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Unlike other basic sciences such as physics and
chemistry, in which the participants are clearly defined,

ecological systems consist of many interacting elements, only
some of which are known and understood for any point in
time and space. This makes the attempt to understand eco-
logical systems very difficult, because not all information
present in the system can be used without constructing a
model as complex as the system under study. The effort to un-
derstand ecological systems has required that ecologists de-
velop tools for simplifying these systems’ complexity.

Model building in ecology has closely followed modeling
applications in other areas of science. For example, some of
the best-known models conceptualize species as chemical
constituents that interact according to simple mathematical
equations (Volterra 1926, Lotka 1932). In A New Kind of Sci-
ence, Steve Wolfram (2002) argues that this approach to
model building has been made obsolete by the power of
modern computers to iterate the consequences of local in-
teractions between entities in what are called cellular au-
tomata (CA) models. Wolfram’s bold claims have drawn fire
from many, including physicists and mathematicians (e.g.,
Weinberg 2002, Gray 2003). Of particular relevance to biol-
ogists is Wolfram’s marked misunderstanding of the current
conception of the evolutionary process (as noted by Weinberg
[2002]). Although Wolfram does not directly address issues
in ecology, given his claim to a new kind of science, it seems
instructive to reflect on the science of ecology and to ask
whether Wolfram’s ideas can be profitably applied there.

Ecologists have embraced the use of CA models since 
almost the first appearance of Wolfram’s landmark book
Theory and Applications of Cellular Automata in 1986. Early

work using CA models explored the relationships between fire,
landscape pattern, and seed dispersal on forest dynamics
(Green 1989) and the effect of the frequency and size of dis-
turbance on clonal growth in plants (Inghe 1989). A search
of ecological journals from 1990 through 2003 turned up 64
articles that used CA models, with approximately half of
these articles occurring in the journal Ecological Modelling.
While this search probably underestimates the total number
of articles, it illustrates that CA models have been widely ac-
cepted by ecologists as a useful tool for modeling ecological
systems. Cellular automata models have been used to model
individual plant growth (Colasanti and Grime 1993, Oborny
et al. 2000), population dynamics (Molofsky 1994, Hill and
Caswell 1999), community interactions (Hassell et al. 1991,
Wilson and Nisbet 1997, Molofsky and Bever 2002, Kondoh
2003), and community spatial dynamics (Silvertown et al.
1992, Seabloom et al. 2001, Wootton 2001). However, despite
the past use of CA models in ecology, one is left wondering
whether (as Wolfram argues) fundamentally new insights
can be gained from this approach. Here we review some past
uses of CA models in the study of ecological systems and, with
reference to Wolfram’s claim of a new kind of science, suggest
further ways in which CA models may illuminate major con-
ceptual issues in the discipline of ecology.
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Wolfram’s observations from 
cellular automata models
A cellular automata model is a model in which simple rules
about how individuals interact are simulated on a one- or two-
dimensional grid, and the behavior of the system develops
from the iterated updating of these rules over time. The rules
can be deterministic or probabilistic. Wolfram’s and other re-
searchers’ interest in CA models developed from the obser-
vation that even the simplest deterministic rules could result
in very complex spatial and temporal patterns (Wolfram
1986, 2002). In his books, Wolfram enumerates 256 simple
two-state, one-dimensional CA rules that correspond to the
complete set of possible rules for a two-state, one-dimensional,
nearest-neighbor CA. From these patterns,Wolfram finds four
classes of dynamic outcomes, three of which correspond to
the dynamics associated with other model formulations, but
one of which represents a new behavior. The four classes of
outcomes are (1) development of a homogeneous fixed pat-
tern, (2) development of a periodic pattern, (3) develop-
ment of a chaotic pattern, and (4) development of patterns
composed of homogeneous regions and regions containing

complex localized structures (figure 1). Classes 1, 2, and 3 cor-
respond, respectively, to the fixed-point, limit-cycle, and
chaotic behavior observed in difference and differential equa-
tion models. By contrast, class 4 dynamics do not have a di-
rect analog with difference equation models, and it is the
existence of this class of behavior that motivates much of Wol-
fram’s perspective.

