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Abstract Ensemble learning is a method of combining learners to obtain more reliable and
accurate predictions in supervised and unsupervised learning. However, the ensemble sizes
are sometimes unnecessarily large which leads to additional memory usage, computational
overhead anddecreased effectiveness. Toovercome such side effects, pruning algorithmshave
been developed; since this is a combinatorial problem, finding the exact subset of ensembles is
computationally infeasible. Different types of heuristic algorithms have developed to obtain
an approximate solution but they lack a theoretical guarantee. Error Correcting Output Code
(ECOC) is one of the well-known ensemble techniques for multiclass classification which
combines the outputs of binary base learners to predict the classes for multiclass data. In
this paper, we propose a novel approach for pruning the ECOC matrix by utilizing accuracy
and diversity information simultaneously. All existing pruning methods need the size of the
ensemble as a parameter, so the performance of the pruning methods depends on the size of
the ensemble. Our unparametrized pruning method is novel as being independent of the size
of ensemble. Experimental results show that our pruning method is mostly better than other
existing approaches.
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1 Introduction

It iswidely accepted that ensemble classifiers aremore accurate than a single classifier (Zhang
et al. 2006). A number of effective ensemble methods have been developed over the previous
decades, e.g. bagging (Breiman 1996) and boosting (Freund and Schapire 1996). There is
no integrated theory behind ensemble methods and several authors stated that there is no
available consistent and theoretically sound explanations for ensemble classifiers (Kuncheva
2004). Despite these negative reflections, at least three theories are able to explain the effec-
tiveness of ensemble learners. The first theory is based on large margin classifiers (Mason et
al. 2000). It is shown that ensemble classifiers enlarge the margins and improve the capabil-
ity of generalization performance of Output coding (Allwein et al. 2000) which comes from
Vapnik’s Statistical Learning Theory (Vapnik 1998). The second theoretical argument is on
bias-variance decomposition of error which states that ensemble classifiers reduce the vari-
ance or both bias and variance (Breiman 1998; Kong and Dietterich 1995; Schapire 1999).
The last general theory is constructed upon a set theoretical point of view to remove all algo-
rithmic details of classifiers and training procedures in which the classifiers are considered
as sets of points (Kleinberg 1996, 2000).

The effectiveness of ensemblemethods relies on the diversity of the classifiers and accurate
learning models. Despite their effectiveness, they may require extensive memory to save all
the learning models and it can be time consuming to get a prediction on unlabeled test data.
For small data sets, these two costs can be negligible, but they may be prohibitive when
ensemble methods are applied to large scale data sets. Furthermore, the size of ensemble
may lead to inefficiency and selecting subsets of classifiers can improve the generalization
performance (Zhang et al. 2006).

Several pruning algorithms have been developed such as ranking classifiers according to
their individual performance and picking the best one. Themajor problem in selecting the best
subset for the ensemble occurs when optimizing some criteria of subsets since it turns out to
be a greedy search algorithm which has no theoretical or empirical quality guarantee (Zhang
et al. 2006). In Zor et al. (2014), a novel approach is proposed to investigate a given base
classifier’s effectiveness by measuring its accuracy k times with respect to each individual
class of a k class problem, averaging the results. The proposed measure is used to prune the
ensemble by using ordered aggregation and referred to ACEC. Since pruning is performed by
ordered aggregation, as the size of ECOC matrix increase, running time of ACEC increases.
Like in the other ordered aggregation methods, pruning size should be given as an input
which leads the problem parameter dependent in Zor et al. (2014). Evolutionary pruning
methods for ensemble selection are developed in Kim et al. (2002). Unlike the heuristic
methods we mentioned above, ensemble pruning may be formulated as quadratic integer
programming problem and solved by semi-definite programming which searches for optimal
diversity-accuracy trade off (Zhang et al. 2006). This new approach differs from previous
ensemble methods as it consists of discrete variables and can be considered as the discrete
version of weighted ensemble optimization. The optimization problem contains a parameter
k which is the ensemble size of the selected subset. Since it must be chosen beforehand, the
solution, here, also depends on this parameter and hence the accuracy of the ensemble.

