HOMOGENEOUS GRAPHS AND STABILITY

A. GARDINER

(Received 16 April 1975; revised 4 July 1975)

Communicated by W. D. Wallis

Abstract

Let Γ be a graph with finite vertex set V. Γ is homogeneous if whenever U_1 , $U_2 \subseteq V$ are such that the vertex subgraphs $\langle U_1 \rangle$, $\langle U_2 \rangle$ are isomorphic, then every isomorphism from $\langle U_1 \rangle$ to $\langle U_2 \rangle$ extends to an automorphism of Γ ; homogeneous graphs were studied by Sheehan (1974) and were classified by the author. Γ is locally homogeneous if whenever $U \subseteq V$, then every automorphism of $\langle U \rangle$ extends to an automorphism of Γ . We prove that every locally homogeneous graph is homogeneous.

We study finite, undirected, loopless graphs $\Gamma = (V, E)$, with vertex set $V = V\Gamma$, edge set $E \subseteq V \times V$, and automorphism group $\operatorname{Aut}\Gamma = G$. If $U \subseteq V$, then the vertex subgraph $\langle U \rangle$ has vertex set U and edge set $(U \times U) \cap E$. We have a natural metric ∂ on V and denote by d the diameter of Γ . Set

$$\Gamma_i := \{(u, v) \in V \times V : \partial(u, v) = i\}, \quad 0 \le i,$$

and for $u \in V$

$$\Gamma_i(u) := \{v \in V : (u, v) \in \Gamma_i\}.$$

We write $\Gamma(u) := \Gamma_i(u)$.

 K_r denotes the complete graph on r vertices, $K_{k,k}$ denotes the complete bipartite graph of valency k, $K_{t:r}$ denotes the complete t-partite graph with blocks of size r, C_n denotes the circuit of length n, 0_3 denotes Petersen's graph. (These graphs are described in Wilson (1972), to which the reader is referred for the general graph theoretical background.)

If Γ is a graph, then $t \cdot \Gamma$ denotes the disjoint union of t copies of Γ , Γ^c denotes the complement of Γ , and $L(\Gamma)$ denotes the line graph of Γ .

If $U \subseteq V$, then G_U and $G_{\{U\}}$ denote respectively the pointwise and setwise stabilisers of U; if $U = \{u_1, u_2, \dots, u_i\}$, then we simply write $G_{u_1u_2\dots u_i}$ and $G_{\{u_1,u_2,\dots,u_i\}}$. S_t denotes the symmetric group on t symbols. Basic facts about permutation groups can be found in Wielandt (1964).

A graph is homogeneous if whenever $\langle U_1 \rangle$, $\langle U_2 \rangle$ are isomorphic subgraphs of Γ each isomorphism from $\langle U_1 \rangle$ to $\langle U_2 \rangle$ extends to an automorphism of Γ . Finite homogeneous graphs were studied by Sheehan (1974) and were classified by the present author.

A graph is locally homogeneous if whenever $U \subseteq V$, each isomorphism from $\langle U \rangle$ to $\langle U \rangle$ extends to an automorphism of Γ . Clearly Γ is locally homogeneous if and only if Γ^c is locally homogeneous. Each homogeneous graph is locally homogeneous by definition. We prove the converse by classifying locally homogeneous graphs.

THEOREM. A finite locally homogeneous graph is homogeneous.

Let Γ be a graph and let $v_1, v_2, \dots, v_t \in V$; then we define $\Gamma_{v_1} := \langle V - \{v_1\} \rangle$, and for each i, $1 \le i < t$, $\Gamma_{v_1 v_2 \cdots v_{i+1}} := (\Gamma_{v_1 v_2 \cdots v_j})_{v_{i+1}}$.

A graph Γ is *stable* if for some enumeration (v_1, v_2, \dots, v_n) of the vertex set V, $G_{v_1v_2\dots v_i} = \operatorname{Aut}(\Gamma_{v_1v_2\dots v_i})$ for each i, $1 \le i \le n$. Γ is *totally stable* if for each enumeration (v_1, v_2, \dots, v_n) of the vertex set V, $G_{v_1v_2\dots v_i} = \operatorname{Aut}(\Gamma_{v_1v_2\dots v_i})$ for each i, $1 \le i \le n$.

COROLLARY [Yap (1974) Theorem 4]. The only totally stable graphs are the complete and the null graphs.

