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Abstract Vibration and oil debris analysis are widely used

in gearbox condition monitoring as the typical indirect and

direct sensing techniques. However, they have their own

advantages and disadvantages. To better utilize the sensing

information and overcome its shortcomings, this paper

presents a virtual sensing technique based on artificial

intelligence by fusing low-cost online vibration measure-

ments to derive a gearbox condition indictor, and its per-

formance is comparable to the costly offline oil debris

measurements. Firstly, the representative features are

extracted from the noisy vibration measurements to char-

acterize the gearbox degradation conditions. However, the

extracted features of high dimensionality present nonlin-

earity and uncertainty in the machinery degradation pro-

cess. A new nonlinear feature selection and fusion method,

named kernel factor analysis, is proposed to mitigate the

aforementioned challenge. Then the virtual sensing model

is constructed by incorporating the fused vibration features

and offline oil debris measurements based on support

vector regression. The developed virtual sensing technique

is experimentally evaluated in spiral bevel gear wear tests,

and the results show that the developed kernel factor

analysis method outperforms the state-of-the-art feature

selection techniques in terms of virtual sensing model

accuracy.

Keywords Gearbox condition monitoring � Virtual
sensing � Feature selection and fusion

1 Introduction

In the oil and gas industry, the gearbox is a very important

element and its health and safety are critical to the smooth

operation and efficiency of relevant facilities. However,

gearboxes generally work under complex conditions,

which may accelerate degradation and further induce dif-

ferent defects such as fatigue crack, pitting. These gearbox

defects may even cause the breakdown of the whole sys-

tem, leading to significant economic losses, costly down-

time, and catastrophic damage. Therefore, gearbox

condition monitoring is of great significance to its safe

operation and maintenance schedule.

Increasing need for gearbox reliability has accelerated

the integration of sensing techniques for condition moni-

toring. These sensing techniques could be roughly cate-

gorized into indirect sensing and direct sensing techniques,

of which vibration and oil debris analysis are two typical

sensing techniques, respectively. Various vibration analysis

techniques have been widely investigated in gearbox fault

diagnosis and prognosis. For instance, a fault characteristic

order (FCO) analysis method was proposed to extract the

vibration signal components related to rotational speed

from the time–frequency representation (TFR) for gear

fault detection under time-varying rotational speed (Wang

et al. 2014). A modified cantilever beam model was

investigated to analytically evaluate the time-varying mesh

Handling editor: Jian Shuai

& Jin-Jiang Wang

jiw09005@foxmail.com; jwang@cup.edu.cn

& Lai-Bin Zhang

zhanglb@cup.edu.cn

1 School of Mechanical and Transportation Engineering, China

University of Petroleum, Beijing 102249, China

2 School of Electrical and Electronic Engineering, Nanyang

Technological University, Singapore 639798, Singapore

Edited by Yan-Hua Sun

123

Pet. Sci. (2017) 14:539–548

DOI 10.1007/s12182-017-0163-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s12182-017-0163-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12182-017-0163-4&amp;domain=pdf


stiffness of a planetary gear set for the detection of crack

severity and location via vibration analysis (Liang et al.

2014). The vibration signal properties of a planetary

gearbox were investigated to differentiate healthy and

cracked tooth conditions (Liang et al. 2015). A neuro-fuzzy

approach was investigated by Samanta and Nataraj (2008)

for modeling and prediction of gearbox dynamics utilizing

various health indices. Defect prognostics were performed

to estimate the temporal evolution of features (Wang

2007). The degradation condition prediction of a planetary

gearbox was also investigated by Hussain and Gabbar

(2013) based on acoustic phenomena along with neural

networks and neuro-fuzzy approaches.

Vibration sensing is the most commonly used online

monitoring technique because of its rugged cost-effective,

but the sensing quantity is an indirect indicator of gearbox

condition due to the low signal-to-noise ratio (SNR) of the

sensing measurement. On the other hand, oil debris anal-

ysis, as a direct sensing method, provides an alternative

solution by offline inspection of the gearbox condition. The

oil debris measurements can directly indicate the machin-

ery condition with high accuracy. An oil debris analysis

was performed by Bolander et al. (2009) to estimate the

spall size as the damage progressed in aircraft engine

prognosis. It can be found that oil debris monitoring is

suitable to provide an early indication and quantification of

internal damage of a gearbox, but it is far from convenient

or cost-effective because of high cost and human inter-

vention requirements during normal operations of

gearboxes.

