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Abstract In this study, we applied Bayesian-based distribu-
tional analyses to examine the shapes of response time (RT)
distributions in three visual search paradigms, which varied in
task difficulty. In further analyses we investigated two com-
mon observations in visual search—the effects of display size
and of variations in search efficiency across different task
conditions—following a design that had been used in previous
studies (Palmer, Horowitz, Torralba, & Wolfe, Journal of
Experimental Psychology: Human Perception and
Performance, 37, 58–71, 2011; Wolfe, Palmer, & Horowitz,
Vision Research, 50, 1304–1311, 2010) in which parameters
of the response distributions were measured. Our study
showed that the distributional parameters in an experimental
condition can be reliably estimated by moderate sample sizes
when Monte Carlo simulation techniques are applied. More
importantly, by analyzing trial RTs, we were able to extract
paradigm-dependent shape changes in the RT distributions
that could be accounted for by using the EZ2 diffusion model.
The study showed that Bayesian-based RT distribution analy-
ses can provide an important means to investigate the under-
lying cognitive processes in search, including stimulus group-
ing and the bottom-up guidance of attention.

Keywords Bayesianmodeling . Visual search . Response
timemodels

Distributional analyses are becoming an increasingly popular
method of analyzing performance in cognitive tasks (e.g.,
Balota & Yap, 2011; Heathcote, Popiel, & Mewhort, 1991;
Hockley & Corballis, 1982; Ratcliff & Murdock, 1976; Sui &
Humphreys, 2013; Tse & Altarriba, 2012). When compared
with analyses based onmean performance, distributional anal-
yses potentially allow a more detailed assessment of the un-
derlying processes that lead to a final decision. In particular it
has long been noted that response time (RT) data frequently
show a positively skewed, unimodal distribution (Luce, 1986;
Van Zandt, 2000). Distributional analyses begin to allow us to
decompose such skewed data and to address the processes that
contribute to different parts of the RT function. One approach
to this is through hierarchical Bayesian modeling (HBM), a
method that blends Bayesian statistics and hierarchical model-
ing. The latter technique uses separate regressors to assess
variations across trial RTs collected from a participant by es-
timating regression coefficients, contrary to conventional
single-level analysis of variance (ANOVA) models, which
directly use RT means as dependent variables. The hierarchi-
cal modeling then carries on assessing the coefficient varia-
tions across participants at the second level, accounting for
individual differences. One direct advantage of the hierarchi-
cal method is that variation across trials can be described by a
positively skewed distribution (or other distributions, as ana-
lysts wish), in contrast to the Gaussian distribution implicitly
adopted by a single-level ANOVA model (which works di-
rectly on the second level of the hierarchical method). The
flexibility to choose an underlying distribution liberates ana-
lysts from using statistics derived from the Gaussian distribu-
tion to represent each participant’s performance in an experi-
mental condition, since a Gaussian assumption may not be
appropriate, given positively skewed RT distributions.

Hierarchical modeling typically relies on point estimation,
which itself depends on the critical assumption of the inde-
pendence of random sampling—making performance highly
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sensitive to the sample size. Hierarchical modeling may per-
form less than optimally when, relative to the number of esti-
mated parameters, the trial numbers are too few to account for
the parameter uncertainties at each hierarchical level (Gelman
& Hill, 2007). This is possible when a non-Gaussian distribu-
tion is used to estimate the parameters for each participant
separately in a hierarchical manner. For example, a data set
with ten participants, when using an ex-Gaussian distribution
(fully described by three parameters), estimates simultaneous-
ly at least 30 (3 × 10) parameters, each of which should be
derived from a distribution with an appropriate uncertainty
description (i.e., parameters for variability). This is assuming
that only one experimental condition is tested. It follows that
small trial numbers within an experimental condition may
result in biased uncertainty estimates, which render the effort
of adapting hierarchical modeling in vain. Bayesian statistics
is one of the solutions to the problem of point estimation
inherent in the conventional approach. Building on the nature
of the hierarchical structure of parameter estimations,
Bayesian statistics conceptualize each parameter at one level
as an estimate from a prior distribution. On the basis of
Bayes’s theorem, the outputs of prior distributions can then
be used to calculate posterior distributions, which are concep-
tualized as the underlying functions for the parameters at the
next level. By virtue of Monte Carlo methods, HBM is able to
estimate appropriately the uncertainty at each level of the hi-
erarchy, even when trial numbers are limited (Farrell &
Ludwig, 2008; Rouder, Lu, Speckman, Sun, & Jiang, 2005;
Shiffrin, Lee, Kim, & Wagenmakers, 2008). Note that
Bayesian statistics here are used to link variations in the trial
RTs within an observer with the variations in aggregated RTs
between observers. This differs from applying Bayesian sta-
tistics to account for how an observer identifies a search target
by conceptualizing that his or her prior experiences (e.g.,
search history; modeling the RTs in the [N – 1]th trial as the
prior distribution) influence the current search performance
(modeling the RTs in theNth trial as the posterior distribution).

HBM has been used previously in cognitive psychology to
examine, for example, the symbolic distance effect—
reflecting the influence of analog distance on number process-
ing (Rouder et al., 2005; for other examples, see Matzke &
Wagenmakers, 2009; Rouder, Lu, Morey, Sun, & Speckman,
2008). In symbolic distance studies, observers may be asked
to decide whether a randomly chosen number is greater or less
than 5. Observers tend to respond more slowly when the num-
ber is close to the boundary (5) than when the number is far
from it. One interpretation based on mean RTs is that an ad-
ditional process of mental rechecking is required when num-
bers are close to 5. The results fromHBM, however, suggest a
further refinement for this interpretation, by showing that the
locus of the effect resides in the scale (rate), rather than the
shape, of the RT distributions. A scale effect, interpreted to-
gether with other symbolic-distance findings using a diffusion

process or a random walk, implies a general enhancement of
response speed, including perceptual and motor times, as op-
posed to a change merely in a late-acting cognitive process
such as mental rechecking (Rouder et al., 2005).

Application to visual search

In the present study, we applied HBM and distributional anal-
yses to account for the RT distributions generated as partici-
pants carried out visual search. To do this, we compared par-
ticipants’ performances under three search conditions varying
in their task demands: a feature search task, a conjunction
search task, and a spatial configuration search task. A typical
visual search paradigm requires an observer to look for a spe-
cific target. The “template” (Duncan&Humphreys, 1989) set-
up for the target can act to guide attention to stimuli whose
features match those of the expected target. Depending on the
relations between the target and the distractors, and also the
relations between the distractors themselves (Duncan &
Humphreys, 1989), performance is affected by several key
factors, including the presence or absence of the target, and
the similarity between the target and the distractor and the
similarity between distractors (for a computational implemen-
tation of these effects based on stimulus grouping, see Heinke
& Backhaus, 2011; Heinke & Humphreys, 2003).

The display size effect relates to how performance is affect-
ed by the number of distractors in the display. Effects of dis-
play size are frequently observed in tasks in which target–
distractor similarity is high and distractor–distractor similarity
low (conjunction search being a prototypical example;
Duncan & Humphreys, 1989). In addition, the Display Size
× RTs function shows a slope ratio of absent trials to present
trials slightly greater than 2, which varies systematically with
the types of search task, from efficient to inefficient (Wolfe,
1998).

To date these effects have mostly been studied by examin-
ing mean RTs across trials, with the variability across trials
considered as uncorrelated random noise (though see, e.g.,
Ward & McClelland, 1989, who used across-participant vari-
ation to examine how search might be terminated). The as-
sumption of across trial random noise unavoidably sacrifices
the information carried by response distributions, which may
help to clarify underlying mechanisms (e.g., the influence of
top-down processing on search). In contrast to this, hierarchi-
cal distributional analyses set out to use the variability at each
possible level of analyses as well as the mean tendency across
responses, and through this, they relax the assumption of an
identical, independent Gaussian distribution underlying trial
RTs. This then permits trial RTs to be accounted for by a
positively skewed function. The reasons that we adopted
HBM (see Rouder et al., 2005, as well as Rouder & Lu,
2005) in the present study are that (1) it harnesses the strength
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of Bayesian statistics, which take into account the evolution of
the entire response distributions from trial RTs in one partici-
pant to aggregated RTs across all participants; (2) it uses the
dependencies between each level of response as crucial infor-
mation for identifying possible differences between the exper-
imental manipulations; and (3) it takes into account the differ-
ences between individual performances. Notably, the response
variability across different trials is no longer assumed to con-
stitute random noise but rather it is treated as crucial informa-
tion that must be modeled.

In this study, we examined the effectiveness of distribution-
al analyses and the HBM approach for understanding perfor-
mance in three benchmark visual search tasks, which were
modified from those of Wolfe, Palmer, and Horowitz (2010;
a different set of analyses was also reported in Palmer,
Horowitz, Torralba, &Wolfe, 2011; also see the computation-
al model aiming at clarifying the mechanism of search termi-
nation in Moran, Zehetleitner, Müller, & Usher, 2013). In
Wolfe et al.’s (2010) paradigm, an observer searched for an
identical target throughout one task—either a red vertical bar
in the feature and conjunction tasks or a white digital number
2 in the spatial configuration task. The distractors, either a
group of homogeneous green vertical bars or a mixture of
green vertical and red horizontal bars, set the feature and con-
figuration tasks apart. In the feature task, the homogeneous
distractors enabled the target’s color to act as the guiding at-
tribute (Wolfe & Horowitz, 2008) making search efficient. In
the conjunction task, and possibly also in the spatial configu-
ration task, a further stage of processing might be required in
order to find the target amongst the distractors as no simple
feature then suffices. All search items were randomly present-
ed in an invisible 5 × 5 grid. One of the crucial contributions
derived from previous work using RT distributions is that
observers set a threshold of search termination depending
not only on prior knowledge, but also on the outcome of prior
search trials (see Lamy & Kristjánsson, 2013, for a review).
As a consequence, instead of always exhaustively searching
every item in a display, an observer may adapt the termination
threshold dynamically (Chun & Wolfe, 1996). A second con-
tribution has been to show that variations in the display size
can have relatively little impact on the shape of the RT distri-
bution (Palmer et al., 2011; Wolfe et al., 2010) and effects on
the shape of the distribution only emerge at the large display
sizes (i.e., 18 items) when the task difficulty is high (i.e., on
target absent trials in the spatial configuration task; Palmer

et al., 2011; though see Rouder, Yue, Speckman, Pratte, &
Province, 2010, for a contrasting result).

