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Backward Chaining

An approach to reasoning in which an inference engine

endeavors to find a value for an overall goal by

recursively finding values for subgoals. At any point

in the recursion, the effort of finding a value for the

immediate goal involves examining rule conclusions

to identify those rules that could possibly establish

a value for that goal. An unknown variable in the

premise of one of these candidate rules becomes

a new subgoal for recursion purposes.
See

▶Expert Systems
Backward Kolmogorov Equations

In a continuous-time Markov chain with state X(t) at

time t, define pij(t) as the probability that X(t + s) ¼ j,

given that X(s)¼ i, s, t� 0, and rij as the transition rate
out of state i to state j. Then Kolmogorov’s backward

equations say that, for all states i, j and times t� 0, the

derivatives dpij(t)/dt ¼
P

k 6¼i rik pkj (t) � vi pij(t),
where vi is the transition rate out of state i, vi¼

P
j rij.

See

▶Markov Chains

▶Markov Processes
S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research an
DOI 10.1007/978-1-4419-1153-7, # Springer Science+Business M
Backward-Recurrence Time

Suppose events occur at times T1, T2, . . . such that the

interevent times Tk � Tk�1 are mutually independent,

positive random variables with a common cumulative

distribution function. Choose an arbitrary time t.

The backward recurrence time at t is the elapsed

time since the most recent occurrence of an event

prior to t.
Balance Equations

(1) In probability modeling, steady-state systems of

equations for the state probabilities of a stochastic

process found by equating transition rates. For

Markov chains, such equations can be derived from

the Kolmogorov differential equations or from the fact

that the flow rate into a system state or level must equal

the rate out of that state or level for steady state to be

achieved. (2) In linear programming (usually referring

to a production process model), constraints that

express the equality of inflows and outflows of

material.
See

▶Markov Chains
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Balking

When customers arriving at a queueing system decide

not to join the line and instead go away because they

anticipate too long a wait.
See

▶Queueing Theory
Bandit Model

▶Multi-armed Bandit Problem
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Introduction

OR/MS techniques find applications in numerous and

diverse areas of operation in a banking institution.

Applications include the use of data-driven models to

measure the operating efficiency of bank branches

through data envelopment analysis, the use of image

recognition techniques for check processing, the use of

artificial neural networks for evaluating loan

applications, and the use of facility location theory

for opening new branches and placing automatic

teller machines (e.g., Harker and Zenios 1999).

A primary area of application is that of financial

risk control in developing broad asset/liability

management strategies. Papers that summarize these

areas are Zenios (1993), Jarrow et al. (1994), and

Ziemba and Mulvey (1998). This work can be

classified into three categories: (1) pricing contingent

cashflows, (2) portfolio immunization, and (3) portfolio

diversification.
Pricing Contingent Cashflows

The fundamental pricing equation computes the price of

a contingent cashflow as the expected net present value

of the cashflows, discounted by an appropriate discount

rate. In discrete time the pricing equation takes the form

PT ¼ ES

XT
t¼0

CS
tþ1

1þ rSt

( )
(1)

where E denotes expectation over the set of scenarios

indicated by index s, Cs
t denotes the cashflow received

at period t under scenario s, rSt is the spot rate for the

same period under the scenario s, and T denotes the

maturity date. The vector (rt) is known as the term

structure of interest rates. For risk-free cashflows, the

appropriate discount rate is the rate implied by the

Treasury yield curve. At any given point in time,

vector (rS0t) can be obtained using market data; this is

the current term structure scenario. However, the

temporal variation of the term structure is

stochastic. This stochastic interest rate behavior,

together with potential uncertainties in the level of

the cashflows (i.e., the scenarios CS
t ) are the primary

challenging issues behind the evaluation of (1).

One major strand of research is devoted to the

development of stochastic models for the term

structure of interest rates. Cox, Ingersoll and Ross

(1985) first described the interest rate dynamics via

the (continuous) diffusion process
dr ¼ kðm� rÞdtþ s
ffiffi
r

p
do (2)

Here, m is the mean and s the variance of the

stochastic interest rate process, and do is the

differential of a standard Wiener process. This model

exhibits mean reversion with a drift factor k(m � r),

and guarantees that interest rates remain positive. It is,

however, a single factor model: the term structure of

interest rates is represented by a single state variable,

namely the spot rate, r.

A two-factor model for bond prices was developed

by Brennan and Schwartz (1979). They considered two

state variables, the spot rate r and a long-term (consol)

rate L. The dynamics of these two variables are

described by

dr ¼ b1ðr; L; tÞdtþ a1ðr; L; tÞdo1

d L ¼ b2ðr; L; tÞdtþ a2ðr; L; tÞdo2

�
(3)

http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_200493
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Here, the drift factors are denoted by the functions

b1(r, L, t) and b2(r, L, t), and the variance terms are

expressed by a1(r, L, t) and a2(r, L, t). The elements

do1 and do2 are differentials of standard Wiener

processes.

Despite the elegance of continuous-time models,

since most practical applications deal with discrete

time cashflows, there is interest in the development

of discrete models. A popular choice of discrete

models is based on binomial lattices. Such models

typically assume that interest rates can move to

one of two possible states, up or down, from

period t to t + 1. The probability and magnitude of

each step are calibrated using the Treasury yield

curve and the volatility implied by the prices of

traded option instruments. Ho and Lee (1986) and

Black, Derman and Toy (1990) proposed some

fundamental models. For example, the Black,

Derman and Toy model described the spot rates by

the process
rst ¼ r0t ðktÞs:

Here rt denotes the spot rate that takes values rst
with possible states s ¼ 0,1, . . . , t; r0t is the

ground state; and kt is the volatility of the spot rate in

period t.
Models such as those described above generate the

discount rates used in the pricing of riskless cashflows.

For risky contingent cashflows (e.g., cashflows with

credit, default, lapse, prepayment, and other such

risks), the discount rates must be adjusted with

a suitable riskpremium. Such premiums can be

computed from the observed market prices of

actively traded securities with comparable risks

through the use of option adjusted analysis (Babbel

and Zenios 1992).

Another important modeling issue in evaluating

(1) is the forecasting of the cashflow stream (Ct).

Statistical analysis and econometric modeling

can be used in this context, especially when dealing

with the various complex securities that have emerged

in the 1980s and 1990s, like callable corporate bonds,

mortgage and other assetbacked securities, and a range

of insurance products. This kind of modeling was

represented for insurance products by Asay, Bouyoucos

and Marciano (1993), and for mortgage-backed

securities by Kang and Zenios (1992).
Portfolio Immunization

This is a portfolio management strategy for locking

in a fixed rate of return during a prespecified horizon.

It assumes that all risk in the returns of the securities

is systematic, that is, all risks are due to some common

underlying factor(s). Portfolio immunization aims

at eliminating this systematic risk. In the case of

fixed-income securities, systematic risk is primarily

due to changes in the term structure. Portfolio

immunization traditionally deals with this type of risk.

The actuary F.M. Reddington (1952) was the first

to introduce the notion of immunization, and

also specified conditions for immunization. Portfolio

immunization became a popular strategy in the

1970s at the aftermath of interest rate deregulation in

the U.S. and the volatility of the fixed-income markets

that followed. Fisher and Weil (1971) defined

immunization as follows:

A portfolio of investments is immunized for a holding

period if its value at the end of the holding period,

regardless of the course of rates during the holding

period, is at least as large as it would have been had the

interest rate function remained constant throughout the

holding period.

A portfolio of assets used to fund a stream of

liabilities can be immunized if the following

conditions are met: (1) The present value of the

assets is equal to the present value of the liabilities,

and (2) the duration of the assets is equal to the

duration of the liabilities. The first condition

guarantees that the target liabilities are funded if the

interest rates remain constant throughout the target

period. The second condition guarantees that assets

and liabilities have identical sensitivities to parallel

shifts of the interest rates. Hence, the target liabilities

will be funded even if the term structure experiences

parallel shifts. A general overview of portfolio

immunization was given in Fabozzi (1991). Linear

programming formulations are often used to structure

immunized portfolios, as in Zenios (1993).

Briefly, let ri be the yield of the ith security, and Cit

be the cashflow of security i at time t. From the

fundamental pricing (1), obtain the price of the ith

security by
Pi ¼
XT
t¼1

Citð1þ riÞ�t:
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The sensitivity of the price—or dollar duration—of

security i is obtained by differentiating with respect to

cashflow yield, (∂P i /∂r i ), to get

ki ¼ �
XT
t¼1

tCitð1þ riÞ�ðtþ1Þ:

Given the present value PL and dollar duration kL of

its liabilities, an immunized portfolio can be structured

by solving the linear program

Maximize
X
i

kirixi

s:t:
X
i

Pixi ¼ PLX
i

kixi ¼ kL

xi � 0

The objective function above maximizes an

approximation to the portfolio yield, obtained as the

dollar duration-weighted average yield of the

individual securities in the portfolio. Several

variations exist on the theme of portfolio

immunization. One extension is to structure

a portfolio that matches not only present value and

duration of assets with those of the liabilities, but that

also matches convexity, i.e., second partial derivatives

(∂2Pi /@r
2
i ) as well. Another approach is to compute the

sensitivity of the prices to more than one factor, than

just to parallel shifts of interest rates. The precise form

of these factors (i.e., parallel shifts, steepening of the

term structure, or term structure inversions) can be

obtained using factor analysis of market data. Factor

analysis of the term structure was first proposed for the

U.S. market by Litterman and Scheinkman (1988). The

use of linear programming for factor immunization

was proposed by Dahl (1993) and D‘Ecclesia and

Zenios (1994).
Portfolio Diversification

The principle of diversification — based on the adage

“do not put all your eggs in one basket” — remains

a universal strategy for portfolio management. It

provides a systematic way for dealing with residual

risk, assuming that residual risk is accurately

represented by a function of the mean and variance in
the return of the securities. It also assumes that

investors have an (implied) utility function over the

mean and variance of portfolio returns, favoring

portfolios with higher means and lower variances.

The efficient portfolios for an investor are those that

achieve the highest expected return for a given level of

variance or the smallest possible variance for

a given level of return. Such portfolios are called

mean-variance efficient portfolios. Mean-variance

optimization models were proposed by Markowitz in

the 1950s; Ingersoll (1987) gives an advanced

textbook treatment.

Minimum variance portfolios, i.e., portfolios with

the lowest level of variance for a given target expected

return, can be structured using nonlinear quadratic

programming. Define

Q as the covariance matrix {qij} between securities

i and j,
mi as the expected return of security i,

mp as the target expected return of the portfolio, and

Xi as the fraction of the portfolio in security i.
Assuming that no short sales are allowed (x i � 0

for all i), formulate the problem as
Minimize xTQx

s:t:
X
i

mixi ¼ mpX
i

xi ¼ 1

xi � 0

Other constraints, like limits on portfolio turnover,

on minimum holdings, or limits of investments in

different market segments, etc., can be captured with

more complex formulations. These issues have been

addressed by Perold (1984). See also the articles

in Zenios (1993) and Ziemba and Mulvey (1998).

The major area of investigation in implementing

minimum variance models in practice is in the

estimation of the covariance matrix. Factor models

that relate the returns and variances of individual

securities to a set of common factors are widely used

in practice (Elton and Gruber 1984).

Mean-variance models have traditionally been used

in managing portfolios of equities and for strategic

asset allocation. By contrast, fixed-income portfolio

management has traditionally been based on the

principles of portfolio immunization. In the 1980s,
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however, there was a convergence of portfolio

management tools towards the ideas of portfolio

diversification. More complex fixed income securities

(e.g., corporate callable bonds, high-yield bonds,

mortgages and other asset-backed securities)

have very volatile returns. The notion of duration, as

a measure of sensitivity, is extremely restrictive

for such instruments. Mulvey and Zenios (1993)

advocated the use of diversification models for

fixed-income portfolios, indicating how pricing

models can be developed to generate scenarios of

holding period returns in order to calibrate the

models, and illustrating that such models produce

better results than traditional portfolio immunization

strategies.

Another development deals with the asymmetric

returns of fixed-income securities, especially those

with embedded options. Mean-variance models

are valid assuming a symmetric distribution of return.

Furthermore, they penalize both upside and downside

deviations from a target return. Development of more

practical models for dealing with asymmetric returns

and penalizing differentially upside from downside

risk include the mean-absolute deviation model of

Konno and Yamazaki (1991), the expected utility

optimization models of Grauer and Hakkanson

(1985), and the dynamic, multiperiod models of

Kallberg, White and Ziemba (1982), Mulvey and

Vladimirou (1992), and Golub et al. (1995).
See

▶Data Envelopment Analysis

▶ Facility Location

▶ Financial Engineering

▶ Financial Markets

▶Linear Programming

▶Neural Networks

▶ Portfolio Theory: Mean-Variance Model

▶Quadratic Programming

▶Utility Theory
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Barrier Functions and their Modifications
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Introduction

In the mid-1950s and the early 1960s, Frisch (1955)

and Carroll (1961) proposed the use of Barrier

Functions (BFs) for constrained optimization. Since

then, the BFs have been extensively studied, with

particularly major work in the area due to Fiacco and

McCormick (1968) who developed the Sequential

Unconstrained Minimization Technique (SUMT).

