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ABSTRACT

The UCSC Cancer Genomics Browser (https://
genome-cancer.ucsc.edu/) is a web-based applica-
tion that integrates relevant data, analysis and visu-
alization, allowing users to easily discover and share
their research observations. Users can explore the
relationship between genomic alterations and phe-
notypes by visualizing various -omic data alongside
clinical and phenotypic features, such as age, sub-
type classifications and genomic biomarkers. The
Cancer Genomics Browser currently hosts 575 public
datasets from genome-wide analyses of over 227 000
samples, including datasets from TCGA, CCLE, Con-
nectivity Map and TARGET. Users can download and
upload clinical data, generate Kaplan–Meier plots dy-
namically, export data directly to Galaxy for analysis,
plus generate URL bookmarks of specific views of
the data to share with others.

INTRODUCTION

Cancer is a genomic disease that results in uncontrolled
cell growth (1). To decode this disease, many large-scale
genome characterization efforts have worked to generate
and interpret data at an unprecedented scale. For exam-
ple, The Cancer Genome Atlas (TCGA) project already
has close to a petabyte of next-generation sequencing data
with over 20 000 samples (https://cghub.ucsc.edu, http://
cancergenome.nih.gov/) (2–4) and is continuing to grow. In
addition to these efforts, many researchers are generating
large-scale cancer genomics datasets for their own investi-
gations. Transforming these new data into knowledge re-
quires effective, user-friendly visualization and computa-
tional tools that can be used by both clinical researchers and
informaticians (5).

The UCSC Cancer Genomics Browser (https://genome-
cancer.ucsc.edu/) is a web-based application that was devel-
oped in response to an urgent demand in the cancer research
field for integrative visualization of large, complex genomic
datasets arising from different technology platforms. Our

browser integrates relevant data with analysis and visu-
alization tools, allowing users to easily discover, analyze
and share relevant research. It displays whole-genome and
sets-of-genes views of genome-wide experimental measure-
ments for sets of samples alongside their associated phe-
notype information. Researchers can explore the relation-
ship between genomic alterations and phenotypes by visu-
alizing various genomic data alongside clinical and pheno-
typic features, such as age, subtype classifications and ge-
nomic biomarkers. Viewing data from multiple experiments
on the same samples side-by-side allows users to make infer-
ences across different data types. Integrated Kaplan–Meier
survival analysis helps investigators assess survival stratifi-
cation by any type of information, including clinical fea-
tures, genomic annotations and user-defined subgroups and
signatures. User accounts allow saving of bookmarks, rele-
vant sets of genes and interesting genomic signatures. These
bookmarks take the form of URLs, which can be easily
shared.

The Cancer Genomics Browser currently hosts 575 open-
access datasets from genome-wide analyses of over 227 000
samples, including 526 datasets from 31 different TCGA
cancer types. Types of hosted datasets include copy num-
ber, somatic mutation, DNA methylation, gene and exon
expression, protein expression, PARADIGM pathway in-
ference (6) and phenotype data. Our automated pipeline up-
dates TCGA data periodically, ensuring we are visualizing
the most recent data available. Additionally, our pipeline in-
gests TCGA phenotype data and attempts to assign more
readable feature names and values. We further derive overall
and recurrence free survival from TCGA phenotype data,
allowing users to perform survival analysis.

We also host data from CCLE (Cancer Cell Line Ency-
clopedia), which profiles 1000 cell lines and their responses
to 24 drugs; Connectivity Map, which generates expression
profiles of several cells lines when exposed to hundreds of
different small molecules (7); and childhood cancers (8–10).
We also host a number of protected datasets including pre-
publication data. A control mechanism restricts the access
of private data to authorized users.
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We have made significant improvements to the browser
in the past 2 years. Users now can download and upload
phenotype data, generate Kaplan–Meier plots dynamically,
export data directly into Galaxy and bookmark interest-
ing views of the data for themselves or to share with oth-
ers. New data include gene-level somatic mutation and Pan-
Cancer data (11), both from TCGA, and data from TAR-
GET (Therapeutically Applicable Research to Generate Ef-
fective Treatments, https://ocg.cancer.gov/programs/target)
(9) and Connectivity Map (7).

NEW FEATURES

Dataset search and map index

It is now possible to search and sort datasets with our new
Dataset Viewer, giving users easier access to information
of interest and generally offering a more complete view
of the available data. For example, users can search for
‘TCGA gene expression’ or ‘pan-cancer’ datasets using a
plain text interface. Our Map Index to the left of the main
heatmap area shows which datasets are open, allowing users
to quickly view which datasets are already displayed or
jump to another dataset. Both of these features make the
data in our repository more transparent to the user.