In determining which type of dynamics a set of rules is likely
to produce,Wolfram emphasizes that it is not necessary to have
complex rules to get very complex patterns. According to
Wolfram, there appears to be a threshold above which adding
further complexity to the rule structure does not add further
complexity to the outcome, and this threshold, although dif-
ferent for each particular type of automata model studied, is
less complex than would have been expected. This result, re-
peatedly emphasized by Wolfram in A New Kind of Science,
is analogous to the early work in chaos theory, in which May
and others showed that even very simple deterministic mod-
els could display complex and chaotic dynamics (May 1974).
Thus, it is not surprising to ecologists that simple models can
yield complex results. To better understand what might be a
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Figure 1. The dynamics that develop from simulation of one-dimensional, nearest-neighbor cellular automata
(CA) models, showing Wolfram’s (2002) four classes of behavior: (a) class 1 (stable dynamics; rule 254 iterated
for 50 generations), (b) class 2 (cyclical dynamics; rule 178 iterated for 50 generations), (c) class 3 (chaotic 
dynamics; rule 30 iterated for 50 generations), and (d) class 4 (patterns composed of homogeneous regions and
of regions containing complex localized structures, resulting in areas of both stable and unstable dynamics; 
rule 110 iterated for 500 generations). Rule numbers correspond to Wolfram’s classification system of one-
dimensional, nearest-neighbor CA models. In each panel, the top row represents the initial array, which begins
with a single filled square (representing one individual). Each subsequent row represents a new iteration of the
rule.
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unique contribution of Wolfram’s work, we first review some
applications of CA models in ecology and then consider
Wolfram’s main message in light of these applications.

Applications of cellular automata models to ecology
Ecological application of CA models can be classified into two
broad categories: (1) abstract rule-based applications to il-
lustrate the theoretical consequences of different rules and (2)
empirical applications that have observational or experi-
mental parameterized rule systems with direct application to
natural systems. Rule-based applications can be further sub-
divided into deterministic and probabilistic applications,
while empirical applications are typically probabilistic, since
they are meant to represent the variability present in natural
systems. Below we illustrate both rule-based and empirical 
applications.

Rule-based models: Exploring the consequences of simple
processes. Rule-based models are the most basic form of CA
models and are the basis for the models that Wolfram (1986,
2002) discusses extensively. In these models, dynamics develop
from the application of simple rules in concert over the en-
tire grid. Dynamic behavior develops when a rule is applied
to all cells (or individuals) within the grid. Implementing the
rules is generally quite straightforward. The simplified rule-
based systems have found some applications in ecology. Rule-
based systems work well when the dynamics can be
decomposed into a minimal categorical set of decision rules.
The simplest decision rules are binary rules for which only two
outcomes are possible (0 or 1). Such binary rules are the
subject of intensive empirical exploration by Wolfram (1986,
2002). The benefit of using simple binary rules 
(as Wolfram [2002] shows) is that, for one-dimensional,
nearest-neighbor rules, it is possible to explore the complete
universe of possible dynamic outcomes. From this approach,
one can deduce how often such dynamics occur and how small
differences in the structure of a rule can affect a system’s 
dynamics.

In general, ecological systems are not amenable to such a
simplified framework, and, as a result, the one-dimensional,
nearest-neighbor approach has rarely been applied in ecol-
ogy. One notable exception is Molofsky (1994), who used one-
dimensional binary totalistic rules to describe the dynamics
of single populations that are subject to different amounts of
density dependence and dispersal. In keeping with Wolfram’s
approach, the landscape consisted of a one-dimensional,
two-state array of sites, the two states indicating, respectively,
the presence (1) or absence (0) of an individual at that site.
The presence or absence of an individual at a given location
in the next generation was a function of the presence of in-
dividuals at the target location and its two adjacent loca-
tions. To mimic density dependence, the transition rule stated
that when the target cell and both its neighboring cells were
occupied (i.e., at high density), the center cell in the follow-
ing generation became empty (Molofsky 1994). In addition,
two types of dispersal were considered: (1) individuals dis-

persed throughout the habitat and (2) individuals dispersed
only within the local neighborhood. Repeated application of
these simple deterministic transition rules in concert over the
entire grid created the population dynamics.