Currently, methods based on barrier functions make

up a considerable part of modern optimization theory.
Barrier Functions

Consider the constrained optimization problem

x� 2 X� ¼ arg minf f ðxÞjx ¼ 2 Og (1)
where O ¼ {x: gi(x) � 0, i ¼ 1, . . ., m}, f: ℜn ! ℜ
is convex, all gi:ℜ

n ! ℜ are concave,m> n, and X∗

is the set of values minimizing f(x) on O. Frisch’s
logarithmic barrier function F: int O � ℜ++ ! ℜ is

defined by formula
Fðx; mÞ ¼ f ðxÞ � mS ln giðxÞ (2)

and Carroll‘s hyperbolic barrier function C: int

O � ℜ++ ! ℜ is defined as

Cðx; mÞ ¼ f ðxÞ þ mS 1n g�1
i ðxÞ:

Assume that X∗ is bounded and ln t¼�1 for t� 0;

then for any m > 0, there exists a minimum of F(x, m)
in ℜn, denoted by
ðx; mÞ ¼ argminfFðx; mÞjx 2 <ng: (3)

Therefore
HxFðx; mÞ; mÞ ¼ Hf ðxðmÞÞ � Smg�1
i ðxðmÞÞHgiðxðmÞÞ

¼ Hf ðxðmÞÞ �P
liðmÞHgiðxðmÞÞ

¼ HxLðxðmÞ; lðmÞÞ ¼ 0

(4)

where Lðx; lÞ ¼ f ðxÞ �P
ligiðxÞ is the Lagrangian

for the problem (1). Also gi(x(m))> 0, i,¼ 1, . . .,m and
liðmÞ ¼ mg�1
i ðxðmÞÞ > 0; i ¼ 1; . . . ;m: (5)

Hence x(m) 2 int O, l(m) ¼ (li(m), i, ¼ 1, . . ., m)
2 ℜ m

++ and due to (4)
LðxðmÞ; lðmÞÞ ¼ minfLðx; lðmÞjx 2 <ng:

Consider the dual problem to (Eq. 1)
l� 2 L� ¼ ArgmaxfdðlÞjl 2 <m
þg (6)

where d(l) ¼ min{L(x, l) | x 2 ℜn} and L∗ is the set

of maxima of d(l) on ℜm. The vector x(m) is interior
primal, the vector l(m) is interior dual, and due to

(Eq. 5) the primal-dual gap is
DðmÞ ¼ f ðxðmÞÞ � dðlðmÞÞ ¼ f ðxðmÞÞ � LðxðmÞ; lðmÞÞ
¼ SliðmÞgiðxðmÞÞ ¼ mm:

http://dx.doi.org/10.1007/978-1-4419-1153-7_375
http://dx.doi.org/10.1007/978-1-4419-1153-7_840
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Therefore

m ! 0 ) DðmÞ ! 0 ) f ðxðmÞÞ
! f ðx�Þ and dðlðmÞÞ ! dðl�Þ:

The primal barrier trajectory {x(m)} and the

primal-dual trajectory {x(m), l(m)} are critical

elements in both SUMT (Fiacco and McCormick

1968) and recent developments in Interior Point

Methods (IPMs).

Interest in barrier and distance functions was

revived after N. Karmarkar (1984) published his

polynomial projective scaling method for linear

programming (LP) calculations. The connection

between Karmarkar’s method and the Newton log

barrier method for LP calculations was discovered by

Gill, Murray, Saunders, Tomlin and Wright (1986).

Since then the interest to BFs grew dramatically and

IPMs became the main stream in modern optimization.

Hundreds of papers and several books have been

published recently on the matter (see Nesterov and

Nemirovsky 1994; Roos et al. 1997; Wright 1997; Ye

1997).

The main idea of the path-following IPMs (see

Gonzaga 1992; Renegar 1988) is to replace in a sense

the unconstrained minimization problem (Eq. 3) by

one Newton step for solving the system Dx

F(x, m) ¼ 0. The basic path-following IPM consists

of performing a Newton step toward the solution x(m)
of the system
HxFðx; mÞ ¼ 0 (7)

followed by the barrier parameter update.

For a given m > 0 one finds an approxmation x for

x(m), the so-called “warm” start. The warm start

belongs to the area where Newton method for the

system (Eq. 7) is well-defined (Smale 1986), that is,

from x as a starting point the method
x̂ ¼ x� ðH2
xxFðx; mÞÞ

�1
HxFðx; mÞ (8)

converges to x(m) quadratically. The step of the

path-following method consists in replacing x by x̂
and m by m̂ ¼ mð1� a=

ffiffiffiffi
m

p Þ where a > 0 is

independent on m > n.

In the late 1980s Nesterov and Nemirovsky (1994)

discovered the self-concordant property of the function
F(x, m) for important classes of constrained

optimization problems including LP, QP, and QP

with quadratic constraints. A function f: int O ! ℜ
is self-concordant if it is convex, three times

differentiable, and for any x 2 int O any h 2 ℜn on

the interval I ¼ {t/x + th 2 int O}, the function

f: I ! R defined by f(t) ¼ fx, h (t) ¼ f (x + th)

satisfies the following inequality

’000ð0Þ � 2ð’00ð0ÞÞ3 2=
:

The self-concordant property guarantees that if x is
well defined for the systemDx F(x, m)¼ 0 then x̂will be

well defined for the system HxFðx; m̂Þ ¼ 0. The

polynomial complexity of the path-following method

for LP follows immediately from the fact that each

Newton step shrinks the primal-dual gap by

ð1� a=
ffiffiffiffi
m

p Þ, where a > 0 is independent on m.

The primal-dual algorithms have emerged as the

most important and useful class of IPMs (see Wright

1997). On the computational side, the most successful

implementation (see Lustig et al. 1992) is based on the

Mehrotra predictor-corrector algorithm (Mehrotra

1992). The BFs became the basic tool in the IPM, but

the BFs still have their inherent drawbacks: these

function, as well as their derivatives, do not exist at

the solution; and they grow infinitely large together

with the condition number of their Hessians when the

approximation approaches the solution and the area

where the Newton method is well-defined shrinks to

a point.

To eliminate the drawbacks, while still retaining the

nice properties of the barrier functions, modified

barrier functions (MBFs) were introduced in the early

1980s for both LP and NLP calculations (Polyak 1986,

1992, 1996). The MBFs are particular cases of the

Nonlinear Rescaling Principle, which consists of

transforming the objective function and/or the

constraints into an equivalent problem and using the

classical Lagrangian for the equivalent problem in

both theoretical analysis and numerical methods

(Polyak 1986).
Modified Barrier Functions

Consider the constrained optimization problem

giðxÞ � 0; i ¼ 1; . . . ;m (9)
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is equivalent to m ln (m�1gi(x) + 1) � 0, i ¼ 1, . . ., m.
Therefore problem (1) is equivalent to

x� 2 X� ¼ Argminff ðxÞ=m lnðm�1giðxÞ þ 1Þ � 0;

i ¼ 1; . . . ;mg
(10)

where the constraints are transformed by

c(t) ¼ ln(t + 1), and rescaled by m ¼ 0. The classical

Lagrangian for the equivalent problem (10)
Fðx; l; mÞ ¼ f0ðxÞ � mSli1nðm�1giðxÞ þ 1Þ;

is the logarithmic MBF which corresponds to Frisch’s

log-barrier function (2). For any m > 0, the system (9)

is equivalent to

m½ðm�1giðxÞ þ 1Þ�1 � 1� � 0; i ¼ 1; . . . ;m

where the constraints transformation is given by

n(t) ¼ (t + 1)�1 � 1. The classical Lagrangian for the

equivalent problem is the hyperbolic MBF

Cðx; l; mÞ ¼ f0ðxÞ þ mSli½ðm�1giðxÞ þ 1Þ�1 � 1�;

which corresponds to Carroll’s hyperbolic barrier

function (3).

The MBF’s properties make them fundamentally

different from the BFs. The MBFs, as well as

their derivatives, exist at the solution, and for any

Karush-Kuhn-Tucker pair (x∗, l∗) and any m > 0,

the following critical properties hold:
P1: Fðx�; l�; mÞ ¼ Cðx�; l�; kÞ ¼ f0ðx�Þ;
P2: HxFðx�; l�; mÞ ¼ HxCðx�; l�; mÞ ¼ HxLðx�; l�Þ ¼ 0;

P3: Hxx Fðx�; l�; mÞ ¼ HxxLðx�; l�Þ
þ m�1HgTðx�ÞL�Hgðx�Þ;

HxxCðx�; l�; mÞ ¼ HxxLðx�; l�Þ
þ 2m�1HgTðx�ÞL�Hgðx�Þ:

where ^ ¼ diag(li ) and Dg(x) ¼ J[g(x)] is

the Jacobian of the vector-function g(x)T ¼ (gi (x),

i ¼ 1, . . ., m).

The MBF’s properties resemble that of augmented

Lagrangians (Bertsekas 1982; Golshtein and

Tretyakov 1974; Hestenes 1969; Mangasarian 1975;

Polyak and Tretyakov 1973; Powell 1969; Rockafellar

1973). One can consider the MBFs as interior
augmented Lagrangians. At the same time, MBFs

have some distinctive features, which make them

different from both quadratic augmented Lagrangian

(Rockafellar 1973) and nonquadratic augmented

Lagrangian (Bertsekas 1982). The MBFs’ properties

lead to the following multipliers method.

Let m > 0, l0 ¼ e ¼ (1, . . .,1) 2 ℜm and x0

2 Om ¼ {x|gi(x) � � m, i ¼ 1, . . ., m}. The

logarithmic MBF method consists of generating two

sequences {x s } and {ls }:

xsþ1 2 argminfFðx; ls; mÞjx 2 <ng (11)

and

lsþ1 ¼ diag½m�1giðssþ1Þ þ 1��1
ls: (12)

There is a fundamental difference between the

logarithmic MBF method and SUMT or other IPM

that is based on BFs. The MBF method converges to

the primal-dual solution with any fixed m > 0 for any

convex programming which has bounded optimal

primal and dual solutions (Jensen and Polyak 1994).

Moreover, for LP calculations, M. Powell proved that

for any fixed barrier parameter, the MBF method

produces such primal sequences that the objective

function tends to its optimal value and constraints

violations tend to zero with R-linear rate (Powell 1995).

If the second order optimality conditions hold then

the primal-dual sequence converges with Q-linear rate:

maxfk xsþ1 � x� k; k usþ1 � u� kg � cm k us � u� k
(13)

where c> 0 is the condition number of the constrained

optimization problem, which depends on the input data

and the size of the problem, but it is independent on

m > 0 (Polyak 1992).

The numerical realization of the MBF method leads

to the Newton MBF. The Newton method is used to

find an approximation for x s, followed by the Lagrange

multiplier update. Due to the convergence of the MBF

method under the fixed barrier parameter m > 0, both

the condition number of the MBF Hessian and the

area where the Newton method is well defined

remain stable. These properties contribute to both

numerical stability and complexity, and they lead to

the discovery of the “hot” start phenomenon in

constrained optimization. It means that from some
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point on for large classes of nondegenerate-

constrained optimization problems including LP, QP

and QP with quadratic constraints, the approximation

for the primal minimizer will remain in the Newton

area after each Lagrange multipliers update (Polyak

1992; Melman and Polyak 1996).

Due to (13) from the “hot” start on it takes only (ln

ln e�1) Newton steps to improve the primal-dual

approximation by a given factor 0 < q < 1 as soon as

m � qc �1. The neighborhood of (x∗, l∗) where the

“hot” start occurs can be characterized by the condition

number c > 0. Using the IPM with the Shifted Barrier

Function (SBF) S(x, m)¼ f (x)� m
P

ln(m�1 g i (x) + 1),

which is self-concordant for the same classes of

problem as F(x, m), it takes 0ð ffiffiffiffi
m

p
1n cÞ to reach the

“hot” start.

Combining the IPM based on SBF with the Newton

MBF method, it is possible to improve substantially

the complexity bounds for nondegenerate LP, QP and

QP with quadratic constraints. In particular, for

nondegenerate QP the total number of Newton step

sufficient to obtain an approximation for (x∗, l∗)
with accuracy e ¼ 2�L is
N ¼ 0ð ffiffiffiffi
m

p
1n cÞ þ 0ððL� 1n cÞ 1n mÞ;

where L is the input length, c > 0 is the condition

number of QP and n < m (Melman and Polyak 1996).

The MBF method has an interesting dual

interpretation. Assuming that the dual function d (l)
is differentiable,
DdðlÞ ¼ �gðxðlÞÞ

where x(l) ¼ arg min{L(x, l)|x 2 ℜn} and

g(x(l)) ¼ (gi(x(l)), i ¼ 1, . . . , m), that is,
Hdðlsþ1Þ ¼ �gðxsþ1Þ: (14)

From the formula (12) for the Lagrange multipliers

update
giðxsþ1Þ ¼ mc0�1ðlsþ1
i =2lsi Þ

¼ mc�0ðlsþ1
i =2lsi Þ; i ¼ 1; . . . ;m

(15)

where c∗(s) ¼ inf{st � c(t)} ¼ 1 � s + ln s is the

Legendre transformation of c(t) ¼ ln(t + 1). Using

(15), rewrite (14) as
Hdðlsþ1Þ þ mSc�0ðlsþ1
i =lsi Þei ¼ 0

where ei ¼ (0, . . ., 1, . . .,0). Hence,

lsþ1 ¼ argmaxfdðlÞ þ mSlsic
�ðli=lsi Þ=l 2 <m

þg
¼ argmaxfdðlÞ � mDðl; lsÞ=l 2 <m

þg
(16)

where Dðl; lsÞ ¼ P
lsi’ðli=lsi Þ � a f -divergence

entropy-like distance with the kernel f ¼ �c∗. Note

that (16) is an IPM for the dual problem (see Teboulle

1993; Polyak and Teboulle 1997).

The formula (12) is in fact a method for solving the

dual problem (6). It can be rewritten as

lsþ1
i ð1� m�1Hli dðlsþ1

i ÞÞ ¼ lsi ; i ¼ 1; . . . ;m: (17)

Such a method is a well-known multiplicative

image reconstruction algorithm for positron emission

tomography (Eggermont 1990). On the other hand, it is

nothing but the implicit Euler method for numerical

solution of the following system of ordinary

differential equations
d li
dt

¼ m�1li
@ dðlÞ
d li

; lð0Þ ¼ l0; i ¼ 1; . . . ;m

and lim
t!1 lðtÞ ¼ l�, which is the solution of following

nonlinear complementarity problem

HdðlÞ � 0; l � 0

lTHdðlÞ ¼ 0:
See

▶Classical Optimization

▶Computational Complexity

▶ Interior-Point Methods for Conic-Linear

Optimization

▶Nonlinear Programming
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Basic Feasible Solution

A nonnegative basic solution to a set of (m � n)

linear equations Ax ¼ b, where m � n. The major

importance of basic feasible solutions is that, for

a linear-programming problem, they correspond to

extreme points of the convex set of solutions.

The simplex algorithm moves through a sequence of

adjacent extreme points (basic feasible solutions).
See

▶Adjacent (Neighboring) Extreme Points

▶Basic Solution

▶Linear Programming
Basic Solution

For a set of (m � n) linear equations Ax ¼ b (m � n),

with rank m, a basic solution is a solution obtained by

setting (n � m) variables equal to zero and solving

for the remaining m variables, provided that the

column vectors associated with the m variables form

a linearly independent set of vectors. The m variables

are called basic variables, and the remaining n � m
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http://dx.doi.org/10.1007/978-1-4419-1153-7_200974
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variables that were set equal to zero are called nonbasic

variables. The vectors associated with the basic

variables form an (m � m) basis matrix B.
B

See

▶Linear Programming
Basic Variables

The set of variables corresponding to the columns of

a basis matrix in a linear system Ax ¼ b.
See

▶Basic Solution

▶Basis

▶Linear Programming
Basis

A nonsingular square matrix B obtained by selecting

linearly independent columns of a full row rank

matrix A. The matrix B is then a basis matrix for the

system Ax ¼ b. The components of x associated with B

are called the basic variables, and the remaining

components are called the nonbasic variables. The term

basis also refers to the set of indices of the basic variables.
See

▶Basic Variables

▶Linear Programming
Basis Inverse

The inverse of a basis matrix.
See

▶Basis

▶Linear Programming
Basis Vector

A column of a basis matrix.
See

▶Basis

▶Linear Programming
Batch Shops

▶ Production Management
Battle Modeling

Dean S. Hartley III

Oak Ridge National Laboratory, Oak Ridge, TN, USA
Introduction

The ideal battle model completely, accurately, quickly,

and easily predicts the results of any postulated battle

from the initial conditions. Several factors prevent the

existence of an ideal battle model.