Download and upload phenotype data

We already offer downloads of entire datasets, but these files
can be difficult to manipulate due to their large size. Alter-
natively, users can now download just the phenotype data
in view. This allows users to easily download the few clin-
ical and genomic (using the signature feature) columns of
interest for analysis and offline use. Our download format
can easily be opened by most spreadsheet-like applications
and is also recognized by more advanced analysis programs,
such as R.

Users can now upload any numerical data to the clini-
cal heatmap, allowing visualization of their own annota-
tions. In conjunction with phenotype data download, this
facilitates powerful, iterative cycles of analysis and visual-
ization. Users download data they are interested in, manip-
ulate or analyze it (e.g. perform a clustering analysis) and
then upload the results back to the browser for visualiza-
tion and further analysis. This loop is also useful for viewing
more than one type of genomic data side-by-side. Figure 1
shows an example of this where we downloaded TCGA
Lower Grade Glioma (LGG) datasets from the browser,
clustered samples by genome-wide data derived from RNA,
DNA and methylation platforms, and then uploaded the
clustering results back into the browser to visualize the dis-
tinct genomic characteristics of each tumor subtype (12).
We identified three clusters, where Cluster 2 was enriched
with IDH1 and IDH2 wild-type samples and the other two
clusters were enriched for IDH1 or IDH2 mutants. Cluster 2
(mostly IDH wild type) shows a copy number variation pro-
file (chromosome 7 amplification and chromosome 10 dele-
tion) similar to a subtype of TCGA Glioblastoma (GBM)
samples, which is also IDH1 wild type. Unlike the LGG
cohort, the GBM cohort harbors mutations in IDH1 but
not in IDH2. Patients in the LGG Cluster 2 (mostly IDH
wild type) have a worse survival profile compared to the rest

of the LGG cohort (Figure 2). Similarly to LGG, patients
of IDH1 wild-type GBM subtype also tend to have poorer
survival compared to the IDH1 mutant subtype. These ob-
servations suggest a common molecular subtype across two
different types of brain tumors (12).

Kaplan–Meier plots

One of our most popular features is Kaplan–Meier plots,
which are visual estimates of the survival of different groups
of patients over time. Percent survival is on the Y-axis and
time is on the X-axis; the steeper curve, the worse the sur-
vival outcome is over time. Patients are grouped according
to the clinical or genomic data of the user’s choice. For con-
tinuous data, like gene expression, we automatically divide
patients into three roughly equal groups. Users can quickly
test many different groupings of patients to see which fac-
tors influence survival. In particular, this feature is useful in
conjunction with the custom data upload, allowing users to
view survival over time for any grouping of patients. Users
can also download the underlying survival data, which can
be used by other programs, such as R, to perform analysis
offline.

Integration with Galaxy

Integrating our browser with Galaxy, an open, web-based
workflow management system for data intensive biomedical
research (http://galaxyproject.org/) (13–15), enables users
to do more sophisticated analysis, thanks to the wealth of
contributed tools available as part of the Galaxy project.
Galaxy brings sophisticated computational analyses within
the reach of non-computational users by simplifying tool
installation and execution, as well as providing automated
provenance tracking. Within Galaxy, users can open the
Cancer Browser and export data directly into Galaxy
datasets. One can also upload analysis results from Galaxy
into our clinical data upload, allowing instant visualiza-
tion. Additionally, we have imported one of our more com-
monly used tools, the genome-wide t-test, into Galaxy. For
example, this can be used to find the most differentially ex-
pressed genes between two groups of patients. Our Galaxy
t-test tool gives users direct access to the results and also
allows them to integrate our tools with others into analysis
pipelines. Our tools are available in the Galaxy test tool-
shed.

Bookmarks

Bookmarks allow users to save views of the data for them-
selves, for further analysis, or to share insights with oth-
ers. Bookmarks save the state of the browser exactly as
it appears, including Kaplan–Meier plots or other statis-
tical analyses. Bookmarks take users to a live, interactive
browser, allowing continued exploration of the data from
the original bookmarked view. Users can create bookmarks
whether or not they are logged in; however, user accounts
allow users to save bookmarks for easy access.

