 
result for further studies. The detailed results of the selected DPE experiment and applied 
general weighted set covering model is included in Table 2. 

Several sub-subfamilies, namely Duffy-antigen and GPR37 endothelin B-like, shows 
a consistent low coverage between different DPE counts, indicating motifs that are effec-
tive on classification of these sub-subfamilies have low distinguishing power (DP score) 
and therefore are not selected within given DP motif counts. Hence, classification to 
these sub-subfamilies can be more difficult, since covering motifs are not specific 
enough. On the other hand, adrenomedullin family indicates a high coverage for each 
count set (100%, 76%, 73% respectively for DP count = 1000, 500, and 250). Consistent 
high coverage for adrenomedullin sub-subfamily indicates that family-specific motifs 
have a high DP scores showing family’s distinct nature, and these motifs ranked mostly 
in top 250 motifs. Similar kind of behavior is also seen in anaphylatoxin sub-sub family 
with 96%, 74%, 43% protein coverage for given DPE counts respectively. The signifi-
cant reduction in DPE count = 250 indicates that these sub-subfamily specific motifs are 
mostly ranked in 250-500 range. Another significant sub-subfamily result has been ob-
tained at the case of allostatin C. Within the same trend of adrenomedullin and anaphyla-
toxin, 95%, 66%, 46% protein coverages were obtained for tested DPE counts. As a 
summary, these results validate our findings on the DPE motif selection thresholds and 
have an important effect on the scope of possible protein coverage. The most important 5 
motifs and their locations for adrenomedullin, anaphylotoxin, and allostatin C sub-
subfamily are given in the Table 3. Also, location distributions of selected motifs for 
these three sub-subfamilies are summarized in a histogram, Figure 1. Via analyzing the 
difference between high and low DP scored motifs for different sub-subfamilies, the 
complex sub-subfamilies can be identified and used as an additional insight in develop-
ing 3rd level GPCR classification methods. 
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Table 2. General weight set covering model on DPE evaluated motifs resulted in listed 
coverage for each sub-subfamily in GPCRdb 

Family Total Protein Covered Protein Percentage 

Adrenomedullin 33 33 1.00 

Allatostatin C 41 39 0.95 

Anaphylatoxin 98 94 0.96 

Angiotensin 180 147 0.82 

APJ like 90 59 0.66 

Bombesin 163 149 0.91 

Bradykinin 223 222 1.00 

Chemokine 1286 1080 0.84 

Chemokine receptor-like 77 73 0.95 

Cholecystokinin 170 163 0.96 

Duffy antigen 51 25 0.49 

Endothelin 144 130 0.90 

Fmet-leu-phe 305 279 0.91 

Galanin-like 405 371 0.92 

GPR37 endothelin B-like 78 44 0.56 

Interleukin-8 118 112 0.95 

Melanin-CHormone Recep family 228 219 0.96 

Melanocortin 789 749 0.95 

Neuromedin U-like 215 177 0.82 

Neuropeptide Y 1329 1262 0.95 

Neurotensin 59 57 0.97 

Opioid 288 256 0.89 

QRFP family 86 81 0.94 

Prokineticin receptors 98 93 0.95 

Prolactin-releasing peptide 113 89 0.79 

Proteinase-activated like 250 243 0.97 

Somatostatin- and angiogenin-like 96 95 0.99 

Somatostatin 376 361 0.96 

Sulfakinin CCKLR 9 9 1.00 

Tachykinin 270 265 0.98 

Urotensin II 47 31 0.66 

Vasopressin-like 436 412 0.94 

TOTAL: 8151 7419 0.91 
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Table 3. Highest ranked 5 reduced alphabet motifs and their location for adrenomedullin, 
allastostatin C and anaphylotoxin. Position within a loop is defined as being the sequential 
position of the first letter of triplet, normalized by length of the corresponding loop. 0,1,2,3 
correspond to the first, second, third and fourth quarter of the exoloops and n-terminus 
respectively. 

Sub-subfamily Motif Location Position within Loop 

Adrenomedullin CAA exoloop 2 0+1 

Adrenomedullin JEA exoloop 1 0 

Adrenomedullin KCA exoloop 2 0 

Adrenomedullin JBE exoloop 3 0 

Adrenomedullin GFA n-terminus 2 

Allatostatin C JAA exoloop 1 0+1 

Allatostatin C AAA exoloop 3 0 

Allatostatin C EEJ n-terminus 1+2 

Allatostatin C ACD n-terminus 1+2 

Anaphylatoxin AEA exoloop 2 0+1 

Anaphylatoxin EJA exoloop 2 1 

Anaphylatoxin AAC exoloop 3 2 

Anaphylatoxin BBA exoloop 2 2 

Anaphylatoxin CJC n-terminus 2 
 

 

Fig. 1. Histograms of motif locations present in selected motifs for adrenomedullin, anaphlo-
toxin and allostatin C sub-subfamilies. In x-axis locations are denoted as 0 for n-terminus, 1 for 
exoloop 1, 2 for exoloop 2 and 3 for exoloop 3. 

As DPE counts and selected motif counts differ notably, it can be concluded that 
our motif selection step helps to eliminate the motifs with high DP score and limited 
in the information they bring to coverage of sub-subfamily. Besides, large numbers in 
selected motif sets with large coverage rates indicate that these motifs can be used 
rule out complex patterns in transmembrane regions of GPCR receptors determining 
the sub-subfamily of the protein. 
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4 Conclusions and Future Work 

In the light of recent findings, DPE method and combined applied general weight set 
model can be used for determining the motif set that can be used for developing clas-
sifiers for 3rd level GPCR classification problem. As 3rd level GPCR motif identifica-
tion has not explored extensively in literature before, we hope that our method of 
obtaining minimal set of important motifs with high specificity will be a stepping 
stone for further developments in sub-subfamily GPCR classification. Our example 
case of Peptide sub-subfamily showed that our method can find important motifs for 
obtaining significantly large family coverage. 

As can be seen from Figure 1, adrenomedullin family mostly binds from the motifs 
in the n-terminus and exoloop 2. These motifs mostly include negatively charged 
residues followed by aliphatic hydrophobic residues or ring structures and positively 
charged residues and/or Serine or Threonine (Table 3). Whereas anaphylotoxin most-
ly binds from the motifs occurring at exoloop 2 and allostatin C mostly binds from the 
n-terminus.  Our method provides location and binding motif information each of the 
peptide sub-subfamilies, which are very valuable for drug development. 

The future work lies in quantifying the actual predictive performance of selected 
motifs and developing a classification server via generalizing motif sets for each and 
every sub-subfamily present in the GPCRdb. 
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Supplementary Material 

Supplementary Table 1 – A complete list of motifs for all sub-subfamilies can be 
accessed online via http://bit.ly/O2Kk6N. 
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