One factor is computational complexity. For

example, medical planners could use such a battle

model to determine the size of treatment facilities, the

breakdown of physician skills needed, and the medical

supply inventory requirements. It is reasonable to

suppose a battle model would track individuals and

their separate wounds for engagements of a dozen

participants on a side; however, maintaining that

level of detail for engagements of tens of thousands

of people would be prohibitively expensive in time and

hardware requirements. Thus the requirement for

complete predictions competes with the requirements

for generality and speed of computation.

The second factor preventing the existence of an

ideal battle model is the fact that not enough is known

about battle dynamics to model it accurately. Where

components can be modeled accurately (e.g., firing

disciplines for weapons and probabilities of kills

given hits), it is not known how the components fit

together (e.g., when do soldiers fire their weapons and

http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_200974
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how do conditions modify their ideal performance).

Further, it is not known when, where, and why battles

are joined or when and how they stop. The ignorance is

not absolute, but is relative to the desired accuracy for

the battle models.

A third factor also proceeds from ignorance. It is not

known which initial conditions are significant for

determining battle results. In general, those battle

models that deliver massive details about the model

results require extremely large quantities of input data.

Thus, perceived accuracy of results is a competitor of

ease and rapidity of use.
Battle Model Classification

Although the ideal battle model cannot be built, many

individual battle models can be built, each conceived

to fulfill a particular set of objectives. These models of

combat may be classified by their position along

several dimensions; however, they all have one

feature in common, and that is the object that is

modeled is some aspect of combat. These dimensions

are listed below with illustrative examples of positions

along the dimension.
DOMAIN
 Land; air; naval; space;

combinations.
SPAN (size of conflict)
 Platoon battle; division combat;

theater-level combat; global combat.
SCOPE (type of

conflict)
Politico-military; special operations;

low intensity conflict; urban warfare;

conventional warfare; theater-level

nuclear, chemical, and biological

conflict; strategic nuclear conflict.
SCORING (adjudication

topics and methodology)
Measures of merit: attrition,

movement, tons of bombs dropped,

supplies delivered, victory;

methodologies: weapon weights

(simple or complex, as in anti-

potential potential, which uses

eigenvalues to value weapon by the

value of the weapons it can kill),

process simulations.
RANDOMNESS
 Deterministic or stochastic

calculations.
COMBAT

ACTIVITIES AND

FORCE

COMPOSITION

(military assets and

mission areas)
Small-arms; armor; aircraft; artillery;

engineer; logistics; signal; command

and control; intelligence; surface

navy; submarine; electronic warfare;

space assets; missiles.
(continued)
LEVEL OF

RESOLUTION OR

DETAIL (smallest item

modeled as a separate

entity)
Bullet; soldier; tank; platoon;

company; battalion; brigade;

division; corps.
ENVIRONMENT
 One-dimensional terrain

(pistonmodel); two-dimensional

terrain (including ocean or air),

latitude-longitude or hexagonal grid-

based; three-dimensional terrain;

weather; day-night; smoke.
PURPOSE (design

purpose or users’

purpose)
Training; weapon system

employment; force composition

decisions; operations plans testing.
LEVEL OF TRAINING

(training audience)
Individual skills; platoon leaders’

skills; division staff skills;

commanders’ skills; combinations.
MODEL TREATMENT

OF TIME
Linear code with no time

representation or algorithmically

computed time (generally analytic

combat models); time-stepped

simulations; event-driven

simulations; expected value models;

stochastic simulations.
HUMAN

INTERACTION
Data preparation and output

interpretation; interruptible with

modification and restart; computer-

assisted human participation on one

or more sides; continuous human

participation on all sides.
SIDEDNESS
 One-sided (e.g., strategic nuclear

strike damage effects); two-sided;

multi-sided; hard-coded identical

properties for each side, hard-coded

different properties for each side

(e.g., U.S. vs Soviet-style tactics), or

data-driven properties for each side.
COMPUTER

INVOLVEMENT
None; moderate; complete.
SIZE COMPUTER

REQUIRED
PC; mini-computer; mainframe;

supercomputer; peripheral equipment

required; large run-times, small run-

times.
EXTERNAL

INTERACTIONS

(interfaces with parts of

the real world)
None; distributed processing;

interfaces with weapon simulators;

interfaces with real equipment; sand

tables, scripting.
Battle modeling started the first time someone

scratched a battle plan in the dirt and tried to

conceive of the consequences. Sand tables, with

miniature troops and landscaping, added discipline

to the modeling process; however, the modeling

remained essentially qualitative. Sand table models

were used as war games, in which opposing players

took turns moving the pieces and used rules to
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adjudicate the results of the moves. Modern war

games include sand table games and computer

adjudicated games.
B

Attrition Laws

Lanchester (1916) introduced the concept of

a quantitative model of attrition. (Osipov in Russia

and Fiske in the U.S. introduced similar concepts at

virtually the same time; however, most Western works

refer to Lanchester’s Laws and Lanchestrian attrition.)

Lanchester showed that one could express the value of

concentration of forces precisely, using mathematics,

and thus evaluate what forces would be needed for

victory before a battle. Engel (1954) provided what

many took to be proof that Lanchester’s square law

was correct.

Lanchester’s simple concepts have been elaborated

to the extent that Taylor (1983) required two volumes to

discuss the many uses and implications of Lanchester

theory. The computational power of computers has

permitted this elaboration. First, heterogeneous

Lanchester equations could be solved without undue

manual labor. Once, heterogeneous equations were

admitted, the coefficients could be represented as

functions of other factors, such as weather, firing

discipline, and distance to the target. Bonder and

Farrel (in Taylor 1983) introduced rigorous thinking

into this area by observing direct fire activities and

creating a mathematical model of those activities.

Dupuy (1985) argued that there are many important

factors in combat that were not being included in the

physics-based combat models. Morale, training, and

leadership are at least as important as force sizes

according to Dupuy. He proposed a model based on

quantified judgments of these and other “soft” factors.

His Quantified Judgment Model (QJM) stirred

considerable controversy. Regardless of the merits of

the QJM itself, the quantified judgments of soft factors

is currently receiving more favorable reviews. The

difference in public opinion at home during the

Vietnam and Gulf wars and the impact on troop

morale and the outcomes of the wars provides some

justification for increased emphasis on soft factors.

Computers also made the computation of stochastic

processes possible. The differential equations of

Lanchester attrition were viewed as approximations

to a random process model of the actual killing
process that should be correct for large numbers.

Stochastic duels addressed the results for small

numbers. Ancker and Gafarian have made significant

contributions in this area (Ancker 1994).

Helmbold has made contributions to both the

theoretical and the practical aspects of battle

modeling. His empirical studies of attrition (1961,

1964), breakpoints (1971), and movement (1990)

injected the element of reality into the sometimes

rarefied atmosphere of theoretical battle modeling.

Hartley (1991) continued in this vein with results

indicating that the best description of attrition (using

a homogeneous approximation) is not the Lanchester

square or linear law, but an intermediate form between

the linear law and a logarithmic law. Speight (1995,

1997) and Speight and Rowland (1999) have continued

the process, introducing duels (mini-battles) and

simulations of combat exercises (trials) and showing

the impact of firing on dead targets on the formulation

of attrition equations.

With computer battle models also came

a proliferation of structural types of models. Battle

models involving anti-submarine warfare have

a peculiar requirement of finding the enemy before

the battle can be prosecuted. Search theory must be

implemented in such models, just as it is used in actual

battles or exercises (Shudde 1971). In some types of

war, the proper allocation of resources or mix of

strategies provides an easily defined variable (e.g.,

strategic nuclear targeting or allocation of combat air

forces to mission types). Because game theory deals

with optimal strategies considering both sides’ options,

it provided an obvious technique for addressing the

problem and providing prescriptive models (Bracken

et al. 1974; HQ USAF/SAMA 1974).
Dimension, Data, and Output

In earlier times, land warfare models were one-

dimensional: the forward edge of the battle area

(FEBA) advanced or retreated. More sophisticated

versions allowed one-dimensional structures for each

sector (piston-models). More powerful computers now

permit two-dimensional representations of the

battlefield, using either x, y (or latitude, longitude)

coordinates or (rectangular or hexagonal) grid

structures. Some models are now three-dimensional,

having terrain elevation and playing the effects of
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flying aircraft at different altitudes. [See, for example,

the Research Evaluation and Systems Analysis

(RESA) model (Naval Ocean Systems 1992), which

plays aircraft at different altitudes and submarines at

different depths].

Most large models have extremely large input and

output data sets and require sophisticated database

management systems to keep track of the data. These

large output data sets also stress the human ability to

understand the results. Sophisticated graphics are

necessary adjuncts to most large models today. The

graphics are required to define realistic scenarios and

to understand the process and results of the model.

Advances in computer power have resulted in the

capability for human interfaces that are qualitatively

different from past capabilities. Such interfaces include

real-time depictions of a battlefield from a human

perspective and auditory and tactile interfaces. The

first full-scale example of this kind of interface, called

virtual reality, in a battle model was SIMNET (HQ US

Army Armor School 1987). SIMNET is a network of

tank and other vehicle simulators, each participating in

a shared virtual battlefield. Work is proceeding to tie

virtual reality battle models to other, more conventional

battle models. The success of connecting simulators has

motivated recent work in connecting interactive training

models. The connection of these battle models permits

distributed processing and cost sharing among users.

The history of battle modeling has not been a smooth

process of constant improvements. It has been beset

with controversies in many areas. Some of the

controversies have involved the standard resource

allocation question: where do you spend the money?

One of the first of these concerned documentation.

Early (1960–1970s) computer models were usually

undocumented and, because of frequent modifications,

had virtually indecipherable code. The need for proper

documentation was obvious but the need for better (or at

least more complex)models appeared overriding.While

the readability of the documentation of today’s models

may be variable, most models are documented.
Verification, Validation, and Accreditation

One controversy probably began with the first model

that produced a result someone did not like: is themodel

right? During the 1960s and early 1970s, it was said

there were two kinds of generals: those for whom
computer printout was the gospel and those who would

believe nothing produced by a computer. The problem

in dealing with the first type was in conveying that there

were caveats. All results had to be retyped manually to

disguise their origin for the second type of general.

Today’s generals (and politicians) grew up with

computers. They want to understand to what extent the

results are believable. They require verification,

validation, and accreditation. Although progress is

being made, no one knows how to completely verify,

validate, or accredit the general battle model.
Other Controversies

There have also been technical controversies in battle

modeling. Notable controversies have included the

proper interpretation (and thus use) of the differences

between the Lanchester linear and square laws, the

connection between attrition and advance rates (if any),

the value of force ratios, the connection between

deterministic Lanchester formulations and stochastic

attrition formulations and which should be used.

There is a precept that states that a force ratio of 3-1,

attacker-defender is required for a successful attack.

Numerous studies have criticized this precept, yet it is

still heard.

There are disagreements about the proper level of

detail in deterministic models, despite agreement on

the principle that what is appropriate depends on the

uses to be made of a model. High resolution models of

large span require tremendous quantities of data and

run slowly. One camp advocates small, fast “roughly

right” models as better than high resolution models.

Another camp protests that such models will miss the

critical points that differentiate the issues in question.

The stochastic process camp protests that both the

large, high resolution and the small, low resolution

models are not grounded in the reality of stochastic

battles, and cannot thus be even roughly right.

There have also been disagreements about the

proper uses of models. At one time prescriptive battle

models were popular (finding optimal strategies, where

the definition of optimal varied with the model). Lately

they have been out of favor. Complaints about the

misuse of models have ranged from the use of models

designed for other purposes and failing to understand

the resulting mismatch of assumptions to charges of

advocacy modeling. Advocacy modeling, in the
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pejorative sense, entails fiddling with input parameters

until a combination is found that gives the desired

result. Most large models have sufficient numbers of

parameters with sufficiently tenuous connections to

physical factors that plausible values can be found

that generate almost any result.

One controversy involves the discovery that very

simple deterministic battle models can exhibit chaos

(Dewar et al. 1991). The question of the impact of

chaos on the more complex models that are actually

used is obvious. Most issues are settled by point

estimates. For example, suppose the impact of

weapon X is being investigated. Model runs with

25% X, 50% X, 75% X, and 100% X are executed.

The runs with 75% X and 100% X are found to have

superior results. It is assumed that such results are valid

for values between 75% and 100%. If the results are

chaos driven, such an assumption is unwarranted.

The question has not been finally answered; however,

investigations with one of the currently used complex

models indicates that any uncertainty due to

chaotic behavior in that model is no larger than

a few percent. Because this is within the uncertainty

that was already present in the model, the impact of

possible chaotic behavior was claimed to be minimal

(Herndon 1993).
Concluding Remarks

Despite all controversy, battle modeling remains the

only method of answering some questions and is widely

used. Battle models are used to inform decisions on

weapons’ procurement issues (balancing costs against

effectiveness), to test strategies and tactics, and to train

personnel. Battle training models provide inexpensive

tools for training commanders because the large

numbers of combat personnel maneuver in the

computer rather than on the ground. As military

funding is reduced, this supplement to traditional

training methods has become indispensable. New

models continue to be created as the requirements for

greater scope arise. The insertion of information

technology into combat has necessitated new models

that can discriminate among the effects of different

Command, Control, Communications and Intelligence

(C3 I) systems, such as the Joint Warfare System

(JWARS) for analysis and the Joint Simulation System

(JSIMS) for training.
See

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Documentation

▶Game Theory

▶Gaming

▶Lanchester’s Equations

▶Military Operations Research

▶Model Accreditation

▶Operations Research Office and Research Analysis

Corporation

▶RAND Corporation

▶ Search Theory

▶Validation

▶Verification
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Bayes Rule

When a decision maker receives data bearing on an

uncertain event, the probability of the event can be

updated by computing the conditional probability of

the uncertain hypothesis given the new evidence. The

derivation of the revised or a posteriori probability can

be easily derived from fundamental principles and its

discovery has been attributed to the Reverend Thomas

Bayes (1763). The result is therefore known as Bayes

rule or theorem:
PrfH1 Ej g ¼ PrfE H1j g PrfH1gP
i

PrfE Hij g PrfHig

In this equation, H1 refers to the specific, uncertain

hypothesis entertained by the decision maker, the {Hi}

are the complete set of possible hypotheses, and E

refers to the new evidence or information received.
See

▶Bayesian Decision Theory, Subjective Probability,

and Utility
Bayesian Decision Theory, Subjective
Probability, and Utility

Kathryn Blackmond Laskey

George Mason University, Fairfax, VA, USA
Introduction

In every field of human endeavor, individuals and

organizations make decisions under conditions of

uncertainty and ignorance. The consequences of a

decision and their value to the decision maker often

depend on events or quantities which are unknown to

the decision maker at the time the choice must be

made. Such problems of decision under uncertainty

form the subject matter of Bayesian decision theory.