To bridge the gap between direct sensing and indirect

sensing, virtual sensing has emerged as a viable, nonin-

vasive, and cost-effective method to infer difficult-to-

measure or expensive-to-measure parameters based on

computational models (Tham et al. 1991). It has been

investigated for active noise and vibration control (Petersen

et al. 2008), industrial process control (Cheng et al. 2004),

building operation optimization (Ploennigs et al. 2011),

lead-through robot programming (Ragaglia et al. 2016),

product quality of hydrodesulfurization (HDS) (Shokri

et al. 2015), and tool condition monitoring (Bustillo et al.

2011; Li and Tzeng 2000). Data-driven virtual sensing

techniques are favorable by fusing the extracted features

from noisy online measurements to infer the difficult-to-

measure parameters based on artificial intelligence models

(Gelman et al. 2013). A good feature representation

method should be able to remove the irrelevant and

redundant features, while preserving important (geometric

or statistical) properties of the original data (Bolón et al.

2015). Thus, it is critical to devise a systematic feature

selection and representation scheme to extract and select

the most representative features. Moreover, it may reduce

the computational complexity and storage, improve the

efficiency of virtual sensing models, and provide insight for

knowledge discovery.

Different feature selection and fusion techniques have

been developed including principal component analysis

(PCA) and its kernel version (He et al. 2007; Schölkopf

et al. 1998), factor analysis (FA) (Bishop 2006), dominant

feature identification method (Zhou et al. 2011), minimum

redundancy maximum relevance technique (Peng et al.

2005), and locally linear embedding (LLE) (Roweis and

Saul 2000). In the above methods, PCA, FA, and kernel

PCA are widely used in machine learning and data mining.

Kernel PCA, as a nonlinear extension of PCA, was

developed to explore the nonlinear relationship among

variables by the use of a kernel function. Owing to high

computational efficiency and nonlinear projection ability of

using kernel functions, kernel methods are applied to

extend the traditional linear model for feature selection and

fusion. FA, as a linear model based on second-order

statistics, generally has difficulty processing real-world

data which has non-Gaussian distributions. The kernel

methods provide the inspiration to develop a new feature

selection and fusion method based on FA for feature fusion

in gearbox condition monitoring.

To better utilize the sensing measurements for gearbox

condition monitoring, this paper presents a virtual sensing

technique based on artificial intelligence by fusing the low-

cost online vibration measurements to infer the gearbox

condition, and its performance can be comparable to the

costly offline oil debris measurements. Firstly, the repre-

sentative features are extracted from the noisy vibration

measurements to characterize the gearbox degradation

conditions. Next, a new nonlinear feature selection and

fusion method, named kernel factor analysis (KFA), is

proposed to reduce the feature dimensionality. Then the

virtual sensing model is constructed by incorporating the

fused vibration features and offline oil debris measure-

ments based on support vector regression. The developed

virtual sensing technique is experimentally evaluated in the

spiral bevel gear wear tests, and the results show that the

developed kernel factor analysis method outperforms the

state-of-the-art feature selection techniques in terms of

virtual sensing model accuracy.

The main contributions of this study rest on: (1) A vir-

tual gearbox condition sensing framework is proposed to

bridge the gap between vibration analysis and oil debris

monitoring methods, and (2) a new feature selection and

representation method (KFA) is presented to exploit the

nonlinear representative features with non-Gaussian dis-

tributions, and the effectiveness of the KFA method is

experimentally validated by the gear wear study. The rest

of this paper is constructed as follows. After introducing

the theoretical background of conventional feature repre-

sentation techniques in Sect. 2, the details of the kernel
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factor analysis-based virtual sensing model are then dis-

cussed in Sect. 3. The effectiveness of the presented

technique is experimentally demonstrated in Sect. 4 based

on direct and indirect sensing data acquired from a spiral

bevel gear case study. Finally, conclusions are drawn in

Sect. 5.

2 Theoretical framework

2.1 Principal component analysis and its kernel

variant

Principal component analysis (PCA) has been widely

investigated for dimensionality reduction of feature space.