Application of these rules resulted in two different dy-
namic outcomes. When dispersal operated at the same scale
as density dependence, chaotic dynamics resulted; however,
when dispersal operated at a greater scale than density de-
pendence, the dynamic outcome was a two-point cycle. By tab-
ulating the outcomes of all possible rules (as advocated by
Wolfram [1986]), Molofsky (1994) determined how often the
different dynamic outcomes should occur in this one-
dimensional totalistic system. Though the model is a simpli-
fication of any real ecological community, as is the case with
simple nonspatial Lotka–Volterra models, it illustrates clearly
that the inclusion of spatial information affects the resulting
dynamics. The qualitative outcomes from the CA model and
from the difference equation models are congruent, as both
predict cyclical and chaotic dynamics resulting from strong
density dependence. Their difference lies in the parameters that
generate these cyclical results. The dynamics in the CA model 
depend on both the strength of density dependence and the
scale of dispersal relative to the scale of density dependence,
whereas the dynamics in nonspatial models depend on the
strength of the density dependence (May 1974).

Such highly abstract, simplified systems are rarely ade-
quate to represent any ecological situation. Slightly more
complex applications involve the application of rules that
have more than two states. Hassell and colleagues (1991) de-
veloped a CA model to examine how local dispersal influences
host–parasitoid dynamics. The model was first constructed
using difference equations applied within each location, with
a fraction of hosts or parasitoids dispersing to neighboring
locations at each time step. To test whether the dynamics are
a function of the structure of the equations, rather than use
alternative formulations of the difference equation, Hassell and
colleagues constructed a nine-state CA model based on dif-
ferent qualitative categories of parasites and hosts, deter-
mined from the difference equation model, with local dispersal
occurring between the eight neighboring cells. Simulation of
the CA produced results qualitatively similar to those of the
difference equation model. Thus, Hassell and colleagues con-
cluded that their results were not a function of the specific
model formulation but a true representation of the host–
parasitoid system with spatially local interactions. Their 
results show that highly simplified CA formulations can 
adequately encapsulate important properties of a system.

Cellular automata models may also employ probabilistic
transition rules. Molofsky and Bever (2002) constructed a
probabilistic CA model of positive frequency dependence.
Positive frequency dependence, in which the relative success
of a species increases as its frequency of occurrence increases,
can result from mutualistic ecological interactions in which 
different species depend on each other for their survival 
or reproduction. An example of an ecological interaction
that may result in positive frequency dependence is the 
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relationship between insect pollinators and the plants they 
pollinate. Individuals surrounded by neighboring plants may
be more likely to receive pollinators, thereby receiving more
pollen and attaining higher levels of reproduction. In the
absence of spatial considerations (i.e., in what is called a
mean-field model), positive frequency dependence quickly
leads to the loss of diversity and to the dominance of one
species. To examine the dynamics within a spatial context,
we imagine many species occupying positions in a two-
dimensional grid. The probability that a species will occupy
a site in the next generation increases as its own frequency in-
creases in the interaction neighborhood (Molofsky and Bever
2002). The scale of dispersal into the site and the presence or
absence of sites unsuitable for colonization are controlled sep-
arately (see Molofsky and Bever [2002] for details).

To illustrate the model, we start with 10 equally abundant
species randomly dispersed on a grid, 40% of whose sites are
unsuitable for colonization (figure 2a). From these starting
conditions, the rules for local occupancy are iterated to
generate patterns. When species interactions and dispersal
occurred over a large scale, thereby minimizing the impor-
tance of spatial location, we found that one species quickly
dominated the entire grid, as predicted by the mean-field
model (figure 2b). However, when the scale of frequency de-
pendence and dispersal were both local, monomorphic
patches formed (figure 2c) and then stabilized (figure 2d).
Positive frequency dependence did not result in the loss of
diversity. On the contrary, diversity was maintained much
longer with strong positive frequency dependence than
would be expected as a result of random drift (Molofsky and
Bever 2002).