Help demonstrations

In addition to our user guide, FAQ and interactive tuto-
rial, we now have example demonstrations showing users
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Figure 1. TCGA LGG (n = 525) and GBM genomics (n = 587) datasets showing a common molecular subtype of similar copy number variation profile
for both LGG (red box, panel A) and GBM IDH wild-type patients (panel B). In each panel the genomic heatmap is on the left and the clinical heatmap
is on the right. Copy number datasets use red and blue to represent amplification and deletion, respectively. Black color for the IDH mutation feature
indicates wild-type IDH. For all columns showing mutation status, yellow indicates that a non-silent somatic mutation (nonsense, missense, frame-shift
indels, splice site mutations, stop codon read-throughs, change of start codon, in-frame indels) was identified in the protein-coding region of a gene and
black shows that none of these previous mutation calls were identified. Gray represents no data. A bookmark of this view is at https://genome-cancer.ucsc.
edu/proj/site/hgHeatmap/#?bookmark=ff9e8550141e6f37e3ec242152066914 (A) TCGA LGG whole-genome copy number variation. Left-most column
in the clinical heatmap shows the consensus clustering assignment with Cluster 1 as yellow, Cluster 2 as green and Cluster 3 as black. Note that Cluster 2
is mostly IDH wild type. The next column shows IDH1 or IDH2 mutants and third column shows TP53 mutation. The last column shows tumor grade
with light orange being grade 2 and dark orange being grade 3. (B) TCGA GBM whole-genome copy number variation. Left-most column in the clinical
heatmap shows IDH1 mutation status. Unlike the LGG cohort, the GBM cohort harbors mutations in IDH1 and not in IDH2. The second column shows
the glioma-CpG island methylator phenotype (G-CIMP) with light blue representing G-CIMP tumors and dark blue indicating that it is not characterized
as a G-CIMP tumor.

Downloaded from https://academic.oup.com/nar/article-abstract/43/D1/D812/2437374
by guest
on 27 July 2018

https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/#?bookmark=ff9e8550141e6f37e3ec242152066914


Nucleic Acids Research, 2015, Vol. 43, Database issue D815

Figure 2. TCGA LGG and GBM datasets showing differential survival.
It demonstrates that IDH wild-type subtypes in both cancers have worse
prognosis compared to the rest of the tumors of the same cancer type. Time
(X-axis) for both panels is in days. (A) Kaplan–Meier plot for TCGA LGG
cohort. Patients grouped by consensus clustering assignment with Cluster
1 as yellow, Cluster 2 (mostly IDH wild type) as green and Cluster 3 as
black. (B) Kaplan–Meier plot for TCGA GBM cohort. Patients clustered
by IDH1 mutation status with yellow indicating that a non-silent somatic
mutation (nonsense, missense, frame-shift indels, splice site mutations, stop
codon read-throughs, change of start codon, in-frame indels) was identi-
fied in the protein-coding region of a gene and black indicating that none
of these mutations were identified.

what type of analysis and visualization is possible with our
browser as well as presenting some of our most popular
data. We have several demonstrations ranging from basic
to advanced, each consisting of a bookmark of the final
analysis/visualization plus step-by-step instructions on how
to reach that point.

NEW DATA

TCGA

We have greatly expanded our TCGA data by adding 11
new cancer types as well as numerous datasets for the can-
cer types we already host, for a total of 31 cancer types
and 526 datasets (Table 1). Dataset types include gene-
level somatic mutation calls from genomic data analy-
sis centers (Broad Institute, Washington University, Bay-

lor College of Medicine, University of North Carolina,
BC Cancer Agency, UC Santa Cruz Genome Data Anal-
ysis Center), segmented copy number estimates generated
from the Affymetrix Genome-Wide Human SNP Array
6.0 platform, gene-level copy number estimates from GIS-
TIC2 from the TCGA FIREHOSE pipeline (http://gdac.
broadinstitute.org/) (16), several gene and exon expression
estimates using RNAseq and array methods, DNA methyla-
tion estimates from the Illumina Infinium HumanMethyla-
tion27 and Illumina Infinium HumanMethylation450 plat-
forms, and phospho- and total protein expression estimates
assayed by reverse phase protein array technology. We also
have datasets showing integrated gene activity level inferred
using the PARADIGM method (6).