It transforms a set of observations of possible correlated

variables into a set of uncorrelated variables called prin-

cipal components, where the first principal component has

the largest variance, and each succeeding principal com-

ponent has comparative lower variance orthogonal to the

preceding principal components. However, if the sample

data has more complicated structures which cannot be

well represented in a linear subspace, PCA may be not

applicable. Kernel principal component analysis (KPCA)

generalizes the traditional PCA to the nonlinear dimen-

sionality reduction method by incorporating kernel tech-

niques. The key idea of KPCA is to define a nonlinear

transformation /(•) which transforms the sample data into

a high-dimensional data space, where each data point Xi is

projected to a point /(Xi). Then, the traditional PCA is

performed in the new feature space (He et al. 2007). The

first several principal components can well represent the

original data with minimal mean squared approximation

error, and thus KPCA has been widely used in the

dimensionality reduction applications (He et al. 2007).

2.2 ISOMAP method

The ISOMAP algorithm extends the metric multidimen-

sional scaling (MDS) method by integrating the geodesic

distances instead of pairwise Euclidean distances to com-

pute the graph shortest path distances (Tenenbaum et al.

2000). The key idea of ISOMAP is to find a low-dimen-

sional embedding of data points, which is characterized as

a nonlinear and global optimal method since only one free

parameter (e.g., e or K) needs to be optimized. The

implementation of this algorithm mainly includes the fol-

lowing steps. Firstly, a neighborhood graph G is con-

structed by determining which points are neighbors on the

manifold M based on the distances dXði; jÞ between pairs

of points i, j in the input space X, where e-ISOMAP and K-

ISOMAP methods can be used to determine the neigh-

borhood points. Secondly, the geodesic distances dMði; jÞ

between all pairs of points on the manifold M are estimated

by computing the shortest path distances dGði; jÞ in the

graph G. Finally, the classical MDS is applied to the matrix

DG, constructing an embedding of the data in a d-dimen-

sional space Y which best preserves the manifold’s esti-

mated intrinsic geometry. However, a typical shortcoming

of ISOMAP method is the high computational complexity,

characterized by the full matrix eigenvector decomposition

(Tenenbaum et al. 2000).

2.3 Locally linear embedding algorithm

Locally linear embedding (LLE), as a representative

manifold learning technique, is a nonlinear dimension

reduction method by mapping the high-dimensional data

to a lower dimensional space while preserving the

essential properties of the raw data. It attempts to discover

the underlying nonlinear structure (nonlinear manifold) in

high-dimensional data by exploiting the local symmetries

of linear reconstructions (Roweis and Saul 2000). Like the

ISOMAP algorithm, the implementation of the LLE

method also requires several steps. First of all, the

neighbors of each data point xi are obtained by calculating

the Euclidean distances between neighbor points and the

data point of interest. Next, the weights matrix W is

computed by minimizing the reconstruction error of the

data point from its neighbors. Finally, each high-dimen-

sional observation X is mapped to a low-dimensional

vector Y representing the global internal coordinates on

the manifold. When implementing the LLE algorithm,

only one free parameter needs to be optimized, which is

quite straightforward. Therefore, once the number of

neighbors per data point K is chosen, the optimal weights

Wij and coordinates Yi are computed by standard methods

in linear algebra. However, this method is sensitive to

noise and prone to ill-conditioned eigen issues, which

may lead to unsatisfactory performance of feature selec-

tion and fusion.

2.4 Factor analysis

Factor analysis (FA), as a typical variance-based feature

selection and representation technique, is different from

traditional PCA which is formulated on matrix decompo-

sition. FA is a linear Gaussian latent variable model and

releases constraint by forming a diagonal covariance

(Bishop 2006). The constructed factor model represents the

original variable by a linear combination of latent and

measured variables. Thus FA is able to deal with the

uncertainty of extracted features in gearbox condition

monitoring, since the gearbox degradation process under

complex operating conditions (such as accumulation of
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fatigue, crack propagation, wear) may be subject to

uncertainty and changeable operations. Moreover, FA is

invariant to the component-wise rescaling of the feature

space for input data by preserving the intrinsic data struc-

tures (Bishop 2006). Unfortunately, FA is a linear model

based on the second-order statistics, which means that the

processed data need to obey Gaussian distributions. How-

ever, the vibration signals in practice contain much noise

and a variety of frequency components obeying non-

Gaussian distributions. By taking into account the high

computational efficiency and nonlinear projection ability of

kernel functions, a kernel factor analysis is investigated for

feature selection and representation in gearbox condition

monitoring.