These examples of CA models illustrate the utility of using
systems of basic rules to identify the consequences and scale
dependence of general processes. In the interest of general-
ity, the models are deliberately kept simple and therefore are
necessarily not accurate representations of any particular
ecological system.

Empirical applications: Predicting dynamics in specific 
systems. A second type of CA model involves fitting transi-
tion state models to real systems. In these models, the tran-
sition between one time step and the next depends on the
empirical relationship between the current state of the target
cell and that of its neighbors. These transition probabilities
are most often derived directly from field observations or di-
rect experimentation. The goal of such studies is to provide
a way to predict, from measurements taken at the small scale,
the state of the system at some point in the future. These mod-
els are quite commonly used in ecology, and their nonspatial
analogs are called Markov transition models (Caswell 2001).
Most notably, Horn (1975) applied Markov transition mod-
els to understand the successional dynamics of eastern de-
ciduous forests in New Jersey. Unlike the goal of rule-based
models used in ecology, which is to elucidate how simple
processes can create novel dynamic outcomes, the goals of
these models are to predict future patterns on the basis of

empirically derived transition probabilities and to identify how
patterns can be affected by modifying these probabilities.

This approach was applied by Wootton (2001) to elucidate
the complex factors controlling community dynamics.Woot-
ton used a hierarchical modeling approach to understand the
dynamics of the rocky intertidal community in Tatoosh,
Washington. This community is composed of sessile organ-
isms such as mussels, filamentous algae, and diatoms that at-
tach to bare rocks. Wootton developed a model of the mussel
beds inhabiting the rocky intertidal community. By follow-
ing fixed points in this community over 6 years, he estimated
the transition probabilities among different states (e.g., from
bare rock to occupancy by a species of mussel). Wootton
initially chose 15 different transition states to represent the
transitions in the rocky intertidal zone (e.g., bare space,
species identity, size class of a species) and incorporated the
effects of different disturbance rates, seasons, and neighbor
densities on the transition probabilities. The full model did
a good job of re-creating the dynamics of the mussel beds in
the rocky intertidal community. Furthermore, by selectively
eliminating aspects of the full model, Wootton determined
that explicit consideration both of large-scale disturbance and
of local interactions was necessary to generate spatial patterns
that were similar to those seen in the real system.

Seabloom and colleagues (2001) used a similar approach
to develop a CA landscape model of a freshwater wetland,
based on detailed information about the water table; about
recruitment of seeds, seedlings, and adult plants; about land-
scape geometry; and about the spatial patterns of existing veg-
etation. Like Wootton (2001), Seabloom and colleagues tested
a series of models of increasing complexity to determine
which factors were most important in explaining the vege-
tation patterns. In comparing simulation results to aerial
photographs, they found that the importance of each of the
factors depended on the depth of the water table. In both this
and the Wootton example, the CA transition models proved
to be valuable tools for analyzing the dependence of pat-
terns on particular processes within complex data sets. Sim-
ilar models have been applied to understand the processes that
control vegetation banding patterns in Africa and Australia
(Thiery et al. 1995, Jeltsch et al. 1996, Dunkerley 1997).

Cellular automata models designed to fit particular systems
have also been used to investigate spatial pattern formation
in communities. For example, Silvertown and colleagues
(1992) developed a CA model that simulated interspecific
competition among five grass species. Transition probabili-
ties between species were determined from pairwise compe-
tition experiments. Spatial simulations were run either with
a random arrangement of individuals in the landscape or with
different arrangements of monospecific bands. Simulations
performed with random initial arrangements always resulted
in three of the five initial species rapidly becoming extinct,
while a fourth species experienced a slower decline until only
one species remained. Initiating the model with different
monospecific clumps of each species, however, dramatically
altered the transient dynamics, allowing all five species to 
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coexist over much longer time scales. Under certain starting
conditions, long-term coexistence of the two dominant species
was possible, and under one starting condition, a reversal of
the dominance relationships was observed over 600 genera-
tions. In this example, the use of CA models provides an
easily implemented modeling approach to assess how the

specifics of a spatial pattern can affect the dynamics and pat-
terns of species coexistence.