Similar optimization-based approach is proposed in Yin et al. (2014a) which considers
accuracy and diversity measures as in Zhang et al. (2006) by a continuous optimization
model with sparsity learning. The objective function in Yin et al. (2014a) is defined by a loss
function and is chosen specifically to be the least square function. Weights for each classifier
are forced to be sparse by L1 norm regularizationwithin the constraints to determine subset of
an ensemble and weights of classifiers in the ensemble are found out by minimizing the error

123



Mach Learn (2015) 101:253–269 255

rate by least square function defined in the objective function. Diversity is taken into account
with an additional diversity function defined by Yule’s Q statistics within the constraints of
the optimization problem. Since the model in Yin et al. (2014a) is defined by least squares
function which contains true label vectors, it cannot be applied to ECOC framework directly.
Because columns of ECOCmatrix provide different problemswith different relabellings. Yin
et al. (2014a) then further improved their work by penalizing sparsity and diversity constraints
within objective function in Yin et al. (2014b). In Yin et al. (2014b), error is minimized by
the same idea by least square function.

In this paper, unlike pruning methods in Zor et al. (2014) and Zhang et al. (2006), pruning
size is not required as an input in the problem. Our first contribution is the reformulation
of the quadratic integer formulation of Zhang et al. (2006) as an unconstrained problem by
approximating cardinality constraint which refers to the ensemble size defined by zero norm
approximation. Therefore, the problem becomes not only parametric-free of ensemble size
but also it results in a non convex continuous optimization problem. The non convex problem
here is reformulated by difference of convex functions as in Sriperumbudur et al. (2011)
and solved by nonlinear programming solver function fiminunc in MATLAB’s optimization
toolbox (Branch and Grace 2002). In this paper, the overall ensemble pruning problem is
adapted to ECOC which is the second novel contribution of this study. The performance
of our proposed approach ECOC with UP is compared with well known methods Reduced
Error Pruning, Random Guessing, Kappa Pruning and recent approaches ACEC in Zor et al.
(2014), SDP in Zhang et al. (2006).

Unlike with the methods mentioned above, subclass technique (subECOC) is developed
in Bouzas et al. (2011) on the ECOC framework where by splitting the initial classes of the
problem, larger but easier problem to solve ECOC configurations. The multiclass problem’s
decomposition is performed by discriminant tree approach.

Our proposed method has common goals and optimization structure with the method in
Yin et al. (2014a, b) with its diversity and sparsity notions. However, expression of accuracy,
diversity and sparsity differs by their respective objective function and constraints. Further-
more it is developed to prune ECOC matrix. One of the important aspect of our algorithm is
that it can be applied to ECOC framework but it is not possible to adapt objective function in
Yin et al. (2014a, b) to ECOC framework because of the loss function term. It should be noted
that ECOC columns represent different labelings which constitute different binary problem
and hence do not agree with the loss term in Yin et al. (2014a, b).

The proposed framework is novel, since optimising the accuracy/diversity trade-off for
ECOC through pruning by using optimization has not previously been attempted. The closest
approach is Zhang et al. (2006), but that is restricted to two-class problems, and is a discrete
optimization. Furthermore our approach automatically determines the optimal pruning rate
as part of the optimisation, and therefore does not need to be supplied as a parameter in
advance. In Zor et al. (2014), ECOC is pruned by ordered aggregation which achieves high
accuracy but on the other hand it slows down the running time as the number of examples and
the number of classes increase. The proposed approach in this work differs from the method
in Zor et al. (2014) since pruning is modeled by a continuous optimization framework which
gives exact number of classifiers in the subensemble unlike the ordered aggregation in Zor
et al. (2014).