The three-parameter probability functions

For our study, we adopted four three-parameter probability—
lognormal, Wald, Weibull, and gamma1—functions (Johnson,
Kotz, & Balakrishnan, 1994) to estimate RT distributions
using HBM. Unlike the frequently used ex-Gaussian function,
the three-parameter probability functions describe an RT dis-
tribution with shift, scale, and shape parameters that charac-
terize the pattern of a distribution. An increase in the scale
parameter shortens the central location of a distribution and
thickens its tail. This implies that the responses originally
accumulated around the central part become slower, and thus
move to the tail side. An increase in the shape parameter
makes the tail thinner, because those originally slow responses
are moved from the tail to the central location. Hence, an
increase in the shape parameter not only changes the kurtosis,
skewness, and variance, but also likely moves the measures of
the central location. An increase in the shift parameter pre-
serves the general pattern of a distribution. That is, an identical
curve is moved rightward (see Fig. 1 for an illustration).

In this study, we assumed that changes in RT distributions
reflect unobservable cognitive processes (a similar argument
was made by Heathcote et al., 1991). As is illustrated in Fig. 1,
factors that affect quick, moderate, and slow responses evenly
will show a selective effect on the shift parameter. Factors that
alter only the proportion of responses, moving it from the
central location to the tail part of a distribution (or vice versa),
will affect the scale parameter. Lastly, an effect on the shape
parameter may result from factors that affect both the central
and tail parts of a distribution and effectively increase the
response density between them.

The visual search processes that may change RT distribu-
tions include, but are not restricted to, the clustering process of
homogeneous distractors, the matching process of a search
template with a target and distractors, and the process of re-
sponse selection (see Duncan & Humphreys, 1989; Heinke &
Backhaus, 2011; Heinke & Humphreys, 2003; J. Palmer,
1995). Some previous work (e.g., Rouder et al., 2005) has
suggested interpreting Weibull-based analyses as reflecting
psychologically meaningful processes. For example, the shift,
scale, and shape parameters of an RT distribution have been
suggested to link, respectively, with the irreducible minimum
response latency (Dzhafarov, 1992), the speed of processing,
and high-level cognition (e.g., decision making). This is sim-
ilar to some reports that have applied distributional analyses to
RT data, attempting to link distributional parameters with psy-
chological processes directly (e.g., Gu, Gau, Tzang, & Hsu,
2013; Rohrer & Wixted, 1994). Although it is ambitious to
posit links between distributional parameters and underlying

1 These functions describe distributions with the same set of parameters:
shape, scale, and shift. Because, relative to other functions, a previous
analysis (Palmer et al., 2011) had reported a worse χ2 fit for the Weibull
function, we constructed comparable three-parameter HBM analyses to
test whether other functions would gain substantially better fit by using a
hierarchical Bayesian approach rather than the Weibull function. We
thank Evan Palmer for this suggestion.
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psychological processes, a better strategy is to take advantage
of the descriptive nature of distributional parameters
(Schwarz, 2001), which permits a concise summary of how
a distribution varies in response to a particular experimental
manipulation. The distributional parameters describe how an
RT distribution changes in three different, separable aspects
(shift, scale, and shape). This enables researchers to examine
RT data as an entirety, building on what can be provided by an
analysis of mean RTs. However, one potential pitfall is uncer-
tainty as to how the distributional parameters can be under-
stood with regard to unobservable psychological mechanisms
(e.g., the visual search processes we investigated here). We
explored a possible avenue to resolve this issue by applying
a plausible computational model to understand the same set of
RT data (a similar strategy was reported recently by Matzke,
Dolan, Logan, Brown, & Wagenmakers, 2013, and suggested
also by Rouder et al., 2005).

To understand how our distribution-based HBM cor-
relates with underlying cognitive processes, we com-
pared the HBM parameters with those estimated from
the EZ2 diffusion model (Wagenmakers, van der Maas,
Dolan, & Grasman, 2008; Wagenmakers, van der Maas,
& Grasman, 2007), which is a closed-form and simpli-
fied variant of Ratcliff’s (1978) diffusion model. The
diffusion model conceptualizes decision making in a
two-alternative forced choice (2AFC) task as a process
of sensory evidence accumulation. The accumulation
process is described through an analogy in which a

particle oscillates randomly on a decision plane, where
the x-axis represents the lapse of time and the y-axis
represents the amount of sensory evidence. When the
amount of evidence surpasses either the positive or the
negative decision boundary on the y-axis, a decision is
reached, and the time that the process takes is the de-
cision RT. The merits of the diffusion model are that it
directly estimates three main cognitively interpretable
processes—the drift rate, the boundary separation, and
the nondecision component—three parameters that turn
the random oscillation into a noisy deterministic pro-
cess. The drift rate is associated with the speed to reach
a decision threshold (Ratcliff & McKoon, 2007), which
is determined by the correspondence between the stimuli
(search items) and the memory set (search template). In
the case of template-based visual search, the drift rate
correlates with the matching of the template to the
search items; thus, it is conceivable that the shape of
an RT distribution will correlate with the drift rate, if
the process of template matching influences the RT
shape. The boundary separation, on the other hand,
may reflect how conservative a participant is. Liberal
observers may reach a conclusion earlier than conserva-
tive observers on the basis of the same amount of evi-
dence if their decision criterion is set lower. The non-
decision component is a residual time, calculated by
subtracting the decision time (estimated by the diffusion
model) from the total (recorded) RT; this may reflect

Fig. 1 Illustration of changes in
the scale, shape, and shift
parameters, simulated by a three-
parameter Weibull function. The
legend in each panel shows the
extent to which the parameter is
adjusted while the others are kept
constant
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the time to encode stimuli (perceptual time) together
with the time to produce a response output (motor time;
Ratcliff & McKoon, 2007).

The diffusion model has been applied to various 2AFC
paradigms, and so far both psychophysical and neurophysio-
logical studies indicate its usefulness in probing the two latent
decision-making processes and decision-unrelated times (e.g.,
Cavanagh et al., 2011; Towal, Mormann, & Koch, 2013; see
Ratcliff & McKoon, 2007, for a review). The EZ2 model is
one type of simplification (Grasman, Wagenmakers, & van
der Maas, 2009; though see a review for more complicated
statistical decision models of visual search in Smith & Sewell,
2013) that provides a coarse and efficient estimation for the
two important aspects of search decision: decision rate and
decision criterion. By dissecting the joint data of RT and ac-
curacy into parts that are influenced by either decision-related
or non-decision-related processes, the EZ2 model is able to
account for the changes in RT distributions in a psychologi-
cally meaningful way. For instance, a factor that affects the
nondecision process should reflect on the shift parameter,
which hardly changes the general pattern of an RT distribu-
tion, because its effect would be on all ranges of a distribution.
If most responses in a distribution are delayed equally, the
shift parameter will also increase selectively. On the other
hand, a factor that delays decision-related processes may con-
sistently delay only the responses from the quick to the central
band of an RT distribution, so it will result in an increase of the
scale parameter. That is, as the leftmost panel in Fig. 1 shows,
a scale increase shortens a distribution and thickens its tail.
Alternatively, if a decision-related factor delays the quick-to-
central band of an RT distribution, but speeds up the very slow
band of responses, it will result in a shape increase.

The diffusion model was used to complement the distribu-
tional analysis. The three diffusion processes—the evidence
accumulator, boundary separation, and the nondecision pro-
cess—are operated at the stage of stimulus comparison in a
search trial. We used the EZ2 model to estimate the means
across trials of the diffusion parameters in each condition.
Weibull HBM, on the other hand, summarizes the shape of
the RT distribution in each condition. The RT distributions
thus are the aggregated outputs from the diffusion processes.
The dual-modeling approach, on the one hand, assumes that
one search response is driven by the diffusion process, and on
the other, that all of the responses in one experimental condi-
tion aggregate to form an RT distribution, described by the
Weibull parameters. Even though the Weibull model takes
only correct trials into account, the EZ2 estimations were still
able to account for the descriptive model, because the bench-
mark paradigms produced high accuracy responses.

In summary, for this study we examined three questions
related to the perceptual decisionmaking during visual search.
The first question was whether the demands of a search task
affect the drift rate of sensory evidence accumulation related

to decision speed, and how this influence manifests in an RT
distributionwith regard to its shift and shape. The three bench-
mark search tasks here likely required various high-level cog-
nitive processes, such as focusing attention to improve the
quality of sensory evidence and binding multiple features to
match a search template. Particularly, the spatial configuration
search task has been shown to be highly inefficient (Bricolo,
Gianesini, Fanini, Bundesen, & Chelazzi, 2002; Kwak,
Dagenbach, & Egeth, 1991; Woodman & Luck, 2003). It is
reasonable to expect that this particular search task would
change the shape of the RT distribution drastically. The sec-
ond question examined was whether the display size affects
the shape of the RT distribution. As the stage model of infor-
mation processing (Rouder et al., 2005) presumes, the shape
of an RT distribution is likely affected specifically by late-
stage cognitive process. If the increase of search items in a
display merely adds to the burden on early perceptual process,
we should expect to find no influences from the display size
on any decision parameters, and thus on the RT shape. The
third question examined was the hypothesis of group segmen-
tation and recursive rejection processes in search (Humphreys
& Müller, 1993). Specifically, segmentation and distractor re-
jection may involve both late-stage cognitive processes (bind-
ing multiple search items as a group) and early-stage percep-
tual processes (recursively encoding sensory information).
This may, in turn, affect the decision and nondecision param-
eters, and therefore manifest as an interaction effect on the
shape of the RT distribution.

Method

Participants

Forty volunteers took part, from 18 to 22 years old (M ± SE =
18.9 ± 1.01; 33 females, seven males, 35 right- and five left-
handers). All volunteers reported normal or corrected-to-
normal vision and signed a consent form before taking part
in the study. One participant was excluded from the analysis
because of chance-level responses. The procedure was
reviewed and granted permission to proceed by the Ethics
Review Committee at the University of Birmingham.

Design

The study used a design similar to that of Wolfe et al. (2010),
with a slight modification. Specifically, we used a circular
display layout with a viewing area of 7.59 × 7.59 deg of visual
angle, in which 25 locations were allocated to hold search
items. Wolfe et al. (2010) used a viewing area of 22.5 ×
22.5 deg of visual angle (also with 25 search locations), and
each search item subtended around 3.5 to 4.1 deg of visual
angle. Relative to Wolfe et al.’s (2010) study, our setting (i.e.,
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using a similar number of search items presented in a smaller
viewing area) rendered a high density of homogeneous
distractors more likely when display sizes were large.

In the study, we investigated two factors, display size (3, 6,
12, and 18 items) and whether the target was present or absent,
using a repeated measures within-subjects design. One group
of participants (N = 20) took part in the feature and conjunc-
tion search tasks, and a second group took part in the spatial
configuration search task (N = 20). To minimize one of the
possible experimenter biases related to the analysis of null
hypothesis significance testing (Kruschke, 2010), we set a
target sample size (20 in each group) before collecting data.
The target sample size was determined on the basis of com-
monly used sample sizes (approximately 5–20 participants) in
the visual search literature. We did not analyze the data from
participants who withdrew and completed only part of the
tasks; these participants were replaced with other individuals.