The spatially explicit CA models based on transition prob-
abilities in real systems provide an alternative mechanism for
modeling natural systems. Their utility depends both on
how important explicit local spatial information is for un-
derstanding the community patterns and on the type and
availability of data to construct the model.As seen in the stud-
ies by Wootton (2001) and Seabloom and colleagues (2001),
these models can be particularly effective for determining the
controlling factors of community organization, if sufficient
data are available to adequately determine the model accu-
racy. The example of Silvertown and colleagues (1992) illus-
trates how short-term experiments can be combined to
predict long-term system behavior and how different start-
ing conditions can generate very different outcomes.

Reflections on the applications of cellular automata 
models. The potential of spatial relationships among indi-
viduals to alter dynamics has recently attracted much 
attention from ecologists (Tilman and Kareiva 1997, Dieck-
mann et al. 2000, Berec 2002). Although some ecological sys-
tems, such as planktonic algae, are well described without
explicit consideration of their spatial relationships because
they are continually well mixed (Tilman 1977), under-
standing the ecological dynamics of communities of sessile
organisms such as plant, coral, and intertidal species often
requires inclusion of their spatial arrangement.

Modeling approaches vary in the level of spatial detail
that they incorporate. Early attempts to include space in eco-
logical models, including early island biogeographic models
(MacArthur and Wilson 1967) and patch occupancy or
metapopulation models (Levins 1969), envisioned populations
occurring in discrete patches but omitted precise spatial in-
formation. Other early approaches envisioned space and
time as being continuous, with diffusion of individuals oc-
curring among locations (Skellam 1951, Okubo 1980). Recent
advances in theoretical ecology have resulted in new analyt-
ical techniques that allow researchers to include more precise
spatial information about the arrangement of individuals in
analytically tractable models. However, even these approaches,
including pair approximations (Hiebeler 1997) and spatial
moment equations (Bolker et al. 2000), may not always cap-
ture enough of the spatial complexities to adequately repre-
sent a system. Thus, these approaches require numerical
approximation or individual-based simulation modeling to
verify the analytical solutions (see Dieckmann et al. 2000).

By fully accounting for the spatial arrangement of indi-
viduals, CA models represent an extreme case of efforts to 
consider the importance of space.As such, CA models are not
easily understood using the traditional analytical tools of
mathematics. In Wolfram’s approach, analogous analytic 
efforts are ignored, and the system’s lack of analytical tract-
ability is compensated for by attempting to simulate all 
possible rules and then hunting for generality among the
results (as he does by examining the 256 two-state, one-

Figure 2. Spatial patterns that develop from simulation
of the two-dimensional, probabilistic cellular automata
(CA) model of positive frequency dependence. The CA
model is initiated with 10 species (indicated by different
colors) on a 400 x 400 grid. (a) Initial conditions show
the 10 species randomly arrayed on the two-dimensional
grid, with 40% of the space uninhabitable (black
squares). (b) When positive frequency dependence is ap-
plied, with dispersal and frequency dependence occurring
over a large scale to emulate spatially inexplicit models,
species diversity is lost, and only one species (indicated in
red) remains after 30 generations. (c, d) By contrast,
when the scale of the interaction and the scale of disper-
sal occur locally (over the target cell and the eight sur-
rounding neighborhood cells), species diversity is
maintained by the development of monospecific clumps
that can remain relatively stable (shown here after 1000
generations [c] and 1,000,000 generations [d]). The in-
clusion of spatially explicit local interactions (in this
case, frequency dependence and dispersal) produces a
unique result not seen in the nonspatial model. The
unique result is a direct outgrowth of the formation of
monospecific clumps, a result difficult to predict using
spatially inexplicit, analytically tractable formulations.
Thus, the CA model provides a unique result using a rela-
tively easy approach for exploring spatial structure
within this system.
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dimensional CA models previously discussed). Of course, even
if one could develop a universal set of simple rules that would
apply to different ecological situations, attempting to simu-
late all possible rule permutations would quickly become
futile, because the number of possible combinations grows
exponentially. But, more generally, we feel that there is great
utility in applying multiple approaches. When multiple ap-
proaches yield qualitatively similar results, general princi-
ples about the important processes creating the dynamics are
revealed, as illustrated by Hassell and colleagues (1991).
Modeling the same problem with different approaches will
provide direct confirmation of the importance (or lack
thereof) of spatial processes. Thus, the generality of analytic
results to violations of their spatial assumptions can be eval-
uated by complementing such studies with CA simulations
(see Durrett and Levin 1994, Tilman and Kareiva 1997, Dieck-
mann et al. 2000, Berec 2002).