We assume throughout that Γ is some locally homogeneous graph.

LEMMA 1. If Γ is disconnected, then $\Gamma \cong t \cdot K_r$ for some $t, r \geq 1$.

PROOF. Let $V = U_1 \cup U_2 \cup \cdots \cup U_t$, $t \ge 2$, be the decomposition of V into connected components. Choose $u_i \in U_i$, $1 \le i \le t$; then $\langle u_1, u_2, \cdots, u_t \rangle \cong t \cdot K_1$, so $G_{\{u_1,u_2,\cdots,u_t\}}$ induces the full symmetric group S_t on $\langle u_1, u_2, \cdots, u_t \rangle$. Thus all the connected components of Γ are isomorphic. If $\langle U_1 \rangle$ is not a complete graph choose u_0 , u_1 such that $u_0 \in \Gamma_2(u_1)$; then $G_{\{u_0,u_1,\cdots,u_t\}}$ induces the full symmetric group S_{t+1} on $\langle u_0, u_1, \cdots, u_t \rangle \cong (t+1) \cdot K_1$. Hence t=1.

LEMMA 2. If Γ is connected, then (G, V) is transitive and either $\Gamma \cong K_{k+1}$, or d=2.

PROOF. If $u \in V$, $v \in \Gamma(u)$, then $G_{[u,v]}$ induces the symmetric group S_2 on $\langle u, v \rangle$. Thus for each $u \in V$, $v \in \Gamma(u)$, G contains an element g_v for which $u^{g_v} = v$; since Γ is connected, (G, V) must be transitive. In particular $|\Gamma(u)| = k$ and $|\Gamma_2(u)| = k_2$ are independent of $u \in V$. If d = 1, then $\Gamma \cong K_{k+1}$. Assume $d \ge 2$ and choose $u \in V$, $v \in \Gamma_2(u)$. If d = 4, choose $w \in \Gamma_4(u)$; then $G_{[u,v,w]}$ must induce the full symmetric group S_3 on $\langle u, v, w \rangle$, which is evidently impossible. Suppose d = 3. If we can choose $w \in \Gamma_3(u) - \Gamma(v)$, then we obtain a contradiction as for d = 4. Thus $\Gamma_3(u) \subseteq \Gamma(v)$ for each $v \in \Gamma_2(u)$, $\Gamma_2(u) \subseteq \Gamma(w)$

for each $w \in \Gamma_3(u)$; then $\Gamma_2(w) \supseteq \Gamma(u)$, so since (G, V) is transitive we have $\Gamma_2(u) = \Gamma(w)$, $\Gamma(u) = \Gamma_2(w)$, and $\Gamma_3(u) = \{w\}$. But then for $x \in \Gamma(u)$, $\Gamma_3(x) = \{y\} \subseteq \Gamma_2(u)$, $\langle u, x, y \rangle = K_2 \cup K_1$. and no element of $G_{\{u, x, y\}}$ can fix y and interchange $u \in \Gamma_2(y)$ and $x \in \Gamma_3(y)$. Thus d = 2.

LEMMA 3. If Γ has diameter d = 2, then for each $u \in V$, G_u acts transitively on $\Gamma(u)$ and on $\Gamma_2(u)$ (in other words: Γ is a rank three graph).

PROOF. Let $v \in \Gamma(u)$. For each $w \in \Gamma(v) \cap \Gamma(u)$, $G_{\{u,v,w\}}$ induces the full symmetric group S_3 on $\langle u, v, w \rangle$ so G_u contains an element interchanging v and w. Thus G_u acts transitively on each connected component of $\langle \Gamma(u) \rangle$. Further if v_1, v_2 lie in distinct connected components of $\langle \Gamma(u) \rangle$, then $G_{[u,v_1,v_2]}$ contains an element fixing u and interchanging v_1 and v_2 . Hence G_u acts transitively on the connected components of $\langle \Gamma(u) \rangle$. The result for $\Gamma_2(u)$ follows by considering the complement of Γ .

Thus we may assume that Γ is a connected (rank three) graph of diameter d=2.

LEMMA 4. $\langle \Gamma(u) \rangle$ is locally homogeneous.