The rest of the paper is organized as follows. In Sect. 2, ECOC and accuracy/diversity
trade-off will be reviewed. Section 3 describes ourmethodwith themathematical formulation
and the solution technique. Section 4 is devoted to the experiments and concludes with a
discussion in Sect. 5.
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Fig. 1 An example of ECOC framework with Support Vector Machine (SVM) base classifiers

2 Error Correcting Output Codes

The Error Correcting Output Codes (ECOC) (Dietterich and Bakiri 1995) framework is a
general method for multiclass classification by embedding of binary classifiers. Given a set
of k classes, ECOC generates a coding matrix M of size k×n in which each row corresponds
to a codeword per class, i.e., ith row refers to the codeword of length n for ith class. Each
codeword consists of {−1,+1} binary entries. In terms of learning,M is constructed by taking
into account n binary problems where each one corresponds to a column of M . Each of these
binary problems (or dichotomizers) splits the multiclass problem into two class coded by−1
or+1 (or 0 if the class is not considered) inM . Then at the decoding step, applying each trained
classifier will give a binary output on the test set whichwill form a codeword for the test point.
The class of the test point is determined byfinding theminimal distance between the codeword
of the test point and codeword of classes in M . The data point is assigned to the closest
codeword in M .There are different decoding strategies in the literature, for a closer look
please see Escalera et al. (2010). In this paper, we will use Hamming distance1 as a distance
measure between codewords. In Fig. 1, an example of ECOC coding/decoding is given.

The ECOC framework is independent of base classifiers and has been shown to reduce
bias and variance produced by the learning algorithms as mentioned in Kong and Dietterich
(1995). Because of these reasons, ECOChas beenwidely used for themulticlass classification
problems.

2.1 Accuracy diversity trade off

Diversity has long been recognised as a necessary condition for improving ensemble per-
formance, since if base classifiers are highly correlated, it is not possible to gain much by
combining them. The individual classifiers may be very accurate, and indeed the more accu-
rate they become, the less diversity exists between them (Windeatt 2006). This dilemma
has become known as the accuracy/diversity trade-off. There have been many attempts to
define diversity (Kuncheva and Whitaker 2003), but the consensus is that no matter how it
is defined, there does not exist any measure that can by itself predict generalisation error of
an ensemble. Since there is a lack of a general theory on how diversity impacts ensemble

1 Hamming distance between codeword c1 and c2 is the number of places where c1 and c2 are different.
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performance, experimental studies continue to be an important contribution to discovering
whether a relationship exists and if so whether it can be quantified and understood.

For solving multiclass problems using ECOC, considerations of the accuracy/diversity
trade-off are even more complex. The original motivation for ECOC was based on error-
correcting theory, which assumes that errors are independent. However, when applied to
multiclassmachine learning problems, the error correlation depends on the data set, base clas-
sifier as well as the code matrix. In the original ECOC approach (Dietterich and Bakiri 1995),
heuristics were employed to maximise the distance between the columns to reduce error cor-
relation. There have been other attempts to address error correlation.Hadamardmatricesmax-
imise distance between rows and columns andwere used as ECOC codematrix inGuruswami
and Sahai (1999), in which an upper bound on probability of error correlationwas derived as a
functionofminimumdistance between codewords. InAllwein et al. (2000) itwas shown that a
highminimumdistance between any pair implies a reduced upper bound on the generalisation
error, and in James (1998) it was shown for a random matrix that if the code is equi-distant
and long enough, then decision-making is bayes-optimal. More recent approaches aim to
introduce problem-dependent designs to address error correlation (Escalera et al. 2010).

Based on previous research, it is possible to summarise the main considerations in design-
ing ECOC matrices

– minimum Hamming Distance between rows (error-correcting capability)
– variation of Hamming Distance between rows (effectiveness of decoding)
– number of columns ( repetition of different parts of sub-problems )
– Hamming Distance between columns and complement of columns (independence of base

classifiers).

All these constraints make optimal design of coding and decoding strategies a complex prob-
lem. Previous studies have attempted to address some of these constraints experimentally.
An accuracy/diversity study was carried out in Windeatt (2006) using a random code matrix
with near equal split of classes (approximately equal number of 1’s in each column), as
proposed in Schapire (1997). It is proved in Windeatt and Ghaderi (2003) that optimal per-
formance is attained if codes are equi-distant, and an experimental comparison is made of
random, equi-distant and non-equi-distant code matrices. However, the proposed approach
in this paper is the first to incorporate pruning into ECOC and address the optimisation of
the accuracy/diversity trade-off in a principled fashion.