In the feature search task, each observer looked for a dark
square amongst varying numbers of gray squares (both were
0.69 × 0.69 deg of visual angle). In the conjunction search
task, observers looked for a vertical, dark bar (0.33 × 0.96 deg
of visual angle) amongst two types of distractors, vertical gray
bars (0.33 × 0.96 deg of visual angle) and horizontal dark bars
(0.96 × 0.33 deg of visual angle). In the spatial configuration
search task, each observer looked for the digit 2 amongst digit
5 s (both are 0.33 × 0.58 deg of visual angle) (see Fig. 2 for an
example trial in each of the tasks).

Before the search display was presented, a 500-ms fixation
cross appeared at the center of the screen, followed by a 200-
ms blank duration. A trial was terminated when the observer
pressed the response key. The search tasks were programmed
by using PsyToolkit (Stoet, 2010), complied by GNU C com-
piler on a PC equipped with a Linux hard real-time kernel
2.6.31-11-rt and an NVidia GeForce 8500 GT graphic card,
which rendered the visual stimuli on an invisible circle in
black or gray color onto a gray background (RGB: 190, 190,
190). All stimuli were presented on a Sony CPD-G420 CRT
monitor at the resolution of 1,152 × 864 pixels with a refresh
rate set at 100 Hz. The visible area included the entire screen
(i.e., 1,152 × 864 pixels), but the relevant stimuli were all
drawn within the viewing area of 7.59 × 7.59 deg of visual
angle. Volunteers were asked to give speeded responses

without compromising their accuracy, and responses were
made using a Cedrus RB-830 response pad. Each volunteer
completed 800 trials, in which each experimental condition
comprised 100 trials. The volunteers carrying out the feature
and conjunction search tasks completed the tasks in a
counterbalanced sequence.

Hierarchical Bayesian model (HBM)

The HBM framework is based on Rouder and Lu’s (2005) R
code, which used a Markov chain Monte Carlo (MCMC) al-
gorithm to implement hierarchical data analysis assuming a
three-parameter Weibull function. We modified Rouder and
Lu’s code into an OpenBUGS-based R program by adapting
Merkle and van Zandt’s (2005) WinBUGS code to run a
Weibull hierarchical BUGS model (Lunn, Spiegelhalter,
Thomas, & Best, 2009), which was linked with R codes by
R2jags (Sturtz, Ligges, & Gelman, 2005) and JAGS
(Plummer, 2003). Readers who are interested in the program-
ming details may visit the authors’ GitHub, at https://github.
com/yxlin/HBM-Approach-Visual-Search.

The Weibull function was used to model the individ-
ual RT observations, assuming that each of them was a
random variable generated by the Weibull function. The
function comprises three parameters: shape (i.e., β, de-
scribing the shape of an RT distribution), scale (i.e., θ,
describing the general enhancement of the magnitude
and variability in an RT distribution), and shift (i.e.,
ψ, describing the possible minimal RT of a distribution).
The β parameter was then modeled by a γ distribution
with two hyperparameters, η1 and η2, and the θ and ψ
parameters were modeled by two uniform distributions.
The former (θ) was initialized as an uninformative dis-
tribution, whereas the latter (ψ) was set to the range
from zero to minimal RTs for each respective condition
and participant, because the ψ parameter assumed a role
as the nondecision component. The hyperparameters un-
derlying the γ distributions were then modeled by other
γ distributions with designated parameters, following
Rouder and Lu (2005). Likewise, we replaced the
Weibull function with the three-parameter gamma, log-
normal, and Wald functions (Johnson et al., 1994),
keeping similar prior parameter setting.

In HBM, correct RTs were modeled for each participant
separately in each condition. The HBM consisted of three
simultaneous iteration chains. Each of them iterated 105,000
times and sampled once every four iterations, in order to alle-
viate possible autocorrelation problems. The first 5,000 sam-
ples were considered to be arbitrary and were discarded (i.e.,
burn-in length). The same setting was applied both to our data
and to Wolfe et al.’s (2010) data to allow for a direct
comparison.

Fig. 2 Schematic representation of the tasks. In each panel a target is
present (from left to right, the black item [feature], the black vertical bar
[color–form conjunction], and the number 2 [spatial configuration])
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Diffusion model

Analyses were also based on Grasman et al. (2009) EZ diffu-
sion model, implemented in R’s EZ2 package, to estimate the
drift rate, boundary separation, and nondecision components
separately for each participant in each condition. Following
the assumptions of the EZ diffusion model (Wagenmakers
et al., 2008), the across-trial variability associated with each
of the drift rate, boundary separation, and nondecision com-
ponents was held constant. Due to the high accuracy rate, the
analyses applied the edge correction procedure,2 following
Wagenmakers et al. (2008; see also other possible solutions
in Macmillan & Creelman, 2005), for the conditions in which
an observer committed no errors. “Present” and “absent” re-
sponses were modeled separately, using the simplex algorithm
(Nelder & Mead, 1965) to approach a converging estimation.
The initial input values to the EZ2model were set according to
the paradigm and the literature: (1) The paradigm permitted
only two response options (the target was either present or
absent) and (2) the search slope for the present-to-absent ratio
was slightly greater than 2 (Wolfe, 1998). Accordingly, the
initial values of the drift rates for “present” and “absent” re-
sponses were, respectively, set at 0.5 and 0.25. The nondeci-
sion component and the boundary separation were arbitrarily,
but reasonably, set at 0.05 and 0.09. The initial values were
simply educated guesses provided to allow the algorithm to
approach reasonable estimations.

For both HBM and the diffusion model, the parameters
were estimated on a per-condition, per-participant basis, so
the data from each participant contributed 24 (3 × 2 × 4) data
points for each parameter. The analyses assessed the variabil-
ity across individuals in visually weighted regression lines,
using a nonparametric bootstrapping procedure implemented
by Schönbrodt (2012) for Hsiang’s (2013) visually weighted
regression method.3

Results

We report the data in four sections. First, we report standard
search analyses, using mean measures of performance for in-
dividuals across trials. Next, we present the distributional
analyses, using box-and-whisker plots, probability density
plots with quantile–quantile subplots, and empirical
cumulative density plots to recover the RT distributions. The
distributions from each condition were then compared. Third,
the standard search analyses and the distributional analyses

were then contrasted with previous findings reported by
Wolfe et al. (2010) and by Palmer et al. (2011).4 In the last
section, we report the analyses, using HBM and the EZ2 dif-
fusion model. These include the data for the Weibull and the
diffusion model parameters, presented separately, with visual-
ly weighted nonparametric regression plots. From here we go
on to discuss the factors contributing to the RT shape, shift,
and scale parameters, on the basis of how these parameters
change across the different search conditions, and contrast
them with the decision parameters from the diffusion model.
The appendix presents two simulation studies that we used to
examine whether Weibull HBM estimates of the distributional
parameters were reliable with a small sample size, and
Bayesian diagnostics were used to verify the reliability of
the Markov chain Monte Carlo procedure.

We focus on the data from target-present trials because
target-absent trials likely involve a different set of decision
processes (one possibility is an adaptive termination rule, sug-
gested by Chun & Wolfe, 1996; alternatively, see a recent
computational model by Moran et al., 2013). A decision in a
target-absent trial is possibly reached on the basis, for exam-
ple, of a termination rule that allows an observer to deem that
the collected sensory evidence is strong enough to refute the
presence of a target. Although it is likely that an observer, in a
target-present trial, may also adopt an identical termination
rule to infer the likelihood of target presence, he or she would
rely on the stronger sensory evidence extracted from a target
than from nontargets. This is likely when a target image is
physically available in a trial and target foreknowledge is set
up in an attentional template. Thus, the main aim of this report
is to examine the role of factors such as the target–distractor
grouping effect on the distribution of target-present responses
in search. We nevertheless also append standard analyses for
target-absent trials in all the figures.

Mean RTs and error rates

As is typically done for analyses of aggregated RTs, we
trimmed outliers by defining them as (1) incorrect responses
or correct responses outside the range of 200 to 4,000 ms, for
feature and conjunction searches, and 200 to 8,000 ms, for
spatial configuration searches (though see Heathcote et al.,
1991, for the downside of trimming RT data). The trimming
scheme was the same that was used by Wolfe et al. (2010).
This outlier trimming resulted in rejection rates of 9.2 %,
12 %, and 7.2 % of responses, respectively for the three tasks.
After excluding the outliers, the data were then averaged
across the trials within each condition, resulting in 76 aver-
aged observations for the feature and conjunction searches
and 80 observations for the spatial configuration search. All
outliers were defined as error responses.

2 When an observer made no error responses (i.e., 100 % accuracy, Pc),
the accuracywas replacedwith a value that corresponded to one half of an
error, following the formula Pc = 1 – (1/2n).
3 The technique was discussed and implemented in the blogsphere before
it was formally published in the 2013 technical report. 4 We thank Jeremy Wolfe and Evan Palmer for their permission.
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A two-way ANOVA5 showed reliable main effects of dis-
play size, F(3, 165) = 176.107, p = 1 × 10−13, η2p = .762, and
search task, F(2, 55) = 108.385, p = 1 × 10−13, η2p = .798, as
well as an interaction between these factors, F(6, 165) =
68.633, p = 1 × 10−13, η2p = .714. The spatial configuration
search (RTmean = 913 ms) required reliably longer RTs than
did the conjunction search task (mean difference = 327 ms,
95 % CI = ~244–411 ms, p = 5.89 × 10−13), which in turn had
longer mean RTs (586 ms) than did the feature search task
(428 ms; mean difference = 158 ms, 95 % CI = ~74–
243 ms, p = 6.68 × 10−5).

Separate tests for the feature search task showed a signifi-
cant display size effect, F(3, 54) = 7.494, p = 2.78 × 10−4, η2p
= .294. RTs were slower for display sizes 18 and 12 when
compared with display size 3 (t = 6.37, 95 % CI = ~11.61–
31.82 ms, p = 3.22 × 10−5; t = 4.03, 95 % CI = ~4.43–
28.95 ms, p = 4.67 × 10−3). We also found a reliable main
effect of display size for conjunction search, F(3, 54) =
103.15, p = 1 × 10−13, η2p = .851, and spatial configuration
search, F(3, 57) = 113.8, p = 1 × 10−13, η2p = .857, tasks. Post-
hoc t tests for the conjunction task showed reliable differences
across all display sizes (510, 552, 615, and 667 ms for 3, 6, 12,

and 18 items, respectively; ps = 2.63 × 10−7, 9.70 × 10−9, 2.67
× 10−9, 4.98 × 10−6, 6.08 × 10−8, 4.19 × 10−5 for comparisons
of 3 vs. 6, 3 vs. 12, 3 vs. 18, 6 vs. 12, 6 vs. 18, and 12 vs. 18,
Bonferroni corrected for multiple comparisons). Similar ef-
fects were present for the spatial configuration search, too
(679, 809, 1,011, and 1,154 ms for increasing display sizes;
ps = 5.14 × 10−7, 5.15 × 10−9, 4.10 × 10−9, 1.42 × 10−7, 1.09 ×
10−8, and 2.33 × 10−7 for comparisons of 3 vs. 6, 3 vs. 12, 3 vs.
18, 6 vs. 12, 6 vs. 18, and 12 vs. 18, Bonferroni corrected for
multiple comparisons; see Fig. 3).