PROOF. Let $U \subseteq \Gamma(u)$. Then each automorphism φ of $\langle U \rangle$ corresponds to a unique automorphism $\hat{\varphi}$ of $\langle U \cup \{u\} \rangle$ fixing u, and $\hat{\varphi}$ extends to an automorphism of Γ (fixing u) which leaves $\Gamma(u)$ invariant. Thus φ extends to an automorphism of $\langle \Gamma(u) \rangle$.

Thus if Γ is locally homogeneous we may choose $u \in V = V\Gamma$ and pass to the locally homogeneous graph $\Gamma^! := \langle \Gamma(u) \rangle$, then choose $u_1 \in V\Gamma^!$ and pass to the locally homogeneous graph $\Gamma^2 := \langle \Gamma^!(u_1) \rangle$, etc., until we finally obtain some graph Γ^i isomorphic to $t \cdot K_r$, for some t, r. We must thus determine the minimal class of graphs which contains all the graphs $t \cdot K_r$ and which is closed with respect to 'extension'. Let $u \in V$.

LEMMA 5. If
$$(\Gamma(u)) \cong k \cdot K_1$$
, $k \geq 2$, then $\Gamma \cong C_5$ or $\Gamma \cong K_{k,k}$.

PROOF. We assume $k \ge 3$, d = 2. For each $w \in \Gamma_2(u)$, $|\Gamma(w) \cap \Gamma(u)| = c_2$ is constant. If $c_2 = 1$, then Γ is a Moore graph admitting a rank three group, and so is either 0_3 or the Hoffman-Singleton graph; however 0_3 contains a vertex subgraph isomorphic to $3 \cdot K_2$ on which Aut $0_3 \cong S_5$ does not induce the full wreath product $S_2 \setminus S_3$, and the Hoffman-Singleton graph has vertex stabiliser $G_u \cong S_7$ whereas if $v \in \Gamma(u)$, then G_{uv} induces $S_{k-1} \times S_{k-1}$ on $\Gamma(u) \cup \Gamma(v)$. If $k > c_2 \ge 2$, then $G_{\{\{u\} \cup \Gamma(u)\}}$ induces the full symmetric group S_k on $\Gamma(u)$ so each c_2 -subset of $\Gamma(u)$ corresponds to a vertex of $\Gamma_2(u)$ and

$$\binom{k}{c_2} \leq k_2 = \frac{k(k-1)}{c_2}.$$

Moreover if $x \in \Gamma(w) \cap \Gamma_2(u)$, then $\Gamma(x) \cap \Gamma(u) \cap \Gamma(w) = \emptyset$, so $2c_2 \le k$. Hence $c_2 = 2$. $G_{\{\{u,w\} \cup (\Gamma(u) - \Gamma(w)\}\}}$ induces the full symmetric group S_{k-2} on $\Gamma(u) - \Gamma(w)$ so each 2-subset of $\Gamma(u) - \Gamma(w)$ corresponds to a vertex of $\Gamma(w) \cap \Gamma_2(u)$. Thus $\binom{k-2}{2} = k-2$, so k=5, |V| = 16, $\langle \Gamma_2(u) \rangle \cong 0_3$, and 0_3 is not locally homogeneous. Thus $c_2 = k$, $\Gamma \cong K_{k,k}$.

LEMMA 6. If $\langle \Gamma(u) \rangle \cong K_k$, then $\Gamma \cong t \cdot K_{k+1}$, for some t.

LEMMA 7. If $\langle \Gamma(u) \rangle \cong t \cdot K_r$, $r \geq 2$, $t \geq 2$, then $\Gamma \cong L(K_{3,3})$.

PROOF. Let $\Gamma(u) = U_1 \cup U_t \cup \cdots \cup U_t$ be the decomposition of $\langle \Gamma(u) \rangle$ into connected components. If $v \in \Gamma_2(u)$, then $|\Gamma(v) \cap U_i| \leq 1$, so $c_2 \leq t$. $G_{\{\{u\} \cup \Gamma(u)\}}$ induces the full wreath product $S_r \setminus S_t$ on $\Gamma(u)$. Thus each subgraph $c_2 \cdot K_1$ of $\langle \Gamma(u) \rangle$ corresponds to some vertex of $\Gamma_2(u)$. Hence