3 Pruning methods

In this section, we introduce a family of pruning methods based on ordered aggregation.
The order of aggregation is determined according to the different measures such as voting,
accuracy and diversity in which the initial ensemble starts with the optimal measures and
iteratively adds new candidate classifiers based on diversity/accuracy of the ensemble on the
training set Ztraining .

As discussed in Sect. 2.1, a single measure of accuracy or diversity alone is not a sufficient
criterion to prune the ensembles. Both accuracy and the diversity must be considered together
for selecting the classifiers in the ensemble. Some rules that change the order of aggregation
areReducedError PruningMethod (REP) (Margineantu andDietterich 1997),Kappa Pruning
(KP) (Margineantu and Dietterich 1997), Complementarity Measure (Martinez-Mungoz and
Suarez 2004),MarginDistanceMinimization (MDSQ) (Martinez-Mungoz and Suarez 2004),
Orientation Ordering (Martinez-Mungoz and Suarez 2006) and Boosting Based Pruning
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(Martinez-Mungoz and Suarez 2007). In this section, we will give the idea of the first two
methods, namely REP and KP and continue with our method developed for ECOC.

3.1 Reduced Error Pruning (REP)

Thismethod is first introduced inMargineantu andDietterich (1997). The result of combining
the predictions of the classifiers in an ensemble ET = {ht (x)}Tt=1 using equally weighted
voting is

HET (x) = argmax
y

T∑

t=1

I (ht (x) = y) , y ∈ Y

where ht is the hypothesis and Y is the set of labels. The first classifier in the ensemble
is the one having the minimum classification error. The algorithm searches for the second
classifier which makes the classification error of the new ensemble minimum. After it finds
the new ensemble, it iteratively adds the rest of the classifiers one by one and incorporates the
one which gives the lowest ensemble error for the new ensemble until it reaches the desired
ensemble size. The subensemble Su is constructed by adding to Su−1, the classifier

su = argmax
k

∑

x,y∈Ztraining

I
(
HSu−1∪hk (x) = y

)
, k ∈ ET \ Su−1,

where k runs over the all classifiers which haven’t been selected up to that iteration and y ∈ Y
and I is the indicator function.

In this paper,we adaptedREPalgorithm toECOCby the samemanner. SVMwithGaussian
kernel is used as a base classifier for the ECOC learners. Each base classifier is determined
by 5 fold cross validation and REP is applied on 10 different random folds in which each
fold has its own ensemble. The size of the subensemble is chosen to be the same size as the
subensemble of the pruned ECOC matrix proposed in this study.

3.2 Kappa Pruning (KP)

This method is based on selecting the most diverse classifiers by using κ statistics (Kuncheva
and Whitaker 2003). As in REP, Kappa Pruning iteratively adds a new classifier to the
ensemble which gives the minimum pairwise κ measure. It starts with the pair of classifiers
which have the minimum pairwise κ diversity. Then, it adds the classifier which makes the
mean of the pairwise diversities minimum in the ensemble. Likewise in REP, here the formula
differs only with kappa measure

su = argmax
k

κZtraining

(
hk, HSu−1

)
, k ∈ ET \ Su−1,

where κ is the pairwise diversity measure given by κ = N00

N11+N10+N01+N00 in Kuncheva and

Whitaker (2003). Here Nab is the number of elements where yi = a or y j = b. In this study,
KP is adapted to ECOC by using exactly the same logic. As with REP, SVM is used as base
classifier for ECOC and CV is applied as in Sect. 3. The method is tested on ten different
random folds in which each fold has its own ensemble.