Bayesian decision theory has been applied to problems

in a broad variety of fields, including engineering,

economics, business, public policy, and artificial

intelligence.

A decision-theoretic model for a problem of

decision under uncertainty contains the following

basic elements:

• A set of options fromwhich the decision maker may

choose;

• A set of consequences that may occur as a result of

the decision;

• A probability distribution that quantifies the

decision maker’s beliefs about the consequences

that may occur if each of the options is chosen; and

• A utility function that quantifies the decision

maker’s preferences among different consequences.
Subjective Probability

Decision theory applies the probability calculus to

quantify a decision maker’s beliefs about uncertain

events or quantities, and to update beliefs upon receipt

of additional information. De Finetti (1974) showed that

any decision maker who acts on degrees of beliefs not

http://dx.doi.org/10.1007/978-1-4419-1153-7_66
http://dx.doi.org/10.1007/978-1-4419-1153-7_66
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conforming to the probability calculus can be exploited

by a series of gambles guaranteed to result in a net loss.

Such a bet is called a dutch book. The Dutch Book

Theorem and other related derivations of probability

from axioms of rationality have been used to justify

probability as a calculus of rational degrees of belief

(De Groot 1970; Pratt et al. 1965).
Bayes Rule

When a decision maker receives information bearing

on an uncertain hypothesis, degrees of belief are

updated by computing the conditional probability of

the uncertain hypothesis given the new evidence.

The equation expressing how beliefs change with

new evidence has been attributed to the Reverend

Thomas Bayes (1763) and is known as Bayes Rule.

The odds-likelihood form of Bayes Rule is:

PrfH1 Ej g
PrfH2 Ej g ¼ PrfE H1j g PrfH1g

PrfE H2j g PrfH2g

In this equation, H1 and H2 refer to two uncertain

hypotheses entertained by the decision maker and E
refers to the new evidence or information received by

the decision maker. Bayes rule quantifies how

evidence is used to obtain the relative posterior

probabilities Pr{Hi|E} of the hypotheses given the

evidence. The ratio of posterior probabilities is

determined by two factors. One is the ratio of prior

probabilities Pr{Hi}: all other things being equal,

the stronger the prior belief in H1 relative to H2,

the stronger the posterior belief in H1 relative to H2.

The other is the likelihood ratio, or ratio of

the probabilities Pr{E|Hi} of the evidence given each

of the hypotheses. Again, all other things being

equal, the better H1 accounts for the evidence relative

to H2, the stronger the posterior belief in H1 relative

to H2.
Other Interpretations of The Probability
Calculus

There has been considerable debate about how to

interpret the concept of probability. The term

Bayesian, after Bayes Rule, is used to refer to the

subjective interpretation. A subjective probability
distribution represents an individual’s degrees of

belief about the likelihood of uncertain outcomes.

Alternative interpretations of probability include the

classical, the logical, and the frequentist approaches

(Fine 1973). Much of standard statistical theory is

based on the frequentist approach. Frequentists argue

that probability models are appropriate only for

repeatable phenomena exhibiting inherent

randomness. For such phenomena, it is argued, there

exist objectively correct probabilities intrinsic to the

process producing the uncertain outcomes.

Subjectivists apply probability theory to any

outcomes about which a decision maker is uncertain.

For subjectivists, no objectively correct probabilities

need exist. Different decision makers are free to have

different opinions about the probability of an outcome.

The only constraint subjective theory places on

a probability distribution is that it be coherent, that is,

that degrees of belief conform to the probability

calculus. Within this constraint, decision makers are

free to choose any probability distribution to model

their uncertainty about a problem. Its inherent

subjectivity has been a persistent criticism of the

subjectivist approach. This is often of little practical

consequence for problems that can be said to exhibit

inherent randomness. The subjectivist draws inferences

about the posterior distribution of the unknown

parameter, while the frequentist draws inferences

about the distribution of the data given different values

of the unknown parameter. Nevertheless, it can be

shown that when there are sufficient data to draw

accurate inferences, the subjectivist and the frequentist

will usually agree on the implications of the results.

Thus, the major difference of practical import between

the subjectivist and the frequentist is their attitudes

toward problems for which there are too little data to

estimate parameters accurately or for which the

assumption of intrinsic objective frequencies is

problematic. The frequentist maintains that probability

models are in-appropriate for such problems; the

subjectivist argues that probabilities are appropriate

and that it is legitimate for rational people to disagree

until there are sufficient data to bring them to agreement.
Utility Theory

Decision theory quantifies preferences by a utility

function. It is assumed that the decision maker can
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assign a numerical utility to each possible consequence

of each option being entertained. Consequences with

higher utilities are preferred to consequences with

lower utilities. When there is uncertainty, the

decision maker selects the option for which the

expected value of the utility function is the largest.

For some problems it is customary to deal with

losses, or negative utilities. Smaller losses are

preferred to larger losses.

The concept of utility appears to have been first

introduced by Daniel Bernoulli (1738) in his solution

to a puzzle known as the St. Petersburg Paradox.

Bernoulli considered the problem of what price to

pay for the opportunity to play the following gamble.

A fair coin (probability 0.5 of landing heads) is tossed

repeatedly until the first head appears. If the first head

appears on the nth toss, the decision maker receives

a prize of 2n units of currency. The decision maker’s

expected monetary prize is

2ð0:5Þ þ 22ð0:5Þ2 þ 23ð0:5Þ3 þ . . . ;

which is infinite. A decision maker who maximized

expected monetary value should be prepared to pay an

arbitrarily large sum of money for the opportunity to

play this gamble. As Bernoulli noted, most people

would be willing to pay only a modest amount.

Bernoulli suggested that the resolution to this

apparent paradox was that a prize’s worth to

a decision maker was a nonlinear function of the

monetary value of the prize. For example, replacing

2n with log 2n in the above equation yields a finite

expected monetary prize.

Von Neumann and Morgenstern (1944) were the

first to present a formal axiomatic development of

utility theory. They defined the utility of

a consequence in terms of a comparison between two

options, one sure and one uncertain. The sure option is

the consequence itself; the uncertain option is a lottery

between two standard reference prizes, one worth

more and one worth less than the consequence in

question. If the reference prizes are assigned utility

one and zero, then the utility of the consequence in

question is defined as the probability at which the

decision maker is indifferent between the two

lotteries. Several similar axiom systems can be

shown to lead to the maximization of expected utility

as a principle of rational decision making (De Groot

1970; Pratt et al. 1965).
Concluding Remarks

It has been observed that people systematically violate

the axioms of expected utility theory in their everyday

behavior. Some of these violations can be reversed by

informing people of the implications of their stated

preferences. In other cases, many people resist changes

to their original judgments. Even when the decision

maker regards expected utility theory as a norm of

rational behavior, it cannot be assumed that unaided

judgments will be consistent with the theory. The field

of decision analysis applies theories and methods from

decision theory and the psychology of human

information processing to construct decision theoretic

models for practical decision problems (Clemen 1996).

Interest has been growing in decision theoretic

formulations of statistical problems. For example, to

formulate an hypothesis testing problem, one defines

a prior probability for the null and alternative

hypotheses. One also defines losses associated with

accepting a false alternative hypothesis and rejecting

a true null hypothesis. The optimal decision rule is to

accept or reject the hypothesis according to which

decision yields the lower posterior expected loss

given the observed sample. Similarly, decisions of

whether to gather information and how large

a sample to draw can be formulated as decision

problems that consider both the cost of gathering

information and the benefit of obtaining the

information. Some problems that are quite complex

when viewed from a frequentist perspective become

straightforward when viewed from a Bayesian

perspective. Examples include hierarchical models

and problems of missing data (Gelman et al. 1995).

An area of application is the field of intelligent

systems (Haddawy 1999). Utility theory is being

applied to planning and control of reasoning in expert

systems. Diagnostic expert systems based on

probability theory have achieved performance

comparable to human decision makers (e.g., the

Pathfinder system for diagnosing lymph node

pathology, Heckerman 1991). Perhaps the most

important and challenging aspect of decision analysis

is the creative process of model formulation. Decision

theory takes options, consequences, and their

interrelationships as given. Automated decision

model generation is an open research area of great

importance to application of decision theory to the

field of intelligent systems (Haddawy 1994).
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See

▶Decision Analysis

▶Decision Problem

▶Decision Trees

▶Expert Systems

▶Utility Theory
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Beale Tableau

A modification of the simplex tableau arranged in

an equation form such that the basic variables and

the objective function value are expressed explicitly

as functions of the nonbasic variables. This tableau

is often used when solving integer-programming

problems.
See

▶Linear Programming

▶Tucker Tableau
Bellman Equation

▶Bellman Optimality Equation
Bellman Optimality Equation

Dynamic programming equation that the optimal value

(or cost-to-go) function must satisfy, according to the

principle of optimality. One simple form is the

following finite-action, finite-state, finite-horizon

version for a minimization problem:

fnðiÞ ¼ mina cnði; aÞ þ SjpijðaÞfnþ1ðjÞ
� �

;

where fn(i) represents the optimal cost-to-go function

in state i for stage (period) n, cn(i,a) is the one-period
cost in stage n for state i and action a, and pij(a) is the

probability of transitioning from state i to state j when

action a is taken.

See

▶Approximate Dynamic Programming

▶Dynamic Programming

▶Markov Decision Processes
Benders Decomposition Method

A procedure for solving integer-programming

problems that have a few integer variables. These

so-called complicating variables, when given specific

values, enables the resulting problem to be readily

solved as a linear-programming problem.
See

▶ Integer and Combinatorial Optimization

▶Linear Programming
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Best-Fit Decreasing Algorithm

▶Bin-Packing
Bidding Models

▶Auction and Bidding Models
Big M Method

Amethod to drive artificial variables out of the basis in

the simplex algorithm, by imposing a sufficiently

large, finite penalty M for using these variables.
See

▶Artificial Variables

▶Linear Programming

▶ Phase I Procedure

▶ Phase II Procedure

▶ Simplex Method (Algorithm)
Bilevel Linear Programming

Bilevel linear programming (BLP) is a hierarchical,

decentralized, multilevel mathematical programming

problem in which the objective functions and

constraints are linear. It can be stated in terms of

upper and lower problems as follows:

Maximize
x

f1ðx; yÞ ¼ c1xþ d1y

where y solves:

Maximize
y

f2ðx; yÞ ¼ c2xþ d2y

subject to

Axþ By � b

x; y � 0

where c1, c2, d1, d2, and b are constant vectors, A and B

are constant matrices; x and y are vectors of the
decision variables of the upper and lower problems,

respectively; f1 and f2 are the objective functions of the

upper and lower problems, respectively.
See

▶Linear Programming
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Binary Variable

A variable that is restricted to be equal to 0 or 1. Binary

variables are often used to handle logical, nonlinear

conditions associated with a problem whose

constraining conditions are linear.
See

▶ Integer and Combinatorial Optimization

▶ Integer-Programming Problem
Bin-Packing

Nastaran Coleman1 and Pearl Wang2
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Introduction

The bin-packing problem is concerned with the

determination of the minimum number of bins that are
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needed to pack a given set of input data items. The

problem has numerous applications in operations

research, computer science, and engineering, where the

items and bins to be packed can be of varying shapes or

multi-dimensional in size. These applications include

industrial manufacturing, container loading, stock

cutting, vehicle routing, television commercial

scheduling, job scheduling on multiple processors, file

backup creation in removable media, integrated circuit

manufacturing and fault detection, and location testing

in linear circuits. Since the bin-packing problem is

known to be NP-hard (Garey and Johnson 1979), it is

of interest to find efficient heuristics that obtain near-

optimal solutions to the problem.
Problem Definition

The classical one-dimensional bin-packing problem

(1DBPP) is defined as follows: Given a positive bin

capacity C and a list of items L ¼ (p1, p2, . . ., pn),
where pi has size s(pi) satisfying 0 � s(pi) < C,

determine the smallest integer m such that there is

a partition of L ¼ B1 [ B2 [ . . . [ Bm where the sum

of the sizes of the items pi 2 Bj do not exceed the

capacity C. Each set Bj is usually viewed as the

contents of a bin of capacity C. In much of the

literature, C is taken to be 1.

Several versions of two-dimensional bin-packing

problems have also been studied. For example, if L is

a set of rectangles pi having heights hi and widths wi,

one type of bin packing problem requires that the

rectangles of L be packed into a single

two-dimensional bin of width C and infinite height.

The goal is to determine a minimum height packing

of the pieces into this bin. These problems are referred

to as strip-packing problems.

For an alternative form of the two-dimensional

packing problem, the rectangles of L are to be packed

into a minimum number of rectangular bins.

A common version of the problem concerns packing

a list of squares into m unit squares with the objective

being to minimizem. When the rectangles to be packed

are not square, restrictions might be made on the types

of allowable placements of the rectangles within the

bins. Depending on the application, rotations of the

items may not be permitted; packings may also

require that the items are placed parallel to the sides

of the bins.
The items being packed in two-dimensional

problems do not need to be rectangular in shape.

Circular and polygonal shapes may also be packed

into circular or rectangular bins.

Three-dimensional bin-packing problems have

goals that are similar to their lower dimensional

counterparts. For example, given the set L of

rectangular prisms having widths wi, height hi, and

depth dj, a common problem is to pack the items into

a minimum number of bins of width W, height H, and

depth D. In the case of container packing, the pieces

are not rotated and must be placed parallel to the sides

of the bins.

Cutting stock problems are variants of bin packing

problems because the amount of wasted space within

stock sheets is to be minimized while the pieces are

being cut from stock sheets. Similarly, if just a single

bin of fixed size is to be packed and each item is

characterized by both a volume and a value, the

problem of maximizing the total value of a subset of

items that can fit into the bin by volume is known as the

knapsack problem.