While CA models represent one extreme of a tradeoff
between spatial realism and analytic tractability in model
construction, the applications of CA models to ecology closely
parallel the tradeoff between generality, precision, and real-
ism that constrains all model development in ecology (Levins
1966). As we have illustrated, CA models can be useful in 
investigating the general consequences of ecological processes
(e.g., Hassell et al. 1991, Molofsky 1994, Molofsky and Bever
2002), but these simulations do not necessarily reflect the 
specific biology of any particular system. Such CA models 
follow the tradition of difference models and differential
equation models of ecological interactions, as first employed
by Lotka (1932) and Volterra (1926). Alternatively, the CA 
approach can be fruitfully applied to the projection and in-
vestigation of dynamics within a particular system, although
the results may not be relevant to other systems (e.g., Silver-
town et al. 1992, Seabloom et al. 2001, Wootton 2001).

Is it “a new ecology”?
Does the CA approach constitute the basis of “a new ecology,”
as Wolfram argues? We do agree with Wolfram that the CA
approach is a valuable tool that can yield unique insights
(Molofsky and Bever 2002). And certainly the incorpora-
tion of spatial information into model building has altered,
and will continue to alter, ecologists’ understanding of eco-
logical systems. However, from our reading of the literature,
we feel that Wolfram’s claim of a scientific revolution due to
the application of CA models is unwarranted. Rather, CA
models represent a valuable tool in a growing and evolving
toolbox that ecologists use to understand ecological systems.

There are certainly new behaviors that arise in CA mod-
els. For example, in class 4 behavior, a single rule can gener-
ate both a region that contains a static pattern and a region
of apparent unpredictability (figure 1d). This is indeed a
unique contribution that could potentially affect interpreta-
tions in ecology, because it means that a single process might
generate a static pattern in one region and an unpredictable,
chaotic pattern in an adjacent region. Nevertheless, as far as
we are aware, class 4 behavior has not been demonstrated for

any of the current applications of CA models in ecology.
Given that most ecological processes are best described us-
ing probabilistic rules, and that probabilistic rules cannot
generate class 4 behavior, it seems unlikely that class 4 dy-
namics will be found for ecological systems. Furthermore, in
applications of CA models that seek to explain the dynam-
ics of real systems, it would be difficult or impossible to dis-
tinguish class 4 behavior seen in the field from random
stochastic fluctuations. Thus, we feel that one of Wolfram’s
most intriguing claims is unlikely to apply to the field of
ecology.

Perhaps the lesson from A New Kind of Science is that
complexity is generated very easily. Ecologists have trumpeted
the idea that ecological systems are very complex and must
therefore be organized by many competing processes.Yet the
determination of which processes are fundamental to un-
derstanding a system’s behavior is fraught with controversy.
Wolfram asserts repeatedly that one need not look for mul-
tiple or complex processes to explain observed patterns,
since simple rules can generate complex behavior. Given
the evidence of redundancy in the processes that control eco-
logical dynamics, determining a priori which interactions are
essential to system behavior seems unlikely. This leaves ecol-
ogists back where we started, measuring multiple processes,
projecting their dynamics and interdependence, and trying
to digest generality from the output. As always, the devil is
in the details.
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