Our newest datasets are TCGA pan-cancer data, provid-
ing researchers with a more complete cross-tumor compari-
son. We host all the genomic datasets published with the re-
cent PANCAN12 paper (11), including copy number varia-
tion, gene expression, protein expression, somatic mutation,
DNA methylation and subtype classifications across the
12 TCGA cancer types curated by the TCGA Pan-Cancer
Analysis Working Group. These PANCAN12 datasets are
under the ‘TCGA PANCAN12’ group on our interface.
We have also built additional pan-cancer datasets outside
the PANCAN12 paper, which are under the ‘TCGA Pan-
Cancer’ group. In the second group, we have gene-level
somatic mutation data for 19 cancer types, also compiled
and curated by the TCGA Pan-Cancer Analysis Working
Group. In addition to the efforts of the TCGA Pan-Cancer
Analysis Working Group, we also have assembled gene-level
copy number and gene expression across all 31 TCGA can-
cer types. We added pancan-normalized RNAseq data to all
31 individual cancer cohorts, allowing users to see how gene
expression in a single cancer type compares to all the other
TCGA cancer types. In an attempt to facilitate comparison
of gene expression between TCGA and other studies, we
also created gene expression datasets of percentile-ranked
gene-level estimates within each sample assayed by the Illu-
mina HiSeq platform.

Connectivity Map

The Connectivity Map project aims to create a reference
collection of gene-expression profiles of cultured human
cells (MCF7, PC3, SKMEL5, HL60) treated with bioac-
tive small molecules. With 6100 profiles over 1309 differ-
ent compounds, this resource can be mined to find con-
nections among small molecules sharing a mechanism of
action, chemicals and physiological processes, and diseases
and drugs (7).

Childhood cancer

Despite the progress in treating pediatric cancers, these dis-
eases remain a challenge to the oncologist and the long-term
outcome for most high-risk pediatric cancer patients is dis-
mal (17). While the number of pediatric cancer genomics
studies is growing (https://ocg.cancer.gov/programs/target)
(18,19), combined analyses of these cohorts are limited due
to difficulties in data sharing and the lack of centralized
analyses platforms. To support this effort we have begun
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Table 1. Dataset summary

Cancer type

DNA
methyla-
tion Pathway

activity
Copy
number

Gene
expression

Protein
expression

Somatic
mutation

TCGA PANCAN12 1 (4919) 2 (9656) 1 (3599) 1 (3467) 1 (3276)
TCGA acute myeloid leukemia 2 (388) 2 (339) 4 (776) 6 (1050) 2 (393)
TCGA adrenocortical cancer 1 (80) 2 (156) 4 (360) 4 (316) 1 (46) 5 (454)
TCGA bladder urothelial carcinoma 1 (373) 2 (479) 4 (1118) 4 (1144) 2 (254) 3 (467)
TCGA brain lower grade glioma 1 (525) 4 (978) 4 (1976) 5 (2135) 1 (260) 7 (2068)
TCGA breast involve carcinoma 2 (1182) 4 (3095) 4 (4194) 5 (5325) 2 (1156) 4 (3224)
TCGA cervical & endocervical cancer 1 (260) 2 (365) 4 (876) 4 (1028) 5 (676)
TCGA colon & rectum adenocarcinoma 2 (706) 4 (1616) 2 (1178) 3 (1078) 2 (925) 1 (224)
TCGA colon adenocarcinoma 2 (527) 4 (1154) 4 (1738) 7 (1818) 2 (665) 2 (270)
TCGA diffuse large B-cell lymphoma 1 (48) 2 (56) 4 (142) 4 (112)
TCGA esophageal carcinoma 1 (202) 2 (140) 4 (556) 2 (274)
TCGA glioblastoma multiforme 2 (432) 4 (1336) 4 (2316) 7 (1812) 2 (429) 2 (582)
TCGA head & neck squamous cell carcinoma 1 (580) 2 (990) 4 (2046) 4 (2164) 2 (424) 2 (815)
TCGA kidney chromophobe 1 (66) 2 (132) 4 (264) 4 (364) 2 (131)
TCGA kidney clear cell carcinoma 2 (898) 4 (1170) 4 (2082) 5 (2488) 2 (908) 2 (630)
TCGA kidney papillary cell carcinoma 2 (292) 4 (427) 4 (876) 5 (1048) 6 (885)
TCGA liver hepatocellular carcinoma 1 (307) 2 (378) 4 (932) 4 (1048) 5 (1008)
TCGA lung adenocarcinoma 2 (633) 4 (1038) 4 (1978) 5 (2225) 2 (474) 2 (773)
TCGA lung cancer 2 (1197) 2 (1966) 3 (2364) 1 (432) 1 (408)
TCGA lung squamous cell carcinoma 2 (564) 4(1283) 4 (1964) 6 (2448) 2 (390) 3 (532)
TCGA mesothelioma 1 (37) 4 (148) 4 (144)
TCGA ovarian serous cystadenocarcinoma 1 (616) 4 (1645) 4 (2322) 9 (3096) 2 (824) 5 (870)
TCGA pancreatic adenocarcinoma 1 (156) 2 (169) 4 (442) 4 (512) 1 (106) 2 (118)
TCGA pheochromocytoma & paraganglioma 1 (187) 4 (672) 4 (748) 5 (919)
TCGA Prostate adenocarcinoma 1 (385) 2 (663) 4 (1502) 4 (1884) 1 (164) 5 (1163)
TCGA rectum adenocarcinoma 2 (179) 4 (462) 4 (650) 7 (620) 2 (260) 2 (116)
TCGA sarcoma 1 (249) 2 (206) 4 (732) 4 (688)
TCGA skin cutaneous melanoma 1 (418) 4 (1372) 4 (1544) 1 (205) 5 (1654)
TCGA stomach adenocarcinoma 2 (482) 2 (546) 4 (1516) 4 (698) 1 (268) 6 (1652)
TCGA thyroid carcinoma 1 (571) 2 (986) 4 (1998) 4 (2260) 1 (374) 3 (1156)
TCGA uterine carcinosarcoma 1 (57) 2 (113) 4 (224) 4 (228) 5 (284)
TCGA uterine corpus endometrioid carcinoma 2 (596) 4 (1153) 4 (2122) 7 (1548) 2 (604) 3 (690)
TCGA uveal melanoma 1 (80)
Cancer Cell Line Encyclopedia 1 (972) 2 (1934)
Connectivity map 1 (6100)
Childhood cancer 2 (257) 4 (633)
SU2C breast cell line 2 (92) 1 (54)
Other datasets from literature 17 (2002) 18 (3349)