Approximation algorithms for bin-packing

problems were among the earliest algorithms studied

in the literature. In the 1970s, it was shown that

near-optimal solutions could be guaranteed for some

frequently used one-dimensional packing techniques.

Since then, many heuristics have been proposed for

obtaining approximate solutions to both the one and

two-dimensional problems for sequential and parallel

models of computation. Three-dimensional problems

were initially studied to a lesser degree, but recent

work now appears regularly in the literature. The

performance of a given heuristic (i.e., the

computational time and resources needed to find

a packing), as well as the quality of the packing that

is constructed by the heuristic are important

considerations that have been analyzed by many

researchers.

Surveys of many classical bin-packing algorithms

can be found in Coffman et al. (1996). A bibliography

of cutting and packing research was presented by

Sweeney and Paternoster (1992), while a more recent

typology that characterizes cutting and packing

problems is described in W€ascher et al. (2007).

Recent probabilistic analyses of approaches for

solving one-dimensional bin-packing problems are

discussed in Coffman et al. (2000). Two-dimensional

packing problems are surveyed by Lodi et al. (2002)
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and meta-heuristic algorithms for strip packing

problems are reviewed in (Hopper and Turton 2001).

Recent work that addresses three-dimensional packing

problems includes (Martello et al. 2000), (Faroe et al.

2003), and (Parreño et al. 2008). Heuristic approaches

for solving irregular and polygonal packing problems

are presented by Jakobs (1996) and Burke et al. (2010).

Algorithms for solving the problem on various

parallel models of computation can be found in

Anderson et al. (1989), Fenrich et al. (1989), Berkey

(1990), and Coleman and Wang (1992). The EURO

Special Interest Group on Cutting and Packing

maintains a website for research activities related to

cutting and packing.
Characterizations of Bin-Packing Algorithms

Many types of bin-packing algorithms have been

proposed and analyzed for both sequential and parallel

systems. Sequential heuristics can be classified as either

on-line or off-line algorithms. On-line algorithms assign

data items to bins in the same order as originally input,

without utilizing any global knowledge of the data list.

For example, the Next-Fit packing and Sum of Squares

heuristics are on-line algorithms that perform

one-dimensional packing. Off-line algorithms

preprocess the data, usually by sorting. Well-known

examples are the First-Fit Decreasing and Best-Fit

Decreasing algorithms. Alternatively, other methods

may preprocess the input data by partitioning the items

by size into subintervals, and then pack the data using

those sub-intervals. These techniques are described in

more detail below.

Approximation algorithms for solving the

one-dimensional bin-packing problem on various

models of parallel computation have been reported. It

has been shown that several frequently used sequential

bin packing strategies such as First-Fit Decreasing are

P-Complete. Thus, it is unlikely that these heuristics

can be parallelized into efficient algorithms for the

theoretical Parallel Random Access Machine

(PRAM) model of computation. However, other

well-known sequential strategies such as Harmonic

packing can be parallelized efficiently. In the

previous decade, experimental studies of similar

heuristics were performed on Single-Instruction,

Multiple-Data (SIMD) and Multiple-Instruction,

Multiple-Data (MIMD) parallel computers.
Theoretical Studies

Performance metrics have been formulated as a means

to compare these different packing algorithms when

executed on random data. Theoretical analyses

typically include worst-case and average-case

packing performance of the heuristics. The

asymptotic worst-case performance can be defined as

the limiting ratio of an algorithm’s worst instant

packing to its optimal packing. For example, if A(L)
and OPT(L) are the number of bins packed by an

algorithm A and the optimal number of bins needed

for a list L, respectively, then the asymptotic

performance ratio can be defined as
R1
A ¼ inf r � 1 : for someN > 0; AðLÞ=OPTðLÞ� rf

for all L with OPTðLÞ � Ng

Two measures of average-case packing

performance that have been studied are the expected

values E(RN) and E(U) where RN is the ratio of the

average number of bins packed by the algorithm to the

average size of all data items and U is the difference

between these quantities. Further, an algorithm is often

said to exhibit perfect packing if E(R)¼ 1, where E(R)

is the limiting distribution of E(RN), or when

EðUÞ ¼ O
ffiffiffiffi
N

p� �
:

These metrics are studied analytically as well as by

simulation. The input data are usually assumed to

come from a uniform distribution U[a, b]. Coffman

et al. (2000) introduced the perfect packing theorem

and show that the optimal expected wasted space for

a random list is either o(n), o(n0.5) or o(1). These
researchers have also shown that the average case can

differ substantially between discrete and continuous

uniform distributions.

An alternative measure of packing performance is

to determine the expected waste of the packing. If

Ln(F) denotes a list of n items drawn according to

a probability distribution F and PA
n ðFÞ denotes

a packing resulting from the application of algorithm

A, then the expected waste is defined as

EWA
n ðFÞ ¼ E W PA

n ðFÞ
� �� 	

where expectation is taken

over the random variable Ln(F).

Theoretical studies of bin packing problems are

often aimed at determining whether asymptotic

approximation schemes can be constructed. In this



Bin-Packing 119 B

case, researchers seek to determine if for every e > 0,

there is a polynomial time algorithm Ae having an

asymptotic approximation ratio of 1þ e.
B

Some One-Dimensional Packing Heuristics

The Next-Fit algorithm packs one-dimensional items

into one-dimensional bins in the simplest fashion. The

data items are processed one at a time, beginning with

p1, which is put into binB1. If item pi is to be packed and

Bj is the highest indexed nonempty bin, then pi is placed

into bin Bj if it fits into Bj; that is, pi + size(Bj) � C.
Otherwise, a new bin Bj+1 is started and pi is placed into

it. In this manner, each successive piece is packed into

the most recently used bin, and previously packed bins

are not considered. Next-Fit is a fast on-line algorithm

whose time complexity is O(n). Its worst-case

performance ratio is bounded by 2, and its average

performance by 3/2. Variants of Next-Fit have been

proposed and include Next-Fit-Decreasing, Next-1-Fit,

and Next-K-fit. The basic approach is also used

to obtain level-oriented heuristics for solving

two-dimensional bin packing problems.

The Harmonic packing algorithm begins by

partitioning the unit interval into the set of intervals

Ik ¼ (1/(k + 1), 1/k], 1 � k < m and Im ¼ (0, 1/m].

The bins are divided into m categories and an Ik-bin
packs at most kIk data. The packing of each Ik piece

into an Ik-bin is done using the Next-Fit Algorithm. At

any given time, an active list of all unfilled Ik-bins is
kept. The Harmonic algorithm has a worst-case

performance bound of 1.69; some modified versions

of the approach have been shown to have lower

performance bounds.

The Sum-of-Squares (SS) algorithm is an online

method for packing items with integral sizes into bins

of capacity C. It has time complexity O(nC). If the

amount of unpacked space in a bin is called its gap, g,

and N(g) is the number of bins in a current packing

with gap g, then this algorithm puts an item pi into a bin

such that after placing the item, the value ofPC�1
g¼1 NðgÞ2 is minimized.

Theoretical analysis of this algorithm demonstrates

that for any perfectly packable distribution F, that

EWSS
n ðFÞ ¼ O

ffiffiffiffi
N

p� �
and if F is a discrete uniform

distribution U(j, C) where j < C � 1, then

EWSS
n ðFÞ ¼ Oð1Þ. For all lists L, it is further
demonstrated that SS(L) < 3OPT(L). Csirik et al.

(2006) survey other online algorithms including

randomized variants of sum-of-squares. Bender et al.

(2007) propose two variants of the sum-of-squares

algorithm and Seiden (2002) presents a survey as well

as an online algorithm based on the Harmonic approach.

The First-Fit (FF) heuristic packs each successive

data item pi into the lowest indexed bin Bj into which it

fits. When this is not possible, a new bin is created.

Thus, it is necessary to maintain a list of all partially

filled bins. For the worst-case, average case, and lower

bound performance of First-Fit, it has been shown that

the numberof bins used by this algorithm is 17/10

OPT(L) � 2, where OPT is the number of bins used

by the optimal solution. Xia and Tan (2010) decreased

the upper bound for the asymptotic performance ratio

to 17/10 OPT + 7/10 for First-Fit and for the absolute

performance ratio– to 12/7 OPT. The time complexity

of First-Fit is O(n log n).

If the items are initially sorted in non-increasing

order before packing proceeds, the heuristic is

referred to as First-Fit Decreasing, and the

performance bound decreases to 11/9 OPT + 6/9.

Other algorithms that are based on this approach

include Best-Fit (where the “best” bin is chosen if

there is more than one possibility), Best-Fit

Decreasing, Worst-Fit, Almost Worst-Fit, Revised

First-Fit, and Modified First-Fit Decreasing bounded

by 71/60OPT + 1.When the data items are drawn from

a uniform distribution, then E(A(L)) � n/2 ¼ O(n) for
the First-Fit Decreasing and Best-Fit Decreasing

algorithms. Asymptotic polynomial-time

approximation schemes show that it is possible to

find a solution for any 0 < e � 1=2 in polynomial

time using at most ð1þ 2eÞOPT þ 1 bins.
Some Multi-Dimensional Packing Heuristics

Two-Dimensional Packing

The Two-Dimensional Bin-Packing Problem requires

packing a finite set of small rectangles into the

minimum number of rectangular bins without

overlapping. The problem is strongly NP-hard, and

has several industrial applications. Other variants

of two-dimensional bin-packing problems occur

in real-world applications, especially in the

manufacturing industries. Additional constraints may

include orientation where items can be rotated by 90	
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or have to stay fixed. For example, rotation is not

allowed when the items are articles to be paged in

newspapers.

Researchers have applied one and two-phase

algorithms that make use of upper and lower bounds

on the number of bins needed to pack the input

rectangles. These approaches are often integrated into

greedy heuristics and tabu searches. One-phase

algorithms directly pack the items into the finite bins.

Two-phase algorithms start by packing the items into

a single strip, i.e., a bin having width W and infinite

height. In the second phase, the strip solution is used to

construct a packing into finite bins. Lodi et al. (2002)

survey advances obtained for the two-dimensional bin

and strip packing packing problems, with emphasis on

exact algorithms whose goal is to find an optimal

solution, as well as effective heuristic and

metaheuristic approaches.

Level-oriented packing heuristics pack rectangles

into a single two-dimensional bin (or strip) that has

infinite height. In these approaches, the rectangles to

be packed are first ordered by non-increasing height.

The packing is constructed as a sequence of levels,

whose heights are defined by the heights of the first

rectangles placed in the respective levels. The Next-Fit

or First-Fit approaches can be used to define and fill

these levels of the bin. The asymptotic performance

bounds of the Next-Fit Decreasing Height (NFDH) and

First-Fit Decreasing Height (FFDH) heuristics are

2 and 1.7, respectively. Figure 1 illustrates these

packing heuristics.

Similar approaches in which the heights of the

levels are preset by a parameter yield a variety of
shelf heuristics, where these levels can be packed in

a similar fashion. Next-Fit Shelf and First-Fit Shelf are

examples of these heuristics. Their corresponding

execution times are O(n) and O(n2). If the parameter

that dictates the shelf heights is defined by r, then these
methods have asymptotic performance bounds of

2/r and 1.7/r, respectively.
Bottom-Left (BL) packing approaches pack

rectangles into an infinite height bin by successively

placing each item into the bottom-most, left-most

position in which it fits without overlapping any

rectangles that have already been packed. If the items

are preordered by non-increasing width, then the worst

case bound of this heuristic indicates that the height of

the packing does not exceed twice the height of an

optimal packing. The algorithm can be implemented

in O(n2) time and a sample packing is shown in Fig. 2.

Alternative methods may divide the set of items

being packed into sublists that are used to obtain

a split packing. In this case, the infinite height bin is

also divided into subregions where one-dimensional

heuristics are used to pack the rectangles. Classical

techniques include Split-Fit, Mixed Fit, and

Up-Down (see Fig. 3) which require O(n log n) time.

Performance ratios of 2, 1.33, and 1.25, respectively,

have been proven for these approaches. Other similar

methods appear in the literature. Coffman and Shor

(1993) discuss asymptotic average-case analysis for

two-dimensional bin-packing.

One particular heuristic that uses a split packing

approach addresses the problem of packing squares

into a two-dimensional strip of unit width. The

squares whose widths are greater than 1/2 are first
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stacked along the left edge of the strip in order of

decreasing width. Starting at the height,

H1=2 ¼
P

wi>1=2 hi, where the sum of the sizes of

packed squares exceeds 1/2, the remaining squares

are stacked along the right edge of the strip in order

of decreasing width. This stack slides downward until
it either rests on the bottom of the strip, or a square in

the right stack comes in contact with a square in the left

stack, whichever occurs first. Finally, all the squares

lying entirely above H1/2 are repacked into two stacks,

one against the left edge of the strip and the other

against the right edge. This is done in decreasing

order of size, placing each successive square on the

shorter of the two stacks already created. A sample

packing is shown in Fig. 4. It can be shown for this

algorithm, that E(A(L)) ¼ E(OPT(L)) + O(1).

Whenmulti-dimensional objects are to be packed into

a minimum number of multidimensional bins, the vector

packing approach can be used. This technique is a direct

generalization of the one-dimensional problem. For

example, if rectangles are to be packed into square bins,

then the only types of packing that are permitted are

those where the rectangles are diagonally placed

corner-to-corner across the bins. In general, if a vector

packing algorithm is such that no two nonempty bins can

be combined into a single bin, then the ratio of the

number of bins packed to the optimal solution does not

exceed d + 1, where d is the number of dimensions.

Extensions of the First-Fit and First-Fit Decreasing
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heuristics to this multi-dimensional case have yielded

approaches whose asymptotic worst case ratio is

d + 7/10 and d + 1/3, respectively.

Metaheuristic algorithms have been used

extensively in recent years to solve two-dimensional

bin-packing problems. In short, metaheuristic methods

are general frameworks that try to improve the

direction of the search for the best solution, thus

finding a better solution at every iteration. There are

no guarantees of finding an optimal solution, but many

metaheuristics implement some form of stochastic or

linear optimization. Genetic algorithms, simulated

annealing, and tabu search are examples of

metaheuristic algorithms.

Hopper and Turton (2001) review several

approaches developed to solve two-dimensional

packing problems with metaheuristic algorithms.

Genetic algorithms (GAs) were first used in the

mid-1980s to solve strip and bin-packing problems.

Many employ a two-step approach referred to as

a hybrid genetic algorithm. Encoded solutions

corresponding to physical layouts are manipulated by

GAs that evaluate the solutions using decoding

algorithms. In some cases, these decoded layouts

correspond to non-overlapping packings that are

obtained using a bottom-left packing heuristic. Other

researchers have used a sliding principle that gives

priority to the downward shifting of the rectangle

being packed for the decoding routine.