$$\binom{t}{c_2} r^{c_2} \leq k_2 = \frac{tr(tr-r)}{c_2},$$

so $c_2 \le 2$. On the other hand $\Gamma(u) \cap \Gamma_2(v)$ contains a subset U with $\langle U \rangle = t \cdot K_{r-1}$, so $G_{\{(u,v) \cup U\}}$ induces the full wreath product $S_{r-1} \setminus S_t$ on U and fixes both u and v. Hence $t = c_2 = 2$, Γ is a line graph, $\Gamma = L(\Delta)$, and Δ is bipartite of diameter two and valency r+1. Hence $\Gamma \cong L(K_{r+1,r+1})$. If $s \ge 4$, then $L(K_{s,s})$ contains a vertex subgraph $2 \cdot C_4$ on which the full automorphism group $D_8 \setminus S_2$ is not induced. Hence r = 2 = t, $\Gamma \cong L(K_{3,3})$.

LEMMA 8. If $\langle \Gamma(u) \rangle \cong K_{t,r}, r \geq 2, t \geq 2$, then $\Gamma \cong K_{t+1;r}$.

PROOF. Choose $v \in \Gamma(u)$ and set $\Gamma(v) \cap \Gamma_2(u) = : W$. In $\langle \Gamma(v) \rangle \cong K_{t,r}$ we see that $\langle \{u\} \cup W \rangle \cong r \cdot K_1$ and that for each $v_1 \in \Gamma(u) \cap \Gamma(v)$, $W \subseteq \Gamma(v_1)$. Since $\langle \Gamma(u) \rangle$ is connected we obtain $W = \Gamma_2(u)$, $\Gamma \cong K_{t+1,r}$.

Lemma 9. $\langle \Gamma(u) \rangle \not\equiv C_5$, $L(K_{3,3})$.

PROOF. Suppose $\langle \Gamma(v) \rangle \cong C_5$ for each $v \in V$. Considering each $v \in \Gamma(u)$ in turn forces $\langle \Gamma_2(u) \rangle \cong C_5$, whence Γ is the isosahedron, contrary to d = 2. Suppose $\langle \Gamma(u) \rangle \cong L(K_{3,3})$. Choose $w \in \Gamma_2(u)$. If $v \in \Gamma(u) \cap \Gamma(w)$, then $|\Gamma(u) \cap \Gamma(v) \cap \Gamma(w)| = 2$, and applying this to $v_1 \in \Gamma(u) \cap \Gamma(w) \cap \Gamma(v)$ implies $c_2 \cong 4$. Since $9 \cdot 4/c_2 = k_2$ we have either (a) $c_2 = 4$, or (b) $c_2 = 6$. If $c_2 = 4$, then |V| = 19, so Γ is a graph of valency 9 on 19 vertices which is impossible. If $c_2 = 6$, then $\langle \Gamma_2(u) \rangle$ is a trivalent graph on six vertices, so $\langle \Gamma_2(u) \rangle \cong K_{3,3}$. But Γ^c then contradicts Lemma 7.

Our induction is thus complete: a finite locally homogeneous graph is one of the following: (i) $t \cdot K_r$, $t \ge 1$, $r \ge 1$, (ii) $K_{t,r}$, $t \ge 1$, $r \ge 1$, (iii) C_5 , (iv) $L(K_{3,3})$. But each of these graph is also homogeneous. Thus we have the

THEOREM. The following conditions on a finite graph Γ are equivalent:

- (a) Γ is homogeneous,
- (b) Γ is locally homogeneous,
- (c) Γ is one of the graphs $t \cdot K_r$, $t \ge 1$, $r \ge 1$; $K_{t,r}$, $t \ge 1$, $r \ge 1$; C_5 ; $L(K_{3,3})$.

REMARK. Our results do not in fact need the full force of the finiteness assumption; the same results, with the same proofs, hold for locally finite graphs.

References

- A. Gardiner (to appear), 'Homogeneous graphs', J. Combinatorial Theory,
- J. Sheehan (1974), 'Smoothly embeddable subgraphs', J. London Math. Soc. (2), 9, 212-218.
- R. J. Wilson (1972), Introduction to graph theory (Oliver and Boyd, Edinburgh).
- H. Wielandt (1964), Finite permutation groups (Academic Press, New York).
- H. P. Yap (1974), 'Some remarks on stable graphs', Bull. Austral. Math. Soc. 10, 351-357.

Pure Mathematics University of Birmingham Birmingham B15 2TT England.