3 Proposed virtual sensing framework

During the normal operation process, online sensing tech-

niques such as accelerometer and tachometer signals are

continuously recorded to reflect gearbox conditions, but

they are indirect indicators of gearbox conditions. On the

other hand, oil debris is usually measured offline by

experienced engineers to inspect the gearbox conditions,

but it can directly reflect the gearbox condition. The pro-

posed virtual sensing model for gearbox condition moni-

toring takes advantage of online measurements to estimate

the gearbox conditions which are comparable to the oil

debris measurements based on artificial intelligence as

illustrated in Fig. 1. The virtual sensing framework mainly

consists of four modules: (1) a data acquisition system

capable of measuring vibration measurements during

gearbox operation, (2) a feature extraction module to

extract the representative gearbox condition indicators

(CIs) by preprocessing the raw noisy measurements, (3) a

kernel factor analysis-based feature fusion module to select

and fuse the extracted features for dimension reduction,

and (4) a support vector regression-based artificial intelli-

gence model to infer gearbox conditions from the fused

features. The developed virtual sensing method is a com-

plement to direct sensing or indirect sensing and provides a

more effective tool for gearbox condition monitoring. The

details of each module are discussed below.

3.1 Data acquisition and feature extraction

The vibration signal measurements are usually collected

continuously to characterize the gearbox condition. Due to

the poor signal-to-noise ratio (SNR) and multi-component

interaction in a gearbox, vibration signal processing is

required to de-noise the signal and extract defective sig-

natures. In this study, a total of 21 features or condition

indictors (CIs) from time, frequency, and time–frequency

domains are investigated including (1) time synchronous

averages (TSA): root mean square (RMS), kurtosis (KT),

peak-to-peak (P2P), crest factor (CF); (2) residual RMS,

KT, P2P, CF; (3) energy operator RMS, KT; (4) energy

ratio; (5) FM0; (6) sideband level factor; (7) narrowband

(NB) RMS, KT, CF; (8) amplitude modulation (AM) RMS,

KT; (9) derivative AM KT; and (10) frequency modulation

(FM) RMS, KT. The detailed formulation of these condi-

tion indicators have been published (Zakrajsek et al. 1993;

Wemhoff et al. 2007).

3.2 Feature selection and fusion

The extracted features are formulated as feature vectors

and further constructed as feature space of high dimen-

sionality. To remove irrelevant and redundant features, and

to improve model computational efficiency, a proper fea-

ture selection and fusion strategy is needed to lower the

dimension of feature space. In the factor analysis, the
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      to-peak (P2P), Crest factor (CF); 
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feature set X is defined as a linear combination of latent

variable set Z plus a noise term as follows:

X ¼ WZ þ lþ e ð1Þ

where W is a D 9 M factor loading matrix capturing the

correlations behind the extracted feature variables; l 2 RD

is the mean vector for feature set X; and e denotes a D-

dimensional Gaussian noise with zero mean and a diagonal

covariance, i.e., e�Nð0;WÞ, where W is a D 9 D diagonal

matrix modeling the independent noise variance for each

original dimension. For conciseness, the mean vector l is

ignored in the following derivation, since the data are

easily assumed to be zero-centered after preprocessing.

With the proper transformation, the original features could

be well represented by a low-dimensional latent variable

space. However, an underlying constraint in factor analysis is

that the variables follow Gaussian distributions which are

difficult to meet in real-world gearbox condition monitoring.

Thus, a kernel version of the factor analysis method is for-

mulated to tackle this issue. The original features are pro-

jected into a new feature space B with a mapping function /,
and the new feature matrix is generated and written by:

F ¼

Uðx1Þ
Uðx2Þ

..

.