Other genetic algorithms incorporate layouts

directly into the encoding technique. For example,

postfix strings corresponding to packing layouts can

be manipulated by GAs. In the example shown in

Fig. 5, the A B + and CD* substrings correspond to
placements of two rectangles that are horizontally or

vertically adjacent, respectively.

It is also possible for genetic algorithms to operate

without encodings. An initial layout can be modified

by rotating, translating, and/or relocating an item

(or subset of items) in the layout. These operators

correspond to hill-climbing and the mutation and

recombination features of GAs. Hopper and Turton

(2001) compare some meta-heuristic algorithms to

two-dimensional random search and heuristic

packing routines. The comparison is made in terms of

the solution quality and the computation time for

a number of packing instances of different sizes.

Simulated annealing, tabu search and exact

algorithms have also been used to compute solutions

to two-dimensional bin and strip packing problems.

See (Lodi et al. 2002) for a survey of some of these

approaches. A simulated annealing approach

was first applied to a pallet loading problem

(i.e., a three-dimensional packing problem that has

been reduced to its two-dimensional footprint).

Simulated annealing is a hill-climbing approach

where solutions that are worse may be accepted as

dictated by a cooling schedule which is determined

by a given probability function. For the pallet loading

problem, the number of feasible solutions for a box is

equated with multiples of the item length.

Neighborhoods are defined by moving each item in

a solution to another position (with some

restrictions). As a result, the simulated annealing

heuristic would allow both legal and illegal packings

as it attempted to improve the solution quality. The

objective function must then minimize any overlaps

that occur in the packing layout.
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The tabu search strategy utilises a search scheme

and a candidate neighborhood that is consturcted from

a feasible solution: a heuristic recombines a subset of

items currently packed into k different bins along with

one item packed into a bin that is likely to be emptied.

The value of k is also updated during the search to

escape from local optima. A mechanism (i.e., the use

of memory) must be built into the tabu search to

prevent the heuristic from returning to recently

examined packings.

Lower bounds are used to guide search strategies in

exact algorithms whose goal is to find optimal

solutions. For example, in one branching scheme,

each node in the search tree represents a subset of

packed rectangles which define a set of corner points

for the bottom-left placement of unpacked items (see

Fig. 6). The use of bounds to traverse a search tree

corresponds to the selection of branches to investigate

or ignore.

The average performance of exact algorithms and

metaheuristics are typically evaluated through

extensive computational experiments using

benchmark data sets as described in (Parreño et al.

2008). Other more recent two-dimensional and

three-dimensional examples include Bekrar and

Kacem (2009) and Puchinger et al. (2010).

Three-Dimensional Packing

Algorithms for obtaining heuristic solutions to

three-dimensional packing problems in which boxes

are to be packed into a minimum number of identical

three-dimensional bins have been characterized

as either local-search or construction heuristics
(Faroe et al. 2003). Analgous to the two-dimensional

case, local-search methods iteratively seek better

packings of the boxes by examining neighborhoods

of solutions, while constructive heuristics add boxes

to a packing using strategies such as First-Fit or

Best-Fit. Examples of recent heuristics that have

employed these methods include guided local search

(GLS), a two-level tabu search (TS2PACK), and

a greedy randomized adaptive search procedure

(GRASP) that is combined with a variable

neighborhood descent (VND) structure.

The GLS strategy has roots in constraint-

satisfaction applications and uses memory (typical of

tabu search methods) to guide the search of the

solution space by augmenting the objective function

with penalties for previously visited solutions. It

begins with an upper bound calculated from an initial

greedy solution and then iteratively removes one bin

from the feasible solution. Translation of boxes within

one bin or between bins defines the neighborhood

of the local search algorithm. To speed up the search

process, some boxes are temporarily fixed in position.

As before, the objective function additionally reflects

the total volume of an overlap between boxes.

The TS2PACK heuristic uses a first-level tabu

search that addresses the optimality of the packing

problem and a second-level tabu search that finds

feasible solutions for the items assigned to the bins.

An initial solution is computed using a Next-Fit

Decreasing packing based on box volumes and the

extreme points that are identified for a given

box – these indicate positions where an additional

item can be accommodated with respect to the given

box. Then the TS2PACK heuristic iteratively discards

the bin with the worst fitness function value (defined

as the weighted sum of the volume used by the items in

the bin and the number of items). Each discarded item

is packed into one of the remaining bins which yields

the maximum fitness function value (i.e., minimizes

the height of the new packing with bin size constraints

relaxed). If this packing is not feasible due to bin size

violations, a second heuristic is employed to optimize

the packing with respect to the bin size constraints.

This heuristic is a tabu search that uses interval graphs

to represent the layout. By manipulating the graphs,

alternate layouts can be generated that correspond to

moving boxes by locating them in different positions.

The packing performance of these and other

heuristics is compared against the GRASP/VND
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approach summarized in (Parreño et al. 2008). Large

sets of test cases are studied that include both two and

three-dimensional problem instances. The results

indicate that this method obtains comparable or better

solutions to the other algorithms.

The GRASP/VND heuristic is an iterative method

that combines a randomized constructive phase and an

improvement phase. The constructive phase iteratively

fills one bin with boxes by considering the maximal

spaces created by placing boxes near corners of the bin.

Boxes to be packed are selected based on best-volume

or best-fit criteria. This is repeated until all boxes are

packed into bins.

Attempts may be made to improve the packing by

moving boxes in the bins that have first been sorted by

volume. Four improvementmoveswere proposed: move

the last k percent of boxes, move a percentage of boxes in

every bin that has below average occupancy, move

different parts of the bins to be emptied, or combine

subsets of boxes in complementary bins and refill both

with the remaining boxes.

The application of improvements (i.e., the

movements of the chosen boxes) was dictated by

several strategies. One of these applied the VND

strategy to explore the solution neighborhood defined

by the four possible moves. If the GRASP/VND

heuristic appeared to be stuck at a local solution,

diversification iterations are applied in the

constructive process which require packing the most

frequently remaining boxes first.

Recent Theoretical Studies of Multi-Dimensional

Packing

Several theoretical analyses have been performed for

multi-dimensional bin-packing heuristics that provide

performance guarantees for packing quality as well

as for algorithm execution time. One example is the

recent work related to polynomial time approximation

schemes (APTAS) for the three-dimensional

strip packing problem. It has been shown that

APTAS’s exist for one-dimensional bin-packing and

two-dimensional strip packing problems, but an

APTAS will only exist for two-dimensional

bin-packing problems if P ¼ NP. These results are

reviewed by Bansal et al. (2007) who also develop

two approximation schemes: one for packing

three-dimensional strips with arbitrarily sized boxes

and a second for packing boxes with square bases.
Their first algorithm initially applies a Harmonic

transformation (i.e., using intervals similar to those

defined in the 1DBPP Harmonic heuristic) to the box

widths, then it creates slabs of items to form

two-dimensional strip packing instances. The

two-dimensional strip is then cut into slices to

produce new items that are placed on top of each

other in the height dimension of a three-dimensional

strip. The authors prove that this algorithm has an

asymptotic approximation ratio that is arbitrarily

close to the Harmonic number T1 
 1.69.

The second algorithm A packs of set I of

three-dimensional boxes with square bases so that the

height of the packing does not exceed

ð1þ 12eÞOPTðIÞ þ OðKÞ where K ¼ e�Oð21=eÞ.
An APTAS for packing d-dimensional cubes into

a minimum number of unit cubes has been developed

by Correa and Kenyon (2004) who also present

a scheme for packing rectangles into at most OPT

square bins whose sides have length 1þ e and OPT
denotes the minimum number of unit bins required to

pack the rectangles.
Parallel Algorithms

Many parallel algorithms have been proposed and

studied for solving the cutting stock and knapsack

variants of the bin-packing problem. Heuristics have

also been proposed that obtain approximate solutions

to the one-dimensional bin-packing problem on

various models of parallel computation.

For the shared-memory Exclusive-Read

Exclusive-Write PRAM model of computation,

a heuristic based on First-Fit Decreasing has been

proposed which runs in O(log n) time on n log n

processors (Anderson et al. 1989). This approach

divides the data items into two groups. Items in the

first group are partitioned into sublists that are packed

into “runs” of bins. The bins are then filled using items

in the second group. The algorithm relies on parallel

prefix, merging, and parenthesis matching operations,

and has a worst-case performance bound of 11/9.

Practical one-dimensional bin-packing algorithms

(including parallelizations of the Harmonic

algorithm) have also been proposed and implemented

on parallel architectures such as systolic arrays, SIMD

arrays, and MIMD hypercubes. Quantitative studies
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and theoretical analyses have been performed on some

of these approaches. The Systolic packing algorithm,

for example, has a worst-case performance bound of

1.5 and executes in O(n) time. Similar results were

reported in Berkey (1990).

Coleman and Wang (1992) formulated an online

heuristic for massively parallel systems that used

interval partitioning. The average case behavior

of the heuristic could be predicted when the input

have a symmetric distribution. The method is

asymptotically optimal, yields perfect packings, and

achieves the best possible average case behavior with

high probability.
See

▶Combinatorics

▶Computational Complexity

▶Cutting Stock Problems

▶Heuristics
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▶Metaheuristics

▶ Parallel Computing
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Bipartite Graph

A graph or network whose nodes can be partitioned

into two subsets such that its edges connect a node in

each partition.
See

▶Assignment Problem

▶Graph Theory

▶Network Optimization

▶Transportation Problem
Birth-Death Process

A stochastic counting process that satisfies the following

is called a birth-death process: (1) changes from state

n (sometimes written more generally as state En) may

only be to states n + 1 or n� 1 (i.e., changes can only be

�1 unit); (2) the probability of a birth (death) occurring

in the “small” interval of time, (t, t + dt), given that the

process was in state n at the start of the interval, is

lndtþ o dtð Þ½mndtþ o dtð Þ�, where o(dt) is a function

going to 0 faster than dt. Such processes are in fact

Markov chains in continuous time. The system size

of an M/M/1 queueing system is an example of

a birth-death process where ln ¼ lðn ¼ 0; 1;

2; . . .Þ and mn ¼ mðn ¼ 1; 2; . . .Þ. Markov chains;

Markov processes.
Bland’s Anticycling Rules

A set of pivot rules, the application of which to

linear-programming (degenerate) problems, prevents

cycling in the simplex algorithm. Their basic
principle is that whenever there is more than one

eligible candidate in selection of the variable entering

the basis, or the variable leaving the basis, the

candidate with the smallest index is chosen.
See

▶Anticycling Rules

▶Cycling

▶Degeneracy
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Blending Problem

The linear-programming problem of blending raw

materials, for example, crude oils, meats, to produce

one or more final products, for example, fuels,

sausages, so that the total cost of production is

minimized. The problem is subject to restrictions on

material availability, blending requirements, quality

restrictions, etc.
See

▶Activity-Analysis Problem

▶ Stigler’s Diet Problem
Block Pivoting

The process of entering several nonbasic variables

simultaneously into the basis in the simplex algorithm.
See

▶ Simplex Method (Algorithm)
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Block-Angular System

A linear system of equations for which its matrix

of coefficients A can be decomposed into k separate

blocks of coefficients Ai, where each Ai represents

the coefficients of a different set of equations.

This structure typically represents a system consisting

of k subsystems whose activities are almost

autonomous, except for a few top-level system

constraints whose variables couple the k blocks of

the subsystems. Such systems can also have a few

variables external to the blocks that couple the blocks.
See

▶Dantzig-Wolfe Decomposition Algorithm

▶Large-Scale Systems

▶Weakly-Coupled Systems
Block-Triangular Matrix

A matrix which is lower (upper) triangular except for

a number of blocks along the diagonal.
See

▶Triangular Matrix
Bonferroni Inequality

Result in basic probability that provides a general

lower bound on the intersection of events E1,. . ., En:
Pð
\n
i¼1

EiÞ � 1�
Xn
i¼1

PðEc
i Þ:

Note that the events need not be independent (nor

mutually exclusive).

Applied in stochastic simulation output analysis

to make statements about the overall confidence level

of multiple performance measures (simultaneous
confidence intervals). For example, for three output

performance measures each with 99% confidence

levels, the overall confidence level would be at

least 97%.
Bootstrapping

In forecasting, the term bootstrapping refers to models

that have been developed by regressing an individual’s

(or group’s) forecasts against the inputs that the

individual used to make the forecasts.
See

▶ Forecasting

▶Regression Analysis
Bootstrapping: Resampling Methodology
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Introduction

Researchers typically encounter many situations in

which parametric statistical techniques are less than

ideal. The t-statistic, for example, assumes that the data

were sampled from a normal distribution. Of course,

much real-world data follow distributions that are

far from normal, and may in fact be quite skewed.

Suppose a researcher is investigating data that is

known to follow an exponential distribution. Clearly,

it would take an extremely large sample and a great

deal of manipulation (e.g., averages of averages), for

the central limit theorem to apply. In many cases, there

is no parametric test for the measurement of interest

because the sampling distribution of that measurement

may be unknown and thus there would be no tractable

analytic formulas for estimating such measures,

for example, the difference between two medians

(Mooney and Duval 1993, p. 8).
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data and statistics, Example I

Life Frequency

8.0 3

9.0 5

10.0 6

11.0 2

�x ¼ 9.438, s ¼ 0.964, n ¼ 16

4000

3000

2000

1000
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There are a number of nonparametric statistical

techniques that do not rely on distributional

assumptions and often may be used in place of

the more traditional parametric tests. Many

nonparametric techniques, however, work only with

the median as a measure of central tendency (e.g.,

Mann-Whitney-Wilcoxon). This may present

a problem for researchers who are more interested in

the mean as the measure of interest.

The bootstrap statistic (Efron 1981, 1982;

Mooney and Duval 1993) is a nonparametric,

computer-intensive resampling technique, which

makes no distributional assumptions and may be used

for estimation and hypothesis testing. The bootstrap,

jackknife, and other related resampling methods are

beginning to generate interest among management

scientists. Indeed, these tools can be very useful for

the type of data that is frequently encountered by

management scientists.
8 8.4 8.8 9.2 9.6

Value

10 10.4 10.8 11.2 11.6 12

Bootstrapping: Resampling Methodology, Fig. 1 Histogram

of mean lifetimes, 10,000 resamples, Example I
The Bootstrap Method

With traditional parametric inference, a sample is taken

and a statistic, often the samplemean, is computed. This

statistic is assumed to follow a known distribution

(normal, t-distribution, F-distribution, w2-distribution,
etc.), which then allows the researcher to perform

hypothesis tests and/or estimate confidence intervals.