The error rates showed a pattern similar to the average RTs,
consistent with there being no trade-off between the speed and
accuracy of responses. A two-way ANOVA revealed reliable
main effects of display size, F(3, 165) = 38.09, p = 1 × 10−13,
η2p = .409, and search task, F(2, 55) = 5.75, p = .005, η2p =
.173, as well as their interaction, F(6, 165) = 10.867, p = 3.52
× 10−10, η2p = .283. The spatial configuration search (error
ratemean = 11.80 %) was more difficult than the conjunction
search task (8.62 %), but the difference did not exceed the
significance level after Bonferroni correction (the difference
of mean error rate = 3.18 %, p = .356, 95 % CI = −1.774 % to
~8.134 %). The conjunction search task, in turn, was more
difficult than the feature search task (5 % errors; difference
in mean error rates = 3.621 %, p = .241, 95 % CI = −1.396 %
to ~8.628 %; again, the difference was not significant). The
only reliable difference in error rates was between the spatial
configuration search and the feature search tasks (difference in

5 The three task levels were treated as a between-subjects factor for
straightforward presentation, although the levels of feature and conjunc-
tion search are within-subjects factors. Even under this calculation (leav-
ing more variation unexplained), the RTmean values amongst the three
tasks still showed reliable differences.

Fig. 3 Box-and-whisker plots.
The upper and lower panels show
means of the RTs and error rates,
respectively. The subplot in the
upper-left panel shows a zoom-in
view of the bar plot of the feature
search task (y-axis ranging
between 405 to 450 ms, x-axis
labeling the four display sizes).
The left and right panels present
the analyses from the present and
Wolfe et al.’s (2010) data sets,
respectively
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mean error rates = 6.801 %, p = .004, 95 % CI = 1.847 % to
~11.755 %).

For the feature search, the effect of display size was not
reliable, F(3, 54) = 1.517, p = .221, η2p = .078, whereas there
was a reliable effect of display size for both the conjunction
search task, F(3, 54) = 6.075, p = .001, η2p = .252, and the
spatial configuration task, F(3, 57) = 41.426, p = 1.24 × 10−13,
η2p = .686 (lower panel in Fig. 3). Post-hoc t tests indicated
that in the conjunction search task, participants committed
more errors at display size 18 (13.05 %) than at display sizes
12 (8.84 %; p = .028) and 6 (6.79 %; p = .043, Bonferroni
corrected for multiple comparisons). In the spatial configura-
tion search, there were differences across all display size
pairings except for 3 versus 6 (p = .161; ps = 5.90 × 10−5,
9.85 × 10−6, 3.58 × 10−4, 6.80 × 10−6, and 1.21 × 10−5 for 3 vs.
12, 3 vs. 18, 6 vs. 12, 6 vs. 18, and 12 vs. 18, Bonferroni
corrected for multiple comparisons).

Error analysis

To test whether the shape change in an RT distribution was
due to an increase of miss errors (Wolfe et al., 2010), we also
analyzed two types of errors: misses (i.e., participants pressed
the “absent” key in target-present trials) and false alarms (i.e.,
participants pressed the “present” key in target-absent trials).

A two-way ANOVA on miss error rates showed reliable
main effects of display size, F(3, 165) = 38.08, p = 1 × 10−13,
η2p = .409, and search task, F(2, 55) = 5.75, p = .005, η2p =

.173, as well as an interaction between these factors, F(6, 165)
= 10.85, p = 3.62 × 10−10, η2p = .283. Both the spatial config-
uration, F(3, 57) = 41.37, p = 1.25 × 10−13, η2p = .685, and
conjunction search, F(3, 54) = 6.08, p = .001, η2p = .253, tasks
showed increasing miss errors as the display size increased,
but the feature search task did not, F(3, 54) = 1.52, p = .221,
η2p = .078. False alarms showed only a display size effect,
F(3, 165) = 3.94, p = .010, η2p = .067. The reliable effect of
false alarm errors was observed in both feature search, F(3,
54) = 2.81, p = .048, η2p = .135, and conjunction search, F(3,
54) = 2.96, p = .040, η2p = .141, but not in spatial configura-
tion search, F(3, 57) = 1.14, p = .340, η2p = .057 (Fig. 4).

Distributional analysis

Figure 3 also shows the distributions of the means of RTs and
error rates across the display sizes and tasks. Three noticeable
characteristics are evident. First, performance in the feature
search task changed little across the display sizes. Second, in
the two inefficient search tasks (conjunction and spatial con-
figuration), increases in the display size not only delayed cen-
tral RTs within the distribution (i.e., the estimates that median
and mean results aim to capture), but also shifted the entire
response distribution. Third, the increases in task difficulty
affected not only central RTs, but also the variability of the
distribution. There were also some differences between the
conjunction and spatial configuration tasks. The widely dis-
tributed RTs for the spatial configuration task elongated the

Fig. 4 Mean rates of miss and
false alarm errors. The error bars
show one standard error of the
mean. The y-axis shows
percentage of errors. “F,” “C,”
and “S” stand for feature,
conjunction, and spatial
configuration searches
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central measures of performance as well as the long-latency
responses. Notably, the difference between the effects of the
different display sizes at the long end of the response distri-
bution was exacerbated for the spatial configuration search
task.

The box-and-whisker plot for error rates showed a similar
pattern across the display sizes to the plot for the mean RT
data, although the effects were relatively modest in
magnitude.

Figure 5 shows the RT distributions at the different
display sizes and search tasks. The distributions were
constructed on the basis of the mean RTs (Nfeat and
Nconj = 19, Nspat = 20; 464 data points). The feature
search showed a leptokurtic distribution, and the
quantile–quantile plots indicated clear deviations at both
ends of the distributions. The conjunction and spatial
configuration search tasks at the small display sizes,
however, showed only moderate signs of violation of
the normality assumption, though at the large display
sizes, the distributions were platykurtic (flat) and the
long-latency RTs showed signs of deviation from a nor-
mal distribution.

Figure 6 shows RT distributions and quantile–
quantile plots. The distributions were constructed on
the basis of the trial RTs (43,485 data points). Each
density line represents the data from one participant.
Evidently, the normality assumption was untenable

across all of the conditions. All subplots showed that
the data clearly deviated from the theoretical normal
lines. It is also apparent that individual differences
played a more important role for the conjunction and
spatial configuration tasks than for the feature task,
judging by the diversity of the density lines in the
two difficult search tasks.

Figure 7 shows the empirical cumulative distribu-
tions, drawn on the basis of trial RTs (43,485 and
109,036 data points in our and Wolfe et al.’s, 2010,
data sets, respectively). The contrasting RTs across the
display sizes confirm Wagenmakers and Brown’s (2007)
analysis that, in inefficient relative to efficient search
tasks, the RT standard deviation and RT mean play cru-
cial roles in describing visual search performance.
Specifically, the elongated cumulative distributions sug-
gest that the more items are present, the more likely an
observer is to produce a response that falls in the right
tail of the RT distribution. This observation again cau-
tions us against a reliance solely on using measurements
of the central location when investigating visual search
performance.

Contrasts with prior data

We compared our data with those of Wolfe et al. (2010). A
comparison of the mean RT and error rates indicated similar

Fig. 5 Mean RT distributions.
The subplots within each panel
are quantile–quantile (Q–Q)
normalized plots showing
deviations of the data from the
theoretical normal distribution.
The Q–Q normalized plots
compare RT means [y-axis label,
“RT (ms)”] with normalized z
scores [x-axis label, “Z-score”]. F,
C, and S stand for feature,
conjunction, and spatial
configuration tasks, and P and A
are target-present and -
absent trials, respectively
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patterns across the studies (see Fig. 3), as is also suggested by
the cumulative density and RT plots shown in Figs. 7 and 8.

With only a small number of participants, it is difficult to
rule out the normality assumption when examining the mean

RTs (see the subplots in Fig. 8), but the data for the trial RTs
reveal a skewed distribution (Fig. 9).

HBM estimates

In this section, we first present each parameter separate-
ly for the respective ANOVA results, and compare the
data for the three search tasks at the different display
sizes, modeled by HBM. Next, we describe a nonpara-
metric bootstrap regression to assess the relationship be-
tween display size and the difficulty of the search task.
The analysis focused on target-present trials. We used
the deviance information criterion (DIC) to evaluate
each function’s fit to the data (see Table 1). In general,
the smaller the DIC, the better the fit (Lunn, Jackson,
Best, Thomas, & Spiegelhalter, 2013). Although the
lognormal and Wald functions showed the smallest
DICs, the DICs across the four fitted functions were
close. Moreover, the diagnostics of the gamma HBM
suggests that its posterior distributions did not converge.
Excluding the nonconverged gamma function, we arbi-
trarily report estimates from the Weibull HBM, given
that prior work has shown that this function provides
a highly robust account, not strongly moderated by
noise in the data (for a specific pathology of the
Weibull function, see Rouder & Speckman, 2004, pp.

Fig. 6 Trial RT distributions. The
quantile–quantile normalized
subplot within each panel
compares trial RTs [y-axis label,
“RT (ms)”] with normalized z
scores [x-axis label, “Z-score”]

Fig. 7 Empirical cumulative RT density curves, drawn on the basis of the
trial RTs. The areas within each envelope represent the differences
between target-present and target-absent trials for each task. The two
dashed lines show the positions of the 50 % and 95 % cumulative densi-
ties. Long latencies (right border of envelopes) were consistently ob-
served on target absent trials
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424–425, and for how HBM resolves this problem, see
Rouder et al., 2005, p. 203).

Shift A two-way (Task × Display Size) ANOVA6 revealed
significant effects of task, F(2, 55) = 129.748, p = 1.0 ×
10−13, η2p = .825, and display size, F(3, 165) = 9.031, p =
1.43 × 10−5, η2p = .141, but there was no reliable interaction,
F(6, 165) = 1.14, p = .34, η2p = .040. Post-hoc t tests showed
that the feature search had a smaller shift value than did con-
junction search, which also had a smaller value than the spatial
configuration search (246 and 342 ms vs. 436 ms, ps = 2.37 ×
10−10 and 2.83 × 10−10). For a summary of these and of all
ANOVA results from this study, see Table 2.

The plot in the upper left panel of Fig. 10 shows two im-
portant characteristics for target-present trials. First, the non-
parametric regression lines show that the shift parameter var-
ied little across participants in the four display sizes within a
task. Second, each task demonstrates a different magnitude of

the shift parameter, suggesting that varying the search process
gives more weight to this parameter than does varying display
sizes.