3.3 Pruning of ECOC by using optimization model

It is known that as the number of classes increases, the number of base classifiers in the ECOC
matrix also increase for exhaustive search. Let us remember that if k is the number of classes,
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the number of columns in ECOC can be at most 2k
2 − 1. As k increases the number of base

classifiers in the ensemble increases exponentially. Hence the running time and the efficiency
of the algorithm decreases. In this study we propose a pruning method to select the best
accurate and diverse classifiers from exhaustive ECOC coding by incorporating the diversity
measure of Zhang et al. (2006). In order to get good mathematical formulation of trade off,
error structure of the problem is represented by a linear combination of base classifiers’ errors
and diversities from the error analysis in Zhang et al. (2006). It is claimed that if the strength
and diversity measurements for a classification ensemble can be found, a linear combination
of them should serve as a good approximation of the overall ensemble error. Minimizing the
approximate ensemble error function will be the objective of mathematical programming.
In Zhang et al. (2006), the error of each base classifier is reported in the matrix P on the
training set as follows:

Pi, j = 0, if the jth classifier is correct on data point i ,
Pi, j = 1, otherwise.

A matrix G is defined to be the error matrix by G = PT P since the diagonal term Gii

will be total error that classifier i makes, and the off diagonals Gi j will be the common errors
that classifier i and j make so that off diagonals correspond to the measure for diversity. The
matrix G is then normalized to put all the elements in the same scale as

G̃ii = Gii

N
,

where N is the number of training points and

G̃i j,i �= j = 1

2

(
Gi j

Gii
+ Gi j

G j j

)
. (1)

We note that pruning of the ECOC matrix in this study differs from choosing the best
columns of ECOC matrix since pruning here is based on both the observed error rates and
diversity measures on the training sets. As discussed above, G̃ii represents the total error
made by classifier i and G̃i j measures the common errors made by pairwise classifiers i and

j . Note that the newmatrix G̃ is symmetric by taking the average of
Gi j
Gii

and
Gi j
G j j

. Furthermore,
∑

i G̃ii measures the overall strength of the ensemble and
∑

i j,i �= j G̃i j measures the diversity.
The mathematical programming is formulated by quadratic integer problem in Zhang et al.
(2006) where a fixed subset of classifiers is searched as a constraint by the following problem

min
x

xT G̃x

subject to
∑
i
xi = k,

xi ∈ {0, 1}.
(2)

Here, xi represents whether the ith classifier is in the ensemble or not. If xi = 1, then it
means ith classifier is chosen to be in the ensemble, if xi = 0 then it is not considered in the
ensemble and k is the length of the ensemble and should be chosen as a parameter beforehand.
The problem (2) is NP hard in general but it is approximated as a max-cut problem in Zhang
et al. (2006) and solved by semi-definite programming (SDP). The overall efficiency of the
problem depends on the ensemble size k since it is the parameter given before solving the
problem and the solution changes accordingly.
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3.3.1 Unparametrized pruning (UP)

In this study, we get rid of the parameter of ensemble size simply by adding penalization
term to the objection function with a regularization constant ρ. Note that the constraint in
Eq. (2) can be written as ‖x‖0 = k. Here zero norm is defined by the number of non zero
elements which leads the sparsity in the model. Instead of determining the pruning rate k in
(2), finding the indices of non zero entires of x corresponds to the pruning rate which refers
to the number of classifiers in the subensemble. Furthermore, by this way and with the help
of sparsity, we introduced the relaxation of the binary vector to the real vector, i.e. x ∈ Rn .
Then the Eq. (2) becomes an unconstrained problem which is the regularized version of the
problem (2).

min
x∈Rn

xT G̃x + ρ ‖x‖0 (3)

The first step to solve the continuous optimization problem (3) is to approximate the
cardinality constraint, i.e. ‖x‖0. One can approximate it by ‖x‖1 which is the usual heuristic.
We approximated it as the negative log-likelihood of a Student t-distribution, which is a
tighter approximation than ‖x‖1 and has been used in many different contexts (Candes et
al. 2007; Fazel et al. 2003; Sriperumbudur et al. 2011; Weston et al. 2003). There are other
approximations to ‖x‖0, e.g.,

∑n
i=1 (1 − e−α|xi |) where α > 0 (Bradley and Mangasarian

1998).
If we define the approximation of the zero norm as

‖x‖0 :=
n∑

i=1

1xi �=0 = lim
ε→0

n∑

i=1

log (1 + |xi | /ε)
log (1 + 1/ε)