With bootstrapping, which was developed mainly to

determine the standard error for other types of

estimates (Efron and Tibshirani 1991), the sample

itself is used to construct a sampling distribution by

selecting from it many resamples, or pseudo-samples.

Resampling from the sample is done with

replacement. Thus, it is like sampling from an infinite

population with a composition that exactly matches that

of the sample that was originally drawn. After

resampling a great number of times one may construct

a sampling distribution for a statistic of interest, such as

the mean, median, or any percentile. This distribution,

which is entirely based on the original sample and not on

any theoretical distribution, may then be used to test

hypotheses about measures of interest and to construct

confidence intervals.

To illustrate the method, two illustrative examples

are presented. The first is a hypothesis test for a sample

from a single population; the second, for samples from

two presumably different populations.
Example I A company claims that the average life of

a part that it manufactures is at least 10 hours.

A sample of 16 parts is taken in order to test this

claim. The sampled data is summarized in Table 1.

A parametric analysis using the t-statistic would

have to assume that the underlying population is

normally distributed since the sample is too small to

rely on the central limit theorem. Moreover, this type

of data is usually not normally distributed, or even

symmetrical.

Using the bootstrap method, 10,000 resamples,

each of size n ¼ 16, were taken from the original

data. Figure 1 is a histogram of the 10,000 resampled

means. One can see that the means seem to be hovering

about the values 9.3 to 9.7 hours, and very few are

actually above 10.0. Table 2 confirms that only a small

fraction of the means were above 10.0. As a matter of

fact, the 95 percent one-sided confidence interval is

bounded by the value of 9.8125 hours. This means that

only 5 per cent of the resamples hadmean values above

9.8125. Clearly, the claim that the average life of these

parts is at least 10 hours should be rejected.



Bootstrapping: ResamplingMethodology, Table 2 Frequency

distribution of mean lifetimes, Example I (note that each category

covers all values within 0.1 of its center)

Center value Frequency Percent Cum percent

8.6 7 0.1 0.1

8.8 92 0.9 1.0

9.0 583 5.8 6.8

9.2 1798 18.0 24.8

9.4 3057 30.6 55.4

9.6 3342 33.4 88.8

9.8 920 9.2 98.0

10.0 184 1.8 99.8

10.2 16 0.2 100.0

10.4 1 0.0 100.0

Bootstrapping: Resampling Methodology, Table 3 Sample

data and statistics, Example II

Group 1 Group 2

13.8 12.6

13.3 12.4

13.7 12.9

13.6 13.3

15.2 14.2

14.4 13.0

13.6 13.4

13.3 12.9

13.6 13.5

13.8 13.6

�x1 ¼ 13.83 �x2 ¼ 13.18

s1 ¼ 0.57 s2 ¼ 0.53

nn1 ¼ 10 n2 ¼ 10

4000

3000

2000

1000

–2 –1.6 –1.2 –0.8 –0.4
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Bootstrapping: Resampling Methodology, Fig. 2 Histogram

of mean lifetimes, 10,000 resamples, Example II

Bootstrapping: ResamplingMethodology, Table 4 Frequency

distribution of mean lifetimes, Example II (note that each category

covers all values within 0.1 of its center)

Center value Frequency Percent Cum percent

21.2 1 0.0 0.0

21.0 4 0.0 0.1

20.8 42 0.4 0.5

20.6 273 2.7 3.2

20.4 1065 10.6 13.9

20.2 2164 21.6 35.5

0.0 2876 28.8 64.3

0.2 2189 21.9 86.1

0.4 1026 10.3 96.4

0.6 305 3.0 99.4

0.8 50 0.5 99.9

1.0 5 0.1 100.0
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Example II A similar type of analysis can be done for

a two-sample test. Consider the data in Table 3,

representing the life (in weeks) of similar parts from

two different manufacturers or two different

production processes. As in Example I, a parametric

test would require an assumption of normally

distributed lifetimes, which again may be unrealistic.

With the bootstrapping approach, first combine the

two groups of data into one (i.e., under the assumption

that H0 is true). Then, this combined group is

resampled to produce two groups of data items, and

the mean difference of the two groups �x1 � �x2 is

recorded. This resampling is done many times, and

the resulting mean differences are compared with the

observed mean difference in the original set of data.
In the above example, the observed mean difference

is 0.65weeks (13.83–13.18). The question is, what is the

likelihood that this difference occurred by chance?

Since this is a two-tailed test, consider resamples for

mean differences greater than 0.65 or less than � 0.65.

Figure 2 contains the histogram of the mean differences

of 10,000 re-samples, in which each resample produced

two groups of size n ¼ 10 each. Examination of this

histogram and of Table 4 shows that almost all of the

mean differences fall between–0.5 to 0.5. Actually, only

1.85% of the resampled mean differences were either

greater than 0.65 or below–0.65. At a significance level

of 0.05, reject the hypothesis that the two population

means are the same.
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Concluding Remarks

Bootstrapping is clearly a technique that is very useful

to researchers. It should, however, be pointed out that

this technique is totally dependent on the integrity of

the original sample of data. If the sampled data is

indeed a good representation of the underlying

distribution, inferences based on resampling this data

will be valid. On the other hand, if the original sample,

say, over represents high values of the output

distribution, then the resamples and inferences based

on them cannot be trusted. If the sample is biased, the

resampling technique may reflect and possibly

magnify these biases.

Some areas in operations research and management

science that have made use of bootstrapping and other

resampling techniques include: quality control (Jeske

1997; Seppala 1995), analysis of simulation output

(Friedman and Friedman 1995; Kim et al. 1993),

neural networks (LeBaron 1998; Shimshoni 1998),

performance evaluation (Cho 1997), and production

(Jochen 1997).

Mooney and Duval (1993) describe how the

bootstrap procedure may be used with SAS and

RATS. Resampling Stats (Simon 1995), a simple

computer package for bootstrapping, is user-friendly,

relatively inexpensive, and comes with numerous

examples. Fan and Jacoby (1995) describe a SAS/

IML program for performing the bootstrap

resampling technique in regression analysis.

Bootstrapping can also be done with spreadsheets

(Willemain 1994).
See

▶Regression Analysis
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Bounded Rationality

The concept that a decision maker lacks both the

knowledge and computational skill required to make

choices in a manner compatible with economic notions

of rational behavior.
See

▶Choice Theory

▶Decision Analysis

▶Multiple Criteria Decision Making

▶ Satisficing
References

Simon, H. A. (1955). A behavioral model of rational choice.

Quatrely Journal of Economics, 69, 99–118.
Simon, H. A. (1957). Models of man: Social and rational.

New York: John Wiley & Sons.

http://dx.doi.org/10.1007/978-1-4419-1153-7_871
http://dx.doi.org/10.1007/978-1-4419-1153-7_112
http://dx.doi.org/10.1007/978-1-4419-1153-7_215
http://dx.doi.org/10.1007/978-1-4419-1153-7_653
http://dx.doi.org/10.1007/978-1-4419-1153-7_200990


Buffer 131 B

B

Bounded Variable

A variable xj in a linear-programming problem that is

required to satisfy a constraint of the form 0 � xj � b,

�b � xj � 0, or b1 � xj � b2, where b is some

positive constant and b1 � b2.
See

▶Linear Programming
Branch

To move and analyze a new computational path (i.e.,

branch)basedontheresultsobtainedfromapreviouspath.
See

▶Branch and Bound
Branch and Bound

A method for solving an optimization problem, by

successively partitioning (branching) the set of

feasible points to smaller subsets, and solving the

problem over each subset. The resulting problems are

called subproblems or nodes in the enumeration tree.

The idea in branch and bound is that the optimal

solution to the problem is the best among the optimal

solutions to the subproblems. To reduce the number of

subproblems solved, best-case bounds are computed

by solving relaxed problems defined at the nodes. If the

best-case bound on a solution to a subproblem is worse

than the best available solution, the subproblem is

eliminated from consideration (fathomed). Branch

and bound techniques are frequently used to solve

integer-programming problems, as well as in global

optimization.

See

▶Global Optimization

▶ Integer and Combinatorial Optimization

▶ Integer-Programming Problem
Brownian Motion

A one-dimensional Brownian motion {B(t), 0 � t}
is a continuous-time, Markovian, real-valued

stochastic process having continuous sample

paths; its distribution is Gaussian with mean

function E[B(t)] ¼ mt and covariance function

Cov[B(s), B(t)] ¼ s2 min (s, t). An n-dimensional

Brownian motion is a stochastic process on n whose

n components are independent one-dimensional

Brownian motions. Named after Scottish botanist

Robert Brown. Also known as the Wiener process,

named after mathematician Norbert Wiener.
See

▶Markov Processes
BTRAN

The procedure for computing the dual variables in

a simplex iteration, when the LU factors of the basis

matrix are given in product form. The name BTRAN

(backward transformation) derives from the fact that

the eta file is scanned backwards in the solution

process.
See

▶Eta File
Buffer

The queue or the waiting room in a queueing system.

Most often used for networks, especially tandem

networks or series queues.
See

▶Queueing Theory
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Bulk Queues

Arrivals to a queueing systemmay consist of more than

one customer at a time, and/or service might process

more than one customer simultaneously.
See

▶Queueing Theory
Bullwhip Effect

▶ Supply Chain Management
Burke’s Theorem

The steady-state departure process of a stable M/M/c
queueing system is a Poisson process with the same

rate as the arrival process, irrespective of the

service rate.
See

▶Queueing Theory
Business Intelligence

Paul Gray

Claremont Graduate University, Claremont, CA, USA
Introduction

Business Intelligence (BI) systems are sophisticated

analytical tools that present complex organizational

and competitive information in a way that allows
decision makers to decide quickly and appropriately.

While the term Business Intelligence is relatively new

(it was introduced in 1989, popularized in the 1990s),

computer-based BI systems existed, in one guise or

another, decades prior to that. BI-type functionality

was available previously to varying degrees in

Financial Planning Systems (4GLs), Executive

Information Systems (EIS), Decision Support

Systems (DSS), Data Mining, and On Line Analytic

Programming (OLAP). With each new iteration,

capabilities increased as enterprises grew ever-more

sophisticated in their computational and analytical

needs and as computer hardware and software

matured. This article explores the capabilities of

state-of-the-art BI, their benefits to adopters, and the

role of Analytics in BI.

BI describes data-driven decision support systems

(Power 2005) for managers. In its initial form, it

involved business analysts who refined (mostly

internal) business data to create input for management.

Such systems have been marketed commercially since

the 1960’s, if not earlier. BI is now closely linked to

Analytics, the use of quantitative methods for solving

organizational problems. BI is broader than Analytics

because it involves soft methodologies and information

systems, as well as Operations Research (OR).

Objective and definition of BI: The objective of BI

is to improve the timeliness and quality of the input to

the decision process.

To achieve this objective, BI systems combine:
Data gathering
Data storage
 with
 Analysis
Knowledge management
to evaluate complex organizational and competitive

information and present the results to planners and

decision makers.

The first three operations are inputs, typically

performed by people with information systems and

data analysis skills. The skills of Analytics are

brought to the table by people trained in OR,

statistics, and other quantitative disciplines.

Implicit in its definition is the idea that BI systems

provide actionable information and knowledge at the

right time, at the right place, and in the right form.

Problems to which BI is Applied: BI aims to

convert data available to the organization into

http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_1022
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
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information and, through analysis, into knowledge.

Among the many tasks that BI performs are:

• Examine the opportunities for

– proposed products,

– mergers and acquisitions,

– acquiring new customers, and

– locating sites for new branches.

• Create forecasts based on historical data, current

performance, and estimated future performance.

Futures methodologies such as Delphi and

cross-impact analysis are discussed in Glenn and

Gordon (2008).

• Monitor key performance indicators (KPI) both for

the organization and its competitors.

• Do “what if” analysis to examine the impacts of

changes and of alternative scenarios.

• Ad hoc access to data to answer specific,

non-routine questions.

These examples cover both regular, repetitive

scheduled reporting (e.g., monthly reports on sales by

region, department, or strategic business unit), and

special investigations aimed to solve specific problems.

Forecasting and many of the specific problem studies

involve OR modeling that uses the organization’s data

warehousing capabilities for the underlying information.

For example, specific studies undertaken in response to

a crisis or an opportunity such as a contract proposal.

BI vs. Competitive Intelligence: Business

Intelligence uses technologies, processes, and

applications to analyze mostly internal, structured

data, and business processes, while Competitive

Intelligence (discussed below) gathers, analyzes, and

disseminates information from both external and

internal sources to provide a framework for assessing

the organization’s position relative to its industry and

non-industry competitors and its vulnerability to

disruptive technologies.

Previous Systems: Present-day BI systems reflect

a series of iterations to obtain their present

functionality. These included (1) 3rd Generation

financial planning languages that allowed writing

relations in words rather than symbols. (For example,

rather than saying S¼M*MS, one could write Sales¼
market*market share.) (2) Executive information

systems that can create PowerPoint charts to brief

management on the current state of the business.

(3) On-Line Analytic Processing in which data

warehouses that store data in the form of 2-dimensional
relational data bases are used to create multidimensional

data cubes (see below). Although each of these elements

is more sophisticated than the one before, they were

individual systems, while the hallmark of current BIs is

the integration of such systems.
BI Input Software

BI is deeply tied to the ability to store data bases and to

compute at the organizational or departmental level. Key

elements include data warehouses and data marts. As

shown in Fig. 1,many software capabilities are involved.

The software components used in BI include:

• A Data Warehouse is a collection of data bases that

contain both current and historical information

about the organization. The warehouse is separate

from operational systems that support on-line

transaction systems. It contains “a single version

of the truth” and is intended to support

understanding of the organizational data over

time. It is particularly important for BI.

To create the single version of the truth, data goes

through a process known as ETL (extract, transform,

load). The ETL applies procedures that extract data

from selected sources, transforms it into the format of

the data warehouse that is consonant with the

warehouse’s rules, and then stores the data into the

warehouse or mart. ETL is important for BI because

it standardize the data and eliminates redundancies and

inaccuracies.

Data warehouses come in two sizes:

– A data warehouse, which support an entire

organization or one of its major portions.

– A data mart that is a smaller version of a data

warehouse but has all features of a warehouse. It can
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Characteristics Description

Subject oriented Data are organized by how users refer to it.

Integrated Inconsistencies are removed in both

nomenclature and conflicting information, i.e,

combining of all related data around

a common identifier/key

Non-volatile Read-only data are not updated by users

Time Series Data are time series, not current value.

A typical data warehouse has 5 to 10 years of

data.

Summarized Operational data are aggregated into decision

usable form where appropriate

Larger Much more data is retained than in transaction

systems because it offers time series.