Scale The two-way (Task × Display Size) ANOVA was sig-
nificant for the task, F(2, 55) = 161.70, p = 1.0 × 10−13, η2p =
.855, display size, F(3, 165) = 39.75, p = 1.0 × 10−13, η2p =
.420, and for the Task × Display Size interaction, F(6, 165) =
19.31, p = 1.0 × 10−13, η2p = .413.

Separate ANOVAs showed reliable display size effects for
both the conjunction task, F(3, 54) = 10.000, p = 2.42 × 10−5,
η2p = .357 (206, 257, 301, and 334 ms with increasing display
size) and the spatial configuration task, F(3, 57) = 33.47, p =
1.42 × 10−12, η2p = .638 (302, 444, 607, and 760 ms), but not
for the feature search task, F(3, 54) = 0.084, p = .968, η2p =
.005 (201, 207, 206, and 205 ms). Post-hoc t tests showed
significant differences between all display sizes in spatial con-
figuration search (ps = 7.59 × 10−3, 9.34 × 10−6, 1.34 × 10−7,
.021, 1.56 × 10−4, and .04 for the comparisons of 3 vs. 6, 3 vs.
12, 3 vs. 18, 6 vs. 12, 6 vs. 18, and 12 vs. 18; Bonferroni
corrected for multiple comparisons). This held for conjunction

6 For the same reason as in note 5, we analyzed the three levels of Task as
a between-subjects factor.

Fig. 8 Mean RT distributions. The quantile–quantile normalized subplot within each panel compares RT means [y-axis label, “RT (ms)”] with
normalized z scores [x-axis label, “Z-score”]. The data are taken from Wolfe et al. (2010)
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search only for the 3 versus 12, and 3 versus 18 comparisons
(ps = .001, Bonferroni corrected for multiple comparisons).
No significant differences were observed in feature search.

The lower left panel of Fig. 10 shows two important
characteristics. First, the regression lines indicate in-
creasing variability (i.e., decreasing ribbon density) as
the display sizes increase for conjunction and spatial
configuration search, but not for feature search.
Second, the display size effect only becomes noticeable

for the inefficient search tasks, in line with the RT
mean results.

Shape The two-way (Task × Display Size) ANOVA re-
vealed significant effects of task, F(2, 55) = 23.50, p =
4.21 × 10−8, η2p = .461, and marginally significant re-
sults for display size, F(3, 165) = 2.44, p = .067, η2p =
.042, and their interaction, F(6, 165) = 3.45, p = .003,
η2p = .111.

Separate ANOVAs showed reliable display size effects
for both conjunction search (1,496, 1,731, 1,695, and 1,
702 with increasing display size), F(3, 54) = 4.21, p =
.009, η2p = .190, and spatial configuration search (1,573,
1,541, 1,397, and 1,529), F(3, 57) = 4.45, p = .007, η2p =
.190, but not for feature search (1,702, 1,819, 1,976, and
1,850), F(3, 54) = 2.13, p = .106, η2p = .106. Post-hoc t
tests showed significant display size differences for 3 ver-
sus 6, 3 versus 12, and 3 versus 18 items, ps = .022,
.018, and .009, in the conjunction search. In the spatial
configuration search, the display size differences were ob-
served at 3 versus 12, 6 versus 12, and 12 versus 18

Fig. 9 Trial RT distributions. The quantile–quantile normalized subplot within each panel compares trial RTs [y-axis label, “RT (ms)”] with normalized z
scores [x-axis label, “Z-score”]. The data are taken from Wolfe et al. (2010)

Table 1 Deviance information criteria of the four fitted functions

Present Study Wolfe et al. (2010)

Gamma 385,348,342 975,871,147

Lognormal 385,348,002 975,870,279

Wald 385,348,026 975,870,358

Weibull 385,348,139 975,871,078

The criteria are averaged across target-absent and -present trials, tasks,
and display sizes.
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items, ps = .013, .047, and .003 (Bonferroni corrected for
multiple comparisons).

The plots in the middle left panel of Fig. 10 show
two important characteristics. First, the regression lines
indicate differences between the search conditions only
at large display sizes (i.e., 6, 12, and 18). Second, there
is a U-shaped function for the spatial configuration
task—for both the magnitude and variability of the
shape parameter. Interestingly, these results are not evi-
dent in Wolfe et al.’s (2010) data. The emergent de-
creases in the mean shape parameter and the associated

increase in variability suggest that additional factors in-
fluenced search at the large display sizes here—which
we suggest reflects grouping between the elements. We
elaborate on this proposal in the General Discussion.

Diffusion model

In this section we present the three diffusion model parame-
ters, using an analysis protocol identical to that in previous
section. Again, the analyses focused on target-present trials.

Table 2 Summary table for the significance of two-way analyses of variance for all tested parameters

Mean RT Error Rate RT Shift RT Shape RT Scale Drift Rate Nondecision Time Boundary Separation

Display size V V V V V

Task V V V V V V V V

Interaction V V V V V V

V indicates a significance level, p < .01.

Fig. 10 Visually weighted regression (VWR) plots (Hsiang, 2013) for
the three Weibull parameters. VWR performs regressions using display
size as the continuous independent variable and Weibull function
estimates (shift, shape or scale) as the predicted variables separately for
the three search tasks. The white lines in the middle of each ribbon show
the predicted regression lines. To show differences across the conditions
(display sizes and tasks), the uncertainty, which usually error bars aim to

communicate, is estimated via bootstrapping nonparametric regression
lines (i.e., the three grayscaled lines). Here we used locally weighted
smoothing (Cleveland, Grosse, & Shyu, 1992). The density of lines and
saturation of grayscale lines were drawn in a way to reflect the extent of
uncertainty. The denser and more saturated a ribbon is, the less between-
participant variation it shows
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Drift rate The two-way (Task × Display Size) ANOVA re-
vealed a significant effect of task, F(2, 55) = 9.47, p = 2.92
× 10−4, η2p = .256, but not of display size, F(3, 165) = 0.472, p
= .703, η2p = .009, and no interaction, F(6, 165) = 1.27, p =
.28, η2p = .044. Post-hoc t tests showed that the feature search
(0.323) drifted faster than did the conjunction search (0.265;
marginally significant, p = .057, 95 % CI = −0.117 to .001)
and the spatial configuration search (0.220; p = 1.81 × 10−4,
95 % CI = 0.044 to 0.161). No difference was found between
the conjunction and spatial configuration searches.

The drift rate, shown in the upper left panel in Fig. 11,
manifests two critical characteristics. First, for both the feature
and conjunction search tasks, the drift rate evolves at a con-
stant rate across the display sizes. The second noticeable char-
acteristic is a clear separation of the drift rates across the three
tasks, suggesting differences in the rates at which sensory
evidence accumulates in the different tasks. There is also a
tendency for the drift rate to rise at the large display size in
the spatial configuration task (Fig. 11), suggesting that an
emergent factor, such as the grouping of homogeneous
distractor elements, increased the drift rate—though the vari-
ability across observers suggests that this was not universally
the case for all participants. This was not evident in target-
absent trials.7 This upward trend was also not present in the
data of Wolfe et al. (2010).

Nondecision time The two-way (Task × Display Size)
ANOVAwas significant for the main effect of task, F(2, 55)
= 5.64, p = .006, η2p = .170, and the interaction, F(6, 165) =
4.16, p = .001, η2p = .131. Post-hoc t tests showed that spatial
configuration search (79 ms) was associated with a longer
nondecision time than were feature search (57 ms, p = .008,
95%CI = 4.53 to 38.1ms) and conjunction search (61 ms, p =
.038, 95 % CI = 0.707 to 34.2 ms). We observed reliable
display size effects for the spatial configuration task, F(3,
57) = 6.886, p = 4.89 × 10−4, η2p = .266 (60.59, 80.54,
89.50, and 84.23 ms with increasing display size), but not
for feature or conjunction search tasks.

Boundary separation The two-way (Task × Display Size)
ANOVA revealed significant effects of the task, F(2, 55) =
31.75, p = 6.81 × 10−10, η2p = .536, and the display size, F(3,
165) = 7.6, p = 8.61 × 10−5, η2p = .121, as well as a Task ×
Display Size interaction,F(6, 165) = 4.76, p = 1.69 × 10−4, η2p
= .147. The value of the boundary separation for feature
search (0.111) was smaller than that for spatial configuration
search (0.192; p = 1.01 × 10−9, 95 % CI = 0.055 to 0.107) and
was not different from that found for conjunction search
(0.132). The conjunction search task also demonstrated
a reliable difference from the spatial configuration con-
dition (p = 1.49 × 10−6, 95 % CI = 0.034 to 0.086).
Separate ANOVAs showed reliable display size effects
for the spatial configuration search (0.148, 0.170, 0.201,
and 0.249 for 3, 6, 12, and 18 items, respectively), F(3,

Fig. 11 Visually weighted
regression plot for the EZ2
diffusion model parameters

7 See https://github.com/yxlin/HBM-Approach-Visual-Search for the
target-absent trial data.
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57) = 6.73, p = .001, η2p = .262, but not for the feature
or conjunction searches.

General discussion

In this study, we applied an integrated approach to the
modeling of visual search data. We examined the data
not only using standard aggregation approaches, but al-
so using distributional approaches to extract cognitive-
related parameters from the trial RTs. This approach
allowed us to reveal the possible accounts of the three
distributional parameters—shift, shape, and scale—by
associating them with the nondecision time, drift rate,
and boundary separation estimated from the diffusion
model. Our study goes farther than most previous ones
(Balota & Yap, 2011; Heathcote et al., 1991; Sui &
Humphreys, 2013; Tse & Altarriba, 2012) that have ap-
plied distributional analyses to RT data. We used con-
ventional distributional analyses to examine empirical
RT distributions, and the associated parameters were
complemented with Bayesian-based hierarchical model-
ing to optimize the estimates. Moreover, we examined
those distributional parameters against a plausible com-
putational model—the EZ2 diffusion model—to link the
distributional parameters to underlying psychological
processes.

Replicating many previous findings in the search literature,
our data showed efficient search for feature targets and ineffi-
cient search when targets could only be distinguished from
nontargets by conjoining multiple features (shape and color,
or shape only; see Chelazzi, 1999, and Chun & Wolfe, 2001,
for reviews). The display size effect present in feature search
(415, 426, 432, and 437 ms) suggests some limitations on
selecting feature targets, but the analyses based on mean RTs
did not differentiate whether the effect (η2p = .294) was due to
postselection reporting (Duncan, 1985; Riddoch &
Humphreys, 1987) or to an involvement of focal attention in
feature search. This question was addressed by examining the
estimates from HBM together with those from the EZ2 diffu-
sion model. The lack of display size effects for nondecision
time suggests that the increasing trend in the mean RTs was
unlikely to be due to a delay in peripheral processes, such as
motor or early perceptual times. Neither drift rate showed a
reliable effect of the display size for feature search. The only
possible difference was an unreliable display size effect (p =
.106), together with an increase of variation in the shape pa-
rameter at display size 18. This result appears to favor the
explanation of focal attention.