UðxnÞ

0
BBB@

1
CCCA ð2Þ

Then, the FA is introduced in the new feature space B,
which can be treated as performing a nonlinear FA in the

original space. Similar to the FA method, the data in the

new space B can also be represented as follows:

F ¼ WT þ E ð3Þ

where W 2 RN�M that is the projected latent data matrix,

T 2 RM�P, and E�NN;Pð0;W� IMÞ that is the noise

variance matrix following the independent and identical

distribution. To estimate model parameter set h containing

{W, W}, the expectation–maximization (EM) algorithm is

used, which is an iterative method proposed for maximum

likelihood of a latent probabilistic model (Dempster et al.

1977, Moon 1996). Considering that the new data matrix

F is centered, the parameter estimation in E-steps and M-

steps can be obtained as (Wang et al. 2016):

Wqþ1 ¼ KnormW
�1
q WqE½T�TðI

þ GqW
T
qW

�1
q KnormW

�1
q WqÞ�1 ð4Þ

Wqþ1 ¼
1

N
diagfKnorm �Wqþ1GqW

T
q W

�1
q Knormg ð5Þ

Gq ¼ ðI þWT
qW

�1
q WqÞ�1 ð6Þ

where q and q ? 1 represent two successive iteration steps.

The kernel factor analysis only needs to address the kernel

matrix K, which is different from the traditional FA and has

a more efficient learning process.

3.3 Virtual sensing model construction

The selected features are fed into the artificial intelligence

model to construct the virtual sensing technique. Different

artificial intelligence techniques could fit the purpose

including artificial neural network (Dong et al. 2010),

support vector regression (Widodo and Yang 2007), and

fuzzy logic (Gokulachandran and Mohandas 2015). The

artificial neural network technique has been widely inves-

tigated, but it requires a large amount of historical data for

model training and suffers from local optima and overfit-

ting issues. Support vector regression raises much attention

because of high generalization capability and lower train-

ing sample requirements (Widodo and Yang 2007). Con-

sidering only a limited number of labeled experimental

data sets are available, the support vector regression is

selected to build the virtual sensing model in this study.

During the model construction process, the selected fea-

tures from vibration measurements are taken as the inputs

while the oil debris measurements are treated as the out-

puts. The selection of parameters and kernel functions in

the support vector regression model is determined using a

grid search algorithm following a leave-one-out cross-

validation method. Then the built support vector regression

model fuses the selected features from vibration measure-

ments to infer the gearbox condition indicator which is

comparable with the oil debris measurements for gearbox

condition monitoring.

4 Experimental studies

4.1 Data preparation

Experimental data obtained from a spiral bevel gear case

study (Dempsey et al. 2002) is used to evaluate the

Fig. 2 Illustration of gearbox test. a Bevel gear test rig. b Damaged

spiral bevel gear in experiment Y1. c Damaged spiral bevel gear in

experiment Y3 (Dempsey et al. 2002)
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presented virtual sensing method. The schematic diagram

of the bevel gear test rig is shown in Fig. 2. A number of

gear wear tests were performed until surface fatigue

occurred, during which the vibration and oil debris

measurements were collected to characterize the gearbox

conditions. Vibration data was measured by two

accelerometers located on the left and right pinion shaft

bearing housing. They were collected once per minute
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Table 1 Quantitative

evaluation criteria for

performance comparison

Metrics Mathematic formulation

Pearson correlation coefficient (PCC)
PCC ¼

P
i
ðyi��yÞðy_i�

�
y
_ ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
ðyi��yÞ2

P
i
ð y_

i
� �
y
_ Þ2

q

Root-mean-square error (RMSE)
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 ðy

_

i � yiÞ2
q

Mean absolute error (MAE) MAE ¼ 1
N

PN
i¼1 yi � y

_

ij j
Mean absolute percentage error (MAPE) MAPE ¼ 1

N

PN
i¼1

yi�y
_
ij j
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using a sampling rate of 100 kHz for 2 s duration. The

shaft speed was measured by an optical sensor once per

each gear shaft revolution, generating time synchronous

averages (TSA). Oil debris data were collected using a

commercially available oil debris sensor to detect the pit-

ting damage on spiral bevel gears (Howe and Muir 1998).