Non-normalized Data can be redundant for ease of retrieval and

use.

Metadata Data about the data are available to users and

to warehouse personnel.

Input Include both operational data and external

data

Source: Gray and Watson (1998)
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be dependent or independent. If dependent, it contains

a subset of the data warehouse needed by specific

groups, such as Analytics. But, multiple independent

data marts cannot substitute for a data warehouse

because data integrity is not maintained among them.

Over time, a number of specialized data warehouses

have evolved. They include operational data stores,

real time warehouses, prototype warehouses, and

exploration warehouses discussed below.

The characteristics of the data warehouse are listed

in Table 1. These characteristics assume that the data

warehouse is physically separated from operational

systems and that its databases are not used for on-line

transaction processing (Inmon 1992).

• OLAP (on-line analytic processing) is used to

analyze multidimensional data for a BI. It is used

for such tasks as sales analysis, budgeting,

forecasting, and financial reporting where it is

necessary to manipulate and consolidate data from

multiple sources. Data are specially configured for

OLAP into data cubes to allow complex questions

to be answered more quickly than for relational data

bases. OLAP has subdivided into relational,

multidimensional, hybrid, and other forms, which

are typically referred to as ROLAP, MOLAP, and

HOLAP.
• Analytics refers to the use of quantitative and

statistical methods together with extensive

computing and modeling to make sense of the

data. It is the area of BI that attracts operations

researchers. Mathematics is the base for Analytics.

The objective is to obtain realistic and, if

possible, optimal alternatives for decision making

about the future. Analytics is discussed in more

detail below.

• Data Mining [also referred to as knowledge data

discovery (KDD)] is a form of predictive analytics

discussed below. It is a set of analytical techniques

to obtain new insights from the data in the data

warehouse that an analyst or a manager had not

thought to ask. It is used to find answers that

reports and queries do not reveal effectively. KDD

seeks to find patterns in data and to infer rules. Data

mining differs from conventional hypothesis testing

in that it looks at data for the relationships it

contains to form hypotheses that can be tested.

KDD techniques include neural networks, expert

systems, fuzzy logic, intelligent agents,

multidimensional analysis, data visualization, and

decision trees. Data mining is used in wide range of

topics, e.g., to identify where people are likely to

take vacations, detect fraud, analyze loan quality,

and the reported (but apocryphal) association that

men who buy diapers on Friday night also buy beer.

• Knowledge Management. Knowledge can be tacit

and explicit. Tacit knowledge is what is in one’s

head but cannot usually be expressed, although

there are techniques for obtaining some tacit

knowledge. Explicit knowledge is about what can

be written down, stored, and retrieved. Knowledge

management is about knowing what the

organization knows and finding new knowledge

that is needed when the organization does not

know. It focuses on creating, sharing, and

applying knowledge. In BI, the explicit

information in the data warehouse and in reports is

merged with the tacit knowledge in the heads of

analysts and professionals.

• Geographic Information Systems. These systems

link data bases to geographic maps of physical

locations. They are used to analyze spatial

phenomena. For example, they allow overlaying

of customer, distribution center, retailer, and other

information about a firm’s and its competitor’s

products.
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• Marketing. Analytics are used to understand the

implications of existing and proposed policies

in the marketplace. For example, data from

aggregators and from the firm are used to create

forecasts of market size and market size.

• Visualization. Visualization refers to methods to

present information on-screen in a form

comprehensible to non-technical managers. It does

not replace Analytics; it focuses the analytic results.

By exploiting visuals, it provides an overview of

complex data sets and allows for identifying

relationships and trends in data and in analytical

results.
BI Outputs: Dashboards and Reports

Dashboards. In BI, a dashboard is way of

communicating results in a form that is easily

understood by managers. A dashboard is a visual

screen that shows the key performance indicators.

The data, drawn from internal information systems

and analyses, not only summarize the current status,

but also provide historical data, warning levels,

next steps, and notices. It includes financial and

non-financial measures.

The idea of a dashboard has been in use since the

1960’s. At that time, summarized data for managers

was displayed on color slides at regular management

meetings. For example, the experience at AT&T from

color slides was that if the dashboard slides presented

the current data in the same format at each meeting,

managers would rapidly find and be sensitive to

changes that required action.

Introducing the computer provided an instant

display device, improved visualization, and provided

data on the desktop tailored to each user. For example,

the VP for manufacturing and the VP for human

resources can see results specifically oriented to their

issues. Furthermore, the displays allow drill down; that

is they start with a broad view and then let the user see

greater and greater detail..

The three main applications are:

• monitoring information at a glance. Usually

involves key performance indicators (KPI) in

graphical, symbol, or symbolic form.

• analysis of exceptions to find root causes of

problems. Summarized multi-dimensional data

and drill down in “slice and dice” fashion are used.
• Identify actions to solve problems based on access

to detailed operational data, queries, and reports.

Reports include:

• regular, repetitively scheduled documents (e.g.,

monthly sales by region, department, or strategic

business unit),

• exception reports which are produced whenever

parameters are outside pre-specified bounds,

• documents presenting the results of special

investigations (often in response to requests from

BI users), and

• custom data cubes based on specific requests from

analysts.

Forecasting and many of the specific studies

involve OR modeling that uses the organization’s

data warehousing capabilities for the underlying

information. For example, specific studies are

undertaken in response to a crisis or an opportunity

such as a contract proposal.
BI Architecture

Figure 2 (based on Skriletz 2002) is typical of the

architecture for a large installation that centers on the

use of Web technology for distribution. As shown, the

input data come from a variety of systems into the data

warehouse. The specific data needed for BI is

downloaded to a data mart used by planners and

executives.

As shown, the specific applications used for BI

include the organizational focus and the audience

(Skriletz 2002).

The left side of Table 2 shows the business focus of

the technologies, while the right side shows the levels

of people in the organization who are the consumers of

the intelligence. At the bottom of the hierarchy is

transaction processing based on application-specific

data in the warehouse or in ERP or in sales systems.

The next level involves processing the data so that it is

useful to first level managers. Here, Analytics and

pattern analysis are performed and data are presented

in visual form. At the top level, predictions,

compilations of competitive analyses, and summary

presentations for executives are created.

Tools. Many of the tools for BI are used for other

applications as well. They include:

• simple querying and reporting,

• on-line analytic processing (OLAP),
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Organizational focus Audience

Strategy Predictive and

Prescriptive Analytics

Competitive Intelligence Intelligence Presentation

and Visualization

Top executives

Operations Analysis Data Analytics Operations Directors

Operations Monitoring Heuristic Pattern Analysis Operations Supervisors

Transaction Processing Platform for BI - Manage Through Metadata Operations staff
Application-Specific BI (e.g., SAS, IBM, Oracle, SAP)

B 136 Business Intelligence
• statistical analyses and data mining,

• forecasting, and

• geographic information systems and visualization.

In addition, the extraction, translation, and loading

(ETL) tools of data warehousing are important for BI

because they help standardize the data so it can be

analyzed with accuracy and provide a single truth.

When operational data is used, as from an

Operational Data Store (ODS), the objective is to get

dynamic data that reflects the current situation.

The key dissemination method for business

technology is internet technology, whether it be an

intranet within the firm or an extranet connected to

suppliers and/or clients. The idea is to reach everyone

who needs specific data, rather than a few at corporate

headquarters.
Business Analytics

In the 20th century, most information systems were

used to standardize routine business processes to

minimize cost and time. Fairly sophisticated decision
support systems and data warehouses were in use, but

these systems rarely directly affected the ways

decisions were made (Drucker 1999). BI was mostly

the province of the information systems groups in

organizations. It centered on providing inputs for

data-based decision making. It was only after the turn

of the century that it was generally realized that

applying Analytics would improve to data-based

decision making. This realization was reinforced by

leading vendors, such as IBM, Microsoft, Oracle, and

SAP, acquiring major BI software firms and investing

in expanding BI software capabilities. It became clear

that the analytic skills and the methods of OR analysts

are needed to exploit information technology

capabilities.

The definition of business Analytics is still in flux.

Davenport and Harris (2007) defined it as “the

extensive use of data, statistical and quantitative

analysis, explanatory and predictive models, and

fact-based management to drive decisions and

actions.” In this definition, Analytics is a subset of

BI, that is, technologies and processes that use data to

understand and analyze performance. A broader
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definition comes from IBM who uses it to refer to both

software applications and analytic solutions (Lustig

et al. 2010). In their view, software includes BI,

performance management, prediction, optimization,

enterprise information management, content, and

collaboration. Analytic solutions involve finance,

risk, fraud, customer relations, human capital, and

supply chain. Underlying Analytics is the idea that

data and information are strategic assets.

Analytics can be divided into three categories

(Lustig et al. 2010):

• Descriptive analytics

• Predictive analytics

• Prescriptive analytics

All three categories start with the underlying idea

that data and information are strategic assets.

Descriptive analytics is the classic form of BI. It

starts by examining, consolidating, and classifying

data. Data sources include information from

departments (marketing, sales, operations,

accounting), enterprise systems (ERP, CRM, and

Supply Chain Management SCM), as well as

spreadsheets, other databases, and external data from

3rd parties. The outputs are ad hoc and exception

reports, dashboards, KPI, statistical analyses, drill

down, and answers to ad hoc queries about business

performance. These outputs allow for the managing

and monitoring of business processes. Descriptive

analytics are often inputs to predictive and

prescriptive analytics.

Predictive analytics combines the data within

a wide variety of mathematical procedures to create

models that explain and/or predict performance. It is

based on inherent relations between the data inputs and

outcomes. Predictive analytics uses data on what

happened in the past to detect patterns and relations

to make forecasts. Its methods include, among others

(Lustig, et al. 2010):
Data mining
 Correlations among data
Forecasting
 Extrapolations of trends into the future
Monte Carlo simulation
 What may happen if changes occur
Root-cause analysis
 Evaluation of why things happened
Pattern recognition
 Alerts when unusual situations occur
Predictive modeling
 Forecasts by Delphi or other methods
Prescriptive analytics refers to mathematical

techniques that provide understanding of alternative

courses of actions when there are competing
objectives, requirements, and constraints. It involves

both static and stochastic optimization. The former

leads to determining the best outcome, while the

latter considers the effects of data uncertainty to

improve decisions. Given the increase in computer

speed and memory, improved algorithm performance,

and in data quality, prescriptive analytics can be run in

near-real-time so they can affect operational as well as

strategic decisions.
Integrating Analytics and BI

Where traditional BI depends principally on

aggregating, evaluating and manipulating the

information in the data warehouse, Analytics adds

modeling and optimization. Irrespective of which

type of Analytics (descriptive, predictive or

prescriptive) is used, the results need to be

communicated to the user community.

This communication capability involves a series of

steps (Shapiro 2010):

• Develop models to optimize decisions for key

performance indicators.

• Select the right modeling system. It may be

customized or off the shelf.

• Define the database needed for the optimization

model. It may be customized or off-the-shelf

• Create the decision database. This may require new

ETL routines and descriptive models

• Link the database and the outputs from the

optimization model to the organization’s reporting

tools to be able to communicate results to users.

• For strategic and tactical decisions, reuse criteria

for alerts and redo modeling studies at regular

intervals. For operational decisions, exercise the

operational models in real-time with current data.
Competitive Intelligence

The notion of competitive intelligence (CI) as spy vs.

spy, fed by such examples as Japan and China

allegedly stealing U.S. industrial secrets, is far from

the real situation. That does not mean that companies

do not try to find out as much as possible about their

current and potential competitors. The people

involved, however, claim that they do so in a legal

and ethical manner. CI is defined by the Society for
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Tool

Percent

Using Tool

Effectiveness

Percentage

Competitor

profiles

88.9 SWOT analysis 63.1

Financial

analysis

72.1 Competitor

profiles

52.4

SWOT analysis 55.2 Financial

analysis

45.5

Scenarios 53.8 Win/loss analysis 31.4

Win/loss

analysis

40.4 Gaming 21.9

Gaming 27.5 Scenarios 19.2

Conjoint

analysis

25.5 Conjoint analysis 15.8

Simulation 25.0 Simulation 15.4

Source: Powell and Allgaier (1998)

Note: The two columns of table on the left shows the percentage
of respondents using the technique. The two columns of

the table on the right, which list the same techniques, shows

the percentage of those who believe the technique is effective.
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Competitive Intelligence Professionals (SCIP) as the

process of monitoring the competitive environment.

To do so, analysts systematically gather, analyze, and

manage information that can affect a company’s plans,

decisions, and operations.

The competitive intelligence cycle includes:

– Determine the intelligence needs of decision

makers

– Collect information to meet these needs

– Analyze the data and recommend actions

– Present results to the decision makers

– Use the response to the findings to refine collection.

The focus is on determining both the current

activities and the likely intentions of other firms and

of governments. It also includes looking for the

possible appearance of disruptive technologies and

finding out about how competitors are responding to

your actions.

The collected raw data (facts, statistics) are

organized and then analyzed to find patterns, trends,

and relationships. The tools used include:

• Simulations of alternative scenarios to test what if

conditions

• Data mining of information about both competitors

and the firm

• Assessing competitor technologies by tracking (and

extrapolating from) patent filings.

• Attending trade shows and conferences

• Scanning publicly available data: public records,

the Internet, press releases, and mass media.

• Talking with customers, suppliers, partners,

industry experts

Much of the data gathering work is terribly dull and

routine. To be effective, it has to be someone’s (or

some group’s) responsibility.

For many organizations, the only basis for evaluating

their competitors is by applying the SWOT technique:

Strengths, Weaknesses, Opportunities and Threats.

SWOT, as taught in business schools, is often done

qualitatively based on individuals intuitively assessing

a particular competitor. The technique can and should

be done using Analytics.

True competitive analysis goes far beyond SWOT.

Table 3 shows the results of a survey of the use and

effectiveness of CI analysis techniques.

Since this table was compiled, an important new

source of competitive data has come to the forefront.

That is the analysis of social media data. People do
put things on social media (e.g., Facebook, Twitter)

that they would not put in writing in e-mail or other

forms.

Some companies that practice competitive analysis

realize that just as they gather data about competitors,

competitors are likely to gather data about them. They

therefore try to protect their own information by

becoming secretive about their plans. They control

their press releases, approve speeches by their

executives, provide security training for their

employees, and more to avoid leaks about their

intentions.
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Busy Period

A time interval that starts when all the servers of

a queueing system become busy and ends when at least

one server becomes free.May also refer to a time interval

that starts when a previously completely idle system

begins serving any customer and ends when the system

becomes idle again. The two definitions (sometimes

distinguished as full and partial busy periods,

respectively) coincide for a single-server queue.

See

▶Queueing Theory
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