Though previous results have indicated that search is often
inefficient for conjunction- and configuration-based stimuli,
our findings indicated that spatial configuration search was

particularly difficult (Bricolo et al., 2002; Kwak et al., 1991;
Woodman& Luck, 2003). This could reflect either a reduction
in the guidance of search from spatial configuration, as com-
pared with simple orientation and color information, or in the
length of time taken to identify each item after it had been
attended. Interestingly, although when compared with the
standard deviation of the conjunction search (9.68 ms), con-
figuration search generally showed a larger value across par-
ticipants (24.54 ms), the standard deviations within the con-
figuration search decreased as the display sizes increased
(35.17, 27.12, 15.38, and 20.49 ms). This last result suggests
that high-density homogeneous configurations of distractors
do facilitate search, a point that we return to below (Bergen &
Julesz, 1983; Chelazzi, 1999; Duncan & Humphreys, 1989;
Heinke & Backhaus, 2011; Heinke & Humphreys, 2003).

Methodological issues

The analyses of the mean RTs, however, did not always
accord with the analyses of trial RTs. For example, the
density plots of mean RTs (Fig. 5) suggest that the data
were distributed symmetrically, contrasting with the
common notion that an RT density curve tends to be
positively distributed toward long latencies (Luce,
1986). However, the analyses of the trial RTs (Fig. 6)
revealed clearly skewed RT distributions. This was be-
cause the procedure of determining a representative val-
ue using a central location parameter (the mean, in the
case of our data) from each observer’s RT distribution
for a condition (individual curves in Fig. 6) is affected
greatly by the weight of the slow RTs. The conditions
and observers that contribute the slow responses tend to
move the central location toward longer latencies within
a distribution; hence, we observed more symmetrical
and sub-Gaussian (i.e., flat) density curves for the mean
RTs. Additionally, because the density curve for the
mean RTs is usually constructed by means of a biased
central-location parameter (with respect to a skewed RT
distribution), the nature of the RT distribution (e.g., if
there are a majority of quick responses and a minority
of slow responses) is hidden by an unrepresentative
central-location parameter. A solution has been proposed
recently of using some variants of distributional analy-
ses (Balota & Yap, 2011; Bricolo et al., 2002;
Heathcote et al., 1991), and these have been applied
to various cognitive tasks (Palmer et al., 2011; Sui &
Humphreys, 2013; Tse & Altarriba, 2012; Wolfe et al.,
2010). Essentially, the distributional approach constructs
an empirical distribution by using the trial RTs from
each individual in a condition and uses a plausible dis-
tributional function (such as Weibull or ex-Gaussian) to
extract distributional parameters, with the parameters be-
ing averaged across participants and then compared
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across the different conditions. This approach descrip-
tively dissects an RT distribution into multiple compo-
nents (e.g., mu, sigma, and tau), each potentially
reflecting a contrasting psychological process (Balota
& Yap, 2011). However, the link between the compo-
nent and the underlying process can be elusive (Matzke
& Wagenmakers, 2009) without directly modeling of the
underlying factors. We addressed this issue by contrast-
ing the empirical data modeled by both a distributional
approach (HBM) and a computational model (the EZ2
diffusion model).

On top of the analyses of mean performance, the integra-
tion of hierarchical Bayesian and EZ2 diffusion modeling
helped to throw new light on search. Following Rouder et al.
(2005), HBM dissects an RT distribution into three parame-
ters: shift, scale, and shape. The shift parameter has been
linked to residual RTs, the scale parameter with the response
rate, and the shape parameter with postattentive response se-
lection (Wolfe, Võ, Evans, & Greene, 2011). The EZ2 diffu-
sion model directly estimates three parameters: (1) the drift
rate, reflecting the quality of the match between a memory
template and a search display (the goodness of match, in
Ratcliff & Smith’s, 2004, terms); (2) the boundary separation,
reflecting the response criterion (Wagenmakers et al., 2007);
and (3) the nondecision time, reflecting the time that an ob-
server requires to encode stimuli and execute a motor re-
sponse. This conceptualization can help articulate the correla-
tion between the descriptive parameters from the RT distribu-
tion and those estimated by the diffusion model. For example,
the role of shift in a Weibull function is to directly set a min-
imal threshold for responses and rule out the possibility of
negative responses. This suggests an association between the
RT shift and nondecision time parameters.

Model-based analysis

The EZ2 diffusion model and HBM results suggest that dis-
tributional parameters reflect different aspects of search. First,
the shift parameter varied across the search tasks and display
sizes, a pattern that was in line with our illustration and the
ideal analysis (see Fig. 1 and Appendix 2). This parameter
reflects the psychological processes that evenly influence all
ranges of RTs. One of the diffusion processes likely to influ-
ence the shift changes is the drift rate, which showed only a
main effect of task. Since the drift rate aims to model the rate
of information accumulation determined by the goodness of
match between the templates and search stimuli, the shift pa-
rameter appears to result from a change in the quality of the
memory match. This is a plausible account, because the three
search tasks demand contrasting matching processes, from (i)
feature search, which requires only preattentive parallel pro-
cessing to extract just one simple salient feature, to (ii) con-
junction search, in which two simple features must be bound

to facilitate a good match, to (iii) spatial configuration search,
which demands both feature binding and coding the configu-
ration of the features. The lack of an interaction with display
size further supports our argument that the shift reflects factors
that affect the entire RT distribution equally. The weak display
size effect can be readily explained by the crowded layout that
we used; it had not been observed [F(3, 75) = 0.016, p = .997]
in Wolfe et al.’s (2010) data. This weak effect of the shift
parameter is further accounted for by our visually weighted
plot in the drift rate parameter, showing a clear split of trends
and an increase of between-observer variation at the large
display size. Specifically, a subset of participants adopted a
strategy similar to those of the participants in Wolfe and col-
leagues’ (2010) study. These participants did not assemble a
similarity search unit, so the predicted drift rate decreased at
large display sizes, whereas the other subset of participants
benefited from the crowded homogeneous distractors, and
thus increased drift rate at the large display sizes.

Another account for the strong task effect but the weak
effect of display size is that this pattern reflects a process such
as the recursive rejection of distractors, proposed by
Humphreys and Müller (1993) in their SERR model of visual
search (see also Heinke & Humphreys, 2005). Humphreys
and Müller argued that search can reflect the grouping and
then recursive rejection of distractors. The process here may
reflect the strength of grouping rather than the number of
distractors, since multiple distractors may be rejected together
in a group—indeed, effects of the number of distractors may
be nonlinear, since grouping can increase at larger display
sizes. Grouping and group selection both reflect the similarity
of targets and distractors and the similarity of the distractors
themselves, and these two forms of similarity vary in opposite
directions in conjunction and spatial configuration search (rel-
ative to a feature search condition such as the one employed
here, the two types of search respectively reflect weaker
distractor–distractor grouping and stronger target–distractor
grouping; see Duncan & Humphreys, 1989). If the process
of distractor rejection is more difficult in conjunction and con-
figuration search, as compared with feature search, then the
effects on a parameter will reflect this process, and this may
not vary directly with display size, as we observed.

In contrast to the shift parameter, the shape parameter
showed a marginal effect of display size, a reliable effect of
task, and an interaction between these factors. The magnitude
of this parameter increased monotonically with the display
size for the feature and conjunction searchers, but demonstrat-
ed a U-shaped function for the spatial configuration search.
This last result is consistent with a contribution from an emer-
gent property of the larger configuration displays, such as the
presence of grouping between the multiple homogeneous
distractors leading to a change in perceptual grouping (see
also Levi, 2008, for a similar argument concerning visual
crowding). This change in the shape parameter in the large
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display size of the spatial configuration task is in line with a
sudden increase of the drift rate standard deviation (0.080,
0.050, 0.054, and 0.344 with increasing display size), suggest-
ing either (1) a change in the quality of a match between the
stimuli and the template or (2) a variable grouping unit
(amongst different observers) affecting the recursive rejection
process.

In addition, we observed a general increase in the values of
the shape parameter, from 1.73 at display size 3, to 1.86 at
display size 6, 2.05 at display size 12, and 1.96 at display size
18, on target-absent trials in the spatial configuration task, F(3,
57) = 6.13, p = .001, η2p = .244. The target-absent-induced
shape change in the spatial configuration task was also ob-
served in Palmer et al.’s (2011) analysis. However, their data
showed no reliable shape change across display sizes for
target-present trials (Palmer et al., 2011). Following Wolfe
et al.’s (2010) suggestion, Palmer and colleagues speculated
that the display size effect for the shape parameter might result
from the premature abandoning of search, a view that was
supported by Wolfe et al.’s (2010) data showing a high rate
of miss errors in the spatial configuration task. The high rate of
miss errors might reflect an observer prematurely deciding to
give an “absent” response on a target-present trial. This would,
in turn, reduce the overall number of slow responses, leading
to an RT distribution with low skewness. This indicates that in
the conditions with high miss errors, participants tended to set
a low decision threshold for the “absent” response. The ten-
dency might also appear in the target-absent trials, resulting in
correct rejections by luck, a result leading to RT distributions
in these trials with an increase in the shape parameter. We,
applying a more sensitive method under the constraint of lim-
ited trial numbers, showed reliable display size effects on the
RTshape in the target-present trials of the spatial configuration
and conjunction searches. Together with the miss error data,
our data do indicate that a link between miss errors and the
shape of the RT distribution is plausible. In addition to the
explanation of participants abandoning search prematurely
(i.e., a dynamic changes of boundary separation), we propose
another explanation: Relative to feature search, the factor that
changes the RT shape in spatial configuration search is the
goodness of match between the search template and the search
display (i.e., the drift rate changes). This implies that factors
contributing to change in different parts of an RT distribution
will result in its shape changing. As our simulation study
shows (see Appendix 2), doubling the shape parameter results
in a decrease in boundary separation (in line with the miss
error account) and an increase in the drift rate (in line with
the goodness-of-match account). The two diffusion parame-
ters are likely the processes driving changes in the shape of the
RT distribution.

Among the three Weibull parameters, the scale parameter
showed the highest correlation with mean RTs (Pearson’s r =
.78, p = 2.20 × 10−16), a result replicating Palmer et al.’s

(2011) analysis. The high correlation should not be surprising,
considering that both the RT scale and the mean RTs capture
change in the central location of the RT distributions. The
scale parameter estimates an overall enhancement (or reduc-
tion) of response latency as well as response variance, as do
the mean and variance of RTs (see the review inWagenmakers
& Brown, 2007). Unlike the mean RTs, however, the scale
parameter in our data set was not sensitive to the display size
in the feature search task. A cross-examination with the
boundary separation in the diffusion model appeared to indi-
cate that the scale parameter might reflect the influence of
response criteria, with only the inefficient tasks showing a
display size effect. This should not be taken as evidence indi-
cating that the scale parameter is a direct index of the response
criteria, however; rather, changes in the scale parameter are a
consequence of altering the response criteria. An observer
with a conservative criterion, for example, might show a gen-
eral change in response latency and variance (the more reluc-
tant one is to make a decision, the more variable a response
will be), so the scale parameter reflects this change.