A total of 21 representative features (as discussed in

Sect. 3.1) are extracted from time, frequency and time–

frequency domains by preprocessing the time synchronous

averaging signal. The exemplified features are shown in

Fig. 3. Whitening and eigenvalue decomposition (EVD)

are firstly performed to select six dominant features by

preserving almost 95% of the cumulative variances. Next,

kernel factor analysis is performed for dimension reduction

to remove the irrelevant and redundant features.

4.2 Performance evaluation

The presented virtual sensing model is used to exploit the

complex relationship between the vibration and oil debris

analysis methods. A total of three sets of gearbox life test

data (e.g., Y1, Y2, and Y3, etc.) are available. The leave-

one-out strategy is followed to cross validate the perfor-

mance of the virtual sensing model. More specifically, two

Table 2 Performance

comparison of different virtual

sensing schemes

Methods PCC RMSE MAE MAPE

PCA based 0.9634 ± 0.0089 1.9179 ± 0.0240 1.3045 ± 0.1370 0.0424 ± 0.0042

KPCA based 0.9647 ± 0.0121 1.9142 ± 0.0513 1.2932 ± 0.0318 0.0418 ± 0.0024

ISOMAP based 0.9548 ± 0.0116 2.0578 ± 0.0995 1.5961 ± 0.1806 0.0547 ± 0.0055

LLE based 0.9632 ± 0.0115 1.9252 ± 0.0095 1.3035 ± 0.0984 0.0426 ± 0.0054

FA based 0.962 ± 0.0103 2.004 ± 0.2077 1.3533 ± 0.1632 0.0433 ± 0.0028

KFA based 0.9685 ± 0.0081 1.7214 ± 0.0850 1.2335 ± 0.1246 0.0408 ± 0.0027
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data sets are chosen for model training, and the remaining

one is for model testing. Firstly, the SVR model is built by

optimizing the cost parameter C and Gaussian kernel

parameter c using the grid search method to prevent

overfitting. Next, the selected features obtained by KFA are

fed into the constructed SVR model to infer gearbox con-

ditions. To compare the performance of KFA, several state-

of-the-art dimension reduction techniques are also inves-

tigated including PCA, KPCA, LLE, ISOMAP, and FA.

The virtual sensing results of these different feature

selection schemes are shown in Figs. 4 and 5 using dif-

ferent sets of experimental data. It is found that the pre-

dicted gear conditions by these virtual sensing models

generally follow the trend of the actual oil debris

measurement.

To quantitatively compare the performance of different

virtual sensing schemes, different criteria are investigated

including the Pearson correlation coefficient (PCC), root-

mean-square error (RMSE), mean absolute error (MAE),

and mean absolute percentage error (MAPE) as illustrated

in Table 1. In the evaluation indexes, y represents the

actual oil debris measurement and y
_

is the estimated oil

debris measurement using the virtual sensing model.

Generally, the larger the PCC value, the better the model

performance, while the lower the RMSE/MAE/MAPE

value, the better the model performance.

According to the above evaluation criteria, the perfor-

mance of these virtual sensing schemes is compared and

the results are shown in Fig. 6 and Table 2. It can be found

that different feature selection techniques play important

roles in the performance of virtual sensing models. The

KFA-based virtual sensing model outperforms the con-

ventional feature selection based virtual sensing models.

By incorporating the kernel techniques into factor analysis,

the superiority of KFA method is demonstrated to tackle

the uncertainty and non-Gaussian features in the vibration

measurements for feature selection and fusion.

5 Conclusions

Virtual sensing, as a complement to direct sensing or

indirect sensing, provides a new perspective for machinery

condition monitoring. According to the results obtained in

this study, the conclusions can be drawn as follows.

(1) A new virtual sensing technique is presented for

gearbox condition monitoring by taking the merits of

vibration analysis and oil debris analysis methods.

(2) By incorporating the kernel technique into the factor

analysis, a new feature selection method (KFA) is

presented to exploit the nonlinear representative

features with non-Gaussian distributions.

(3) The effectiveness of the presented virtual sensing

method is validated in the experimental studies of

gear wear, and the comparison results show that the

presented KFA scheme outperforms the conven-

tional feature selection techniques in terms of virtual

sensing model accuracy.

A variety of experimental tests will be performed to

evaluate the robustness of the proposed method in our next-

step research.
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