Number of datasets by cancer type and data type; number of samples is in parenthesis.

to host more childhood cancer data, including 207 samples
from TARGET childhood acute lymphoblastic leukemia
(8), 238 samples from TARGET neuroblastoma (9), 53 sam-
ples from diffuse intrinsic pontine glioma (10) and 196
samples from NCI’s Oncogenomics data repository (http:
//pob.abcc.ncifcrf.gov/cgi-bin/JK). We hope that our plat-
form will become a powerful, collaborative tool for child-
hood cancer researchers.

Phenotype data curation

Semantic standards are an important aspect of any in-
formatics resource that seeks to integrate diverse datasets.
The Cancer Genomics Browser has been working on this
through a bottom up approach. We curated the following
phenotype data elements for all the data we hosted in our
database: overall and recurrence free survival information
(available under phenotype data), primary disease, anatom-
ical origin and data type such as copy number variation or
somatic mutation (under dataset meta-data). The curated
data enable the Kaplan–Meier survival plot functionality

and also help enable the general dataset search on the front
page and in the Dataset Viewer.

FUTURE DIRECTIONS

Continuing to integrate tools and data, we are developing
a new tool called Xena. Xena is a data server-based plat-
form that stores functional genomics data and serves them
in response to data requests in real-time and with minimal
informatics overhead. Examples of these data requests in-
clude data visualization, data integration and further down-
stream analysis. The Xena data server can be installed on a
laptop, servers behind a firewall, or in the cloud platform.

In conjunction we are developing the Xena Browser
to access and visualize data hosted across multiple Xena
servers while maintaining data privacy. The functional-
ity allows viewing and interpretation of one’s genomic
data (e.g. stored on a private Xena) in the context of
a large collection of cancer genomics datasets that will
be stored at UCSC’s Xena. In addition to data from
TCGA, we look forward to integrating data from other
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large datasets including COSMIC (http://cancer.sanger.
ac.uk/cancergenome/projects/cosmic/) (20), LINCS (http:
//www.lincsproject.org/) (7) and ICGC (https://icgc.org/)
(21). This will be a platform for researchers to store and
analyze their datasets in an interoperable manner. The cur-
rent UCSC Cancer Genomics Browser and Xena Browser
will coexist while we port the most popular functionalities
of the Cancer Browser into the Xena Browser and develop
a basic set of new functionalities. The Xena Browser will
ultimately replace the UCSC Cancer Genomics Browser.

Xena is being developed to leverage the Galaxy soft-
ware as the underlying workflow engine to connect with the
myriad bioinformatics tools and interfaces through which
Galaxy users submit private datasets for processing and
analysis. The Xena cycle of visualizing, analyzing and vi-
sualizing again will provide users with a powerful tool to
understand and analyze public data alongside their own. In-
tegrating Xena as a tool module within Galaxy allows for
integration and collaboration.

We will also continue to import pediatric cancer genomics
datasets and make them available to the community via the
Xena Browser. We have set up a special initiative termed the
Treehouse Childhood Cancer Project (https://treehouse.soe.
ucsc.edu) that will use the Xena Browser infrastructure and
tools to serve the pediatric cancer community.
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