Distributional parameters reflect underlying processes

The RT distributional parameters have been posited, under the
framework of the stage model of information processing, to
reflect different aspects of peripheral and central processing.
The shift parameter has been associated with the speed of
peripheral processes (i.e., the irreducible minimum response
latency; Dzhafarov, 1992), the scale parameter with the speed
of executing central processes, and the shape and scale param-
eters with the insertion of additional stages into central pro-
cessing (Rouder et al., 2005).

Using benchmark paradigms of visual search (Wolfe et al.,
2010), our data indicate that the shift parameter, instead of
reflecting the speed of peripheral processes, may be associated
with the process of distractor rejection and the quality of the
match between a template and a search display. This is sup-
ported by the analysis using the EZ2 diffusion model. As we
argued previously, the shift parameter captures the factors that
influence the entire RT distribution equally. A possible situa-
tion in which a peripheral process may result in a clear shift
change is when the other two parameters are kept constant—
that is, when no factor influences the decision-making process
and when the shape of an RT distribution is unchanged. We
suggest that the data better reflect a process such as the recur-
sive rejection of grouped distractors and the quality of the
match to a target template, which, when accurate, contributes
to the entire RT distribution.

Our results for the scale parameter are consistent with those
of Rouder and colleagues (2005) in suggesting that this pa-
rameter reflects the speed of execution in a central decision-
making process. Since the execution speed closely links with
the decision boundaries and the initial state of sensory
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information that an observer sets for a response trial, we ob-
served similar patterns in the scale parameter, the boundary
separation, and the nondecision time. The pattern in the non-
decision times is readily accounted for by the fact that the EZ2
diffusion model absorbs the parameter reflecting the initial
state of sensory evidence into the nondecision time. The dis-
tance between the decision boundary and the initial state of
sensory evidence can then be taken as reflecting changes in
the response criteria, and hence altering the scale of an RT
distribution.

For the shape parameter, we observed an emergent effect of
perceptual grouping for the large display size in the spatial
configuration search. This is in line with the drift rate data,
in that the drift rate was slower for the spatial configuration
search task than for the two simple search tasks, in both our
data (0.323 and 0.265 vs. 0.220) and those of Wolfe et al.
(2010; 0.341 and 0.299 vs. 0.203). In Palmer et al.’s (2011)
analysis, no task effect was found in the shape parameter.
Using HBM, we observed a significant task effect, F(2, 55)
= 23.50, p = 4.21 × 10−8, η2p = .461, suggesting that the
previous result might reflect a lack of power. The observations
of shape invariance in Palmer et al.’s analysis could also be
interpreted in terms of a memory match account (Ratcliff &
Rouder, 2000). This account presumes that, when the integrity
of a memory match between the template and search items is
still intact, the evidence strength is strong enough to permit a
correct decision (Smith, Ratcliff, & Wolfgang, 2004; Smith &
Sewell, 2013). Since in the previous study fewer participants
were recruited, and some might have found strategies through
which to conduct the difficult searches while still using the
same processing stages as in the feature search task, the shape
parameter reflected only a marginal effect.

Another possible factor that may explain the different find-
ings for the shape parameter is illustrated by the visually
weighted plot of drift rate. The visually weighted regression
lines indicate two groups of participants accumulating sensory
evidence at different rates, where only one homogeneous
group appeared inWolfe et al.’s (2010) data. As our simulated
study showed (Appendix 2), the drift rate can also change the
shape parameter. This suggests that some of our participants
took advantage of the crowded layout to facilitate search in the
spatial configuration task, and some did not. This could not
happen in Wolfe et al.’s (2010) sparse layout, and likely also
contributed to our significant finding for the shape parameter
on target-present trials.

Limitation

The analytic approach that we adopted assumes that individ-
ual RTs are generated by three-parameter probability func-
tions. Our selection of the Weibull function was determined,
on the one hand, by its probing three important aspects—the
shift, scale, and shape—of an RT distribution, which differs

from what the ex-Gaussian function describes (mu, tau, and
sigma). On the other hand, we selected the Weibull function
because it permits a reliable posterior distribution to converge,
has broad application to memory as well as to visual search
(Logan, 1992; see also Hsu&Chen, 2009), and also can apply
to the hierarchical Bayesian framework (Rouder et al., 2005).

Conclusion

In conclusion, our study shows that an HBM-based distribu-
tional analysis, complemented with the EZ2 diffusion model,
can help to clarify the processes mediating visual search. The
data indicate that different effects of search difficulty contrib-
ute to performance, with the effects of the search condition
being distinct from those of display size in some cases (on the
drift rate and shift parameters), but not in others (e.g., effects
on nondecision factors and on the separation of decision
boundaries). We have linked this dissociation to the involve-
ment of distractor grouping and rejection (on the one hand)
and to serial selection of the target and the setting of a response
criterion (on the other). This approach goes beyond what can
be done using standard analyses based on mean RTs.

Appendix 1

HBM simulations

The stimulation study was performed to examine the estima-
tion biases on three standard distributional parameters—
mean, variance, and skewness—when various probability
functions were fitted under different sample sizes per experi-
mental condition and the true distributions generating the RTs
were known. The study helped clarify whether the per-
condition trial number was sufficient to allow reliable param-
eter estimation using HBM. The conclusion from this simula-
tion suggested that (1) no difference in results distinguished
HBM from maximum likelihood estimation (MLE) when the
sample size was larger than 120; (2) HBM was better than
MLE at estimating variance when the sample size was small;
and (3) the specification of equally plausible probability func-
tions is crucial only when the function matches the true distri-
bution that generated the RT data.

Through simulations8 we examined four scenarios, alterna-
tively assuming that the true distribution followed a normal,
an ex-Gaussian, a Wald, or a Weibull function (which adopted
Cousineau, Brown, & Heathcote’s, 2004, parameter values).

8 We used R routines—rnorm, rexGAUS, rinvgauss, and rweibull3—to
generate those computer-simulated data.
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Specifically, we used the parameter values listed in Table 3 of
Cousineau et al.’s report to construct four true distributions,
which in turn repeatedly generated randomly simulated RTs.
The simulations generated 20 homogeneous participants; each
participant contributed RT observations for ten different sam-
ple sizes, ranging from 20 to 470 with a step size of 50. The
simulated data were then submitted separately to HBM and to

MLE to estimate the shift, scale, and shape parameters. Both
methods assumed that RTs were random variables generated
by the Weibull function. Those parameters were then analyt-
ically converted to the mean, variance, and skewness to eval-
uate the performance of the two methods.

Figure 12 shows the absolute values of the differences be-
tween the true values and the estimates at the mean, variance,
and skewness of a distribution. In general, no differences were
observed between the twomethods when estimating the mean.
The only factor that improved the estimation was the per-
condition sample size, F(9, 1520) = 64.46, p < .0001: The
more observations were in a condition, the higher was
the precision of the estimate. The bias dropped rapidly
when the trial number surpassed 100, from 17.59 ms at
20 observations to 6.74 ms at 120 observations, and it
decreased at a slower rate when the trial size was over
120 observations (on average, 5.4 ms). The specification
of the true distribution did not alter the precision of
mean estimation, F(3, 1520) = 1.912, p = .126, even
though both estimation methods assume that a Weibull
function accounted for the RT data.

In contrast, HBM demonstrated a clear advantage over the
MLE method when recovering the variance, F(1, 1520) =
9.345, p = .0023. Again, a large number of observations helped
to improve the fit, F(1, 1520) = 29.84, p < .0001. Importantly,
HBM estimated the parameters better than MLE at the smallest
sample size (N = 20), F(1, 152) = 6.907, p = .0095, though the
difference was gradually resolved when the observation num-
bers exceeded 120, F(1, 152) = 0.936, p = .335 (i.e., the dashed
line in Fig. 1). Misspecification of the underlying distribution
resulted in different estimations of variance,F(3, 1520) = 7.635,
p < .0001. Both methods needed a sample size larger than 170
to resolve this issue (the dotted line in Fig. 12). Parameter

Fig. 12 Sample mean, variance, and skewness values, compared to the
true values that generated the simulated data. “HBM” and “MLE” stand
for the hierarchical Bayesian model and maximum likelihood estimates,
respectively. The mean and variance are in scales of seconds and squared
seconds, respectively. The skewness was calculated by dividing the third
moment about the RT mean [m3 = (RT – RTmean)

3/N] by the cube of the
RT standard deviation, which renders it dimensionless (Crawley, 2002).
The three dashed lines are drawn at sample sizes of 120, 170, and 220 to
show critical changes in the three parameters with regard to the sample
sizes

Fig. 13 The estimation of skewness. The figure traces the differences
between hierarchical Bayesian modeling (HBM) and maximum likeli-
hood estimation (MLE) at different sample sizes in an experimental
condition

Fig. 14 Goodness of fit of the empirical data against the Weibull
distribution, using the maximum likelihood estimation(MLE) and
hierarchical Bayesian modeling (HBM) methods
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recovery was better when the true distribution followed the
Weibull function.

As for variance, the skewness was again estimated better
by HBM than by MLE, F(1, 1520) = 22.596, p < .0001. The
correct specification of the distribution played an important
role in estimating the skewness, F(3, 1520) = 1,818.549, p <
.0001. Specifically, when the true distribution followed either
an ex-Gaussian or a Wald function, there was no advantage to
using HBM after a trial size of 70. In this case, increasing the

sample size did not mitigate the problem, whereas when the
true distribution followed a Weibull function, HBM showed
consistently higher precision than MLE (see Fig. 13).
Interestingly, HBM also gave better estimates thanMLEwhen
the true distribution was normal (i.e., skewness = 0).
Increasing the sample size helped to resolve the inferiority of
MLE, but for this at least 220 observations were needed in
each condition.

Model diagnostics

In this section, we assess the performance of the HBM
and MLE estimation methods for the three parameters
expressed in the Weibull function. First, a goodness-of-
fit index, the Anderson–Darling statistic, is used to
compare the fits between the two methods. Next, we
present graphical and statistical diagnostics on the con-
vergence and stationarity of the MCMC chains.
Stationarity refers to whether the multichain process of
MCMC converges to a reliable and single distribution
after a long iteration process. Each step of the MCMC
process uses the predefined model (i.e., the Weibull
function, in our case) to fit the empirical data and

Fig. 15 Diagnostic posterior density plots for the Markov chain Monte
Carlo (MCMC) process. The left panel shows the density curves, sepa-
rately, for the three MCMC processes (i.e., “Chain” in the legend). The
right panel draws them together to demonstrate that the three processes
reach a consistent estimation of the posterior distribution, suggesting that
the MCMC process is reliable. The figure shows only the β (shape)
parameter from one of the participants in the target-present condition of
display size 18 in the spatial configuration search

Fig. 16 Diagnostic autocorrelation plots for the Markov chain Monte
Carlo (MCMC) process. The figure shows only the β (shape) parameter
from one of the participants in the target-present condition of display size
18 in the spatial configuration search

Fig. 17 Three diagnostic tests for assessing Markov chain Monte Carlo
convergence, using box-and-whisker plots to summarize the distributions
of the three tested statistics. In each condition (Display Size × Search
Task), each participant contributed three data points from the three
Weibull parameters. The figure was drawn as a function of the
diagnostic statistics against the display sizes. The three panel rows, from
top to bottom, show the Brooks–Gelman–Rubin convergence test, the
Geweke z score, and the Heidelberger–Welch test, respectively. In the
upper panels, the reference dashed line is drawn at the upper bound of
the 95 % confidence interval, separately for each search task. In the
middle panels, we used two reference lines at −1.96 and 1.96 (the upper
and lower bounds of the 95 % confidence interval) to show that most
Geweke z scores fell in the acceptable range. The lower panels show
p values from the Heidelberger–Welch test. The reference line is drawn
at the .05 alpha level
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predict a posterior distribution. The posterior distribu-
tion is then used as a prior distribution in the next step
to fit a new posterior distribution. This process iterates
itself until the predefined number of iterations (105,000
in our setting). The final posterior distribution was the
predicted distribution presumed to be the true distribu-
tion underlying an RT distribution in the visual search
paradigm that we examined. We ran three separate in-
dependent MCMC processes (i.e., three chains) to test
whether all three converged to an identical final poste-
rior distribution. If this was so, it would indicate that
our hierarchical Bayesian setting and the Weibull func-
tion provided an appropriate approximation of an RT
distribution. A nonconvergent MCMC process would
not provide a reliable prediction for the final posterior
distribution. That is, it would predict, even after a long
iteration process, different distributions accounting for
the empirical data.

Goodness of fit Because RT distributions are formed by a
continuous rather than a discrete random variable, we used
the Anderson–Darling statistic, rather than chi-square, as the
index of goodness of fit. Figure 14 shows that there were few
differences between the MLE and HBM fits: Both methods
performed similarly and improved their fits as the display size
increased.

Bayesian model diagnosis In this section, we examine wheth-
er the estimated parameters converged to a stationary posterior
distribution and whether the setting for conducting MCMC
sampling was appropriate for permitting reliable inferences.

Figures 15 and 16 shows one of the examples of the
diagnostic plots, indicating the convergence of β (i.e.,
the shape parameter), which was estimated from one of
the participants performing the spatial configuration
search at display size 18 in the target-present condition.
The figures are the posterior density curve and the au-
tocorrelation plot. We ran three Markov chains in par-
allel to approach a stationary posterior distribution, so
three sets of parallel data represent the three processes.
Three MCMC chains mixed quickly to a limited range
after the iteration process began (after 5,000 burn-in
iterations), suggesting that the posterior distribution
reached a reliable stationary point.9 This impression is
supported by the posterior density distributions
(Fig. 15), showing that all three chains predict overlap-
ping distributions with very similar shapes and disper-
sions, consistent with the three chains predicting identi-
cal posterior distributions. The autocorrelation plots
(Fig. 16) showed that the MCMC sampling interval (in
our case, the computer program took one sample every

9 A nonstationary mix will manifest as three clearly separated lines.

Fig. 18 Figure showing how
changes in the distributional
parameters may alter the
parameters estimated by the EZ2
diffusion model. Ter, a, and v
stand for the nondecision time,
boundary separation, and drift
rate, respectively
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four iterations) is appropriate to reduce the interiteration
correlation rapidly within first 50 iterations (after the
first 5,000 samples have been discarded).

The information from the graphical diagnoses is com-
patible with the nonparametric statistical tests. Figure 17
presents the graphical summary of the nonparametric
tests for the stationarity across all the conditions and
participants. The upper panels show the Brooks–
Gelman–Rubin (BGR; Brooks & Gelman, 1998) shrink
factor. The recommended BGR upper limit is 1.1
(Gelman, 2004; Gelman & Hill, 2007), and values be-
low it are deemed acceptable. We drew the reference
line at the grand average 95 % confidence interval to
allow a clear inspection of the distribution for the sta-
tistics. Very few BGR diagnostics exceeded the grand
average of 95 % confidence interval. Although a few
values fall outside the upper limit of the box-and-
whisker plots, they are nevertheless all within the rec-
ommended upper limit. The BGR shrink factor provides
no evidence of an unstable mixing of the three chains,
confirming the observations from the trace plots.

The middle panels show the Geweke z score. This test
examines the stationarity of the posterior distribution. A z
score exceeding ±1.96 is considered problematic. Only a
few cases at display size 6 in the conjunction search and at
display size 3 in the spatial configuration search exceeded the
two reference lines, drawn at Z = ±1.96. In general, the distri-
bution of the Geweke z is compatible with the stationarity
assumption that we have observed in the posterior density
plots. In other words, the posterior distribution estimated from
the three separate chains converged to an identical
distribution.

The lower panels show the distribution of the p values from
Heidelberger and Welch’s test. The reference line was drawn
at a .05 p value. The figure complements the observations
found both in the graphical diagnostics and the Geweke z test.
None of the p values exceeded .05 levels. In summary, we
found, from both graphical diagnoses and nonparametric tests,
no obvious evidence, in all estimated parameters across all
participants and conditions, against either the hypothesis of
the stationarity of the posterior distributions, the ill-mixed
Markov chains, or an unreliable convergence.

Fig. 19 The figure compares the Bayesian deviance information criteria for the fitted three-parameter probability functions across the data sets, search
tasks, target types, and display sizes. “L” and “W” stand for our and Wolfe et al. (2010) data sets
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Appendix 2: EZ2 diffusion model simulations

The stimulation study was undertaken to examine how the
parameters estimated from the EZ2 diffusion model correlate
with the Weibull parameters in a simple, well-controlled situ-
ation. We performed three case studies in which we changed
only one of the Weibull parameters. Note that the three distri-
butional parameters jointly determine the general shape of a
distribution. Thus, a change in the drift rate may alter one or
more of the Weibull parameters. In the three studies, we dou-
bled, respectively, the shift, the scale, and the shape parame-
ters in a Weibull function and simulated 200 RTs from 20
homogeneous observers.

The data were than submitted to the EZ2 model to
estimate the drift rate, boundary separation, and nonde-
cision time. The results indicated that, first, doubling
the shift parameter resulted in a near two-fold increase
in nondecision time (416 vs. 827 ms), a small increase
in drift rate (0.012 vs. 0.013), and a small decrease in
boundary separation (4.89 vs. 4.57). Second, doubling
the scale parameter resulted in a decrease in drift rate
(0.013 vs. 0.009), an increase in boundary separation
(4.70 vs. 6.57), and a 10-ms increase in the nondecision
time (407 vs. 417 ms). Finally, doubling the shape pa-
rameter resulted in an increase in drift rate (0.013 vs.
0.018), a decrease in boundary separation (4.57 vs.
3.39), and again, a small increase in the nondecision
time (410 vs. 507), although this increase was relatively
larger than that from doubling the scale parameter.
Figure 18 shows a comparison across the three case
studies.

Appendix 3: Why use the Weibull function?

The Weibull probability function is one of the many
plausible functions that can accommodate positively
skewed RT distributions. We chose it to describe the
RT distributions because of its parametric characteris-
tics, permitting us to describe the shape of an RT dis-
tribution in an intuitive way. Nevertheless, there are
other alternatives, such as the gamma, lognormal, and
Wald functions. All of them are capable of accommo-
dating skewed RT distributions and provide similar de-
scriptive parameters. Here, we delineate our reasons to
fit the HBM Weibull function to our RT data.

The first reason is that the Weibull function is able to pro-
vide a concise way to summarize the shape of an RT distribu-
tion. As is described in the main text and illustrated in Fig. 1,
changes in the three parameters shift, scale, and shape are
associated differently with increases/decreases of RT densi-
ties, allowing us to understand how an experimental factor
may alter different areas of an RT distribution. Secondly, the

three-parameter gamma function does not converge when
fitted with hierarchical Bayesian approach. The compatible
three-parameter gamma funct ion shows signs of
nonconvergence and perhaps because of this, it fits the data
slightly worse, indicated by the DICs. Third, we fitted also the
other two three-parameter functions: Wald and lognormal.
They provide the same set of descriptive parameters as the
Weibull function. The DICs suggest that these functions
fit both our and Wolfe et al. (2010) data slightly better
than the Weibull function. However, we have main-
tained the Weibull function because the fits of the four
functionsare very similar for each task, display size,
target type, and data set (Fig. 19). To test whether any
function would work, we fitted a Gaussian function.
The Gaussian fit DICs (approximately −3,150) are far
worse than the four plausible functions that can accom-
modate positive-skewed RT. Below, we report the de-
tailed procedure to fit gamma functions.

To test whether the Weibull function fits better than the
gamma function, we built a three-parameter gamma function
in the HBM framework. Because currently BUGS does not
implement a prebuilt three-parameter gamma function, we
used Johnson et al. (1994, p. 337, Eq. 17.1) equation to im-
plement the gamma function. Practically, the density function
in the BUGS code is changed to:

#‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐#
# Gamma density #
#‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐#

term1 i; j½ � < − beta i½ �*log theta i½ �ð Þ þ y i; j½ �−psi i½ �ð Þ=theta i½ � þ
loggam beta i½ �ð Þterm2 i; j½ � < − beta i½ �−1ð Þ*log y i; j½ �−psi i½ �ð Þ:

Similar to the way we implemented the Weibull function,
we assessed the parameters via minus log-likelihood and used
the pseudo-Poisson (zero) trick. This implementation resulted
in unstable, nonconverged estimations. Take the shape param-
eter as an example. In the spatial configuration search for
Participant 3, the shape (beta) estimation yielded three differ-
ent posterior distributions, and the trace plots from the three
chains unstably oscillated around different ranges. In addition,
the autocorrelation plots indicated a problem that did not abate
with increasing iterations. In summary, the diagnostics show
that the gamma function does not converge when fitted with
an HBM framework.

This failure of gamma fit could have occurred because (1)
the gamma function is not suitable for HBM in this context,
and/or (2) the gamma function indeed fits worse than the
Weibull function (as the DIC suggests). Note that we ran a
high number of iterations (i.e., 105,000) with a reasonable
thinning length, which still did not resolve the nonconverged
gamma fit.
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