,

then the problem (3) becomes

min
x∈Rn

xT G̃x + ρ lim
ε→0

n∑

i=1

log (1 + |xi | /ε)
log (1 + 1/ε)

(4)

Let us denote the set of symmetric matrices by Sn and denote positive semidefinite and
positive definitematrix by S+ and S++ respectively. Observe that thematrix G̃ is a symmetric
matrix since G̃i j = G̃ ji , and the indices i j and j i refer to the common errors between i th

and j th classifier. Note that the problem (4) is a non convex unconstrained problem since the
matrix G̃ /∈ S+or R++. Then we can not use the well known property of convex optimization
[see Theorem below (Nocedal and Wright 2000)] which states the following

Theorem 1 (Nocedal and Wright 2000) Let x∗ be the feasible point of the problem

min
x

f (x), (5)

where f (x) is convex differentiable function. If∇( f (x∗)) = 0 then x∗ is the global minimum
of (5).

Wewill model the problem (4) by difference of convex (DC) functions since the objective
function has the structure of DC. Note that the recent formulation (4) is a continuous opti-
mization problem unlike the problem (2) which has a combinatorial term. Before giving DC
formulation of the problem, lets define DC program as below:
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Definition 1 Let � be the convex set in Rn and f : � → R be a real valued function.
Then, f is a DC function on � if there exist two convex functions g, h : � → R such that
f (x) = g(x) − h(x), x ∈ �. Optimization problems of the form

min
x∈�

f0(x) (6)

s.t. fi (x) ≤ 0, i = 1, . . . ,m (7)

where fi (x) = gi (x) − hi (x), i = 0, 1, . . . ,m is called DC programming.

In order to formulate (4) as DC program, let us choose τ ∈ R such that G̃ + τ I ∈
S+. If G̃ ∈ S+, such τ exists trivially, choose τ > 0. If G̃ is indefinite, choosing τ >

−λmin(G̃)where λmin is the smallest eigenvalue of G̃ ensures that G̃+τ I ∈ S+ . The similar
approximation is performed for different concepts such as solving generalized eigenvalue
problem in Sriperumbudur et al. (2011). Therefore, if we choose τ > max(0,−λmin), then
we will have positive semi definite matrix for any G̃ ∈ Sn . Then the problem (4) can be
written as

min
x

xT
(
G̃ + τ I

)
x − τ ‖x‖22 + ρ lim

ε→0

n∑

i=1

log (1 + |xi | /ε)
log (1 + 1/ε)

,

where ‖. ‖2 is referred to Euclidean norm. The above problem can be approximated further
by neglecting the term lim and choosing ε > 0. Hence the following convex unconstrained
problem is obtained

min
x

xT
(
G̃ + τ I

)
x − τ ‖x‖22 + ρ

n∑

i=1

log (1 + |xi | /ε)
log (1 + 1/ε)

. (8)

With this new formulation, the first model introduced by Zhang et al. (2006) is made inde-
pendent of the size of the subensemble k by penalizing the constraint in model (2) with a
regularization constant τ . The size of subensemble k changes the accuracy of the model
since the subensemble having small k can lack important classifiers or having too large k
can include redundant classifiers. Testing for all k and choosing the best k by exhaustive
search on the training set will make the algorithm too slow, especially as the number of
classes increases. In the new formulation proposed in model (8), new parameters τ and ρ are
introduced where the first one is approximated by the minimum eigenvalue of the matrix G̃
and the latter one is by well known statistical method cross validation. Here we choose the
number folds as 5. The algorithm of the proposed method in this study is given by Algorithm
1 and is referred to “ECOC with UP”.

4 Experiments

We implemented our novel pruning method by MATLAB fminunc function from optimisa-
tion toolbox which solves the unconstrained optimization problem (Branch and Grace 2002).
The new parameters τ and ρ introduced in Eq. (8) are calculated by τ = λmin(G̃) and by
5 fold cross validation respectively. First we derived the matrix G̃ from the standard ECOC
algorithm on the training set and then performed pruning by solving the optimization problem
(8). It has been theoretically and experimentally proven that the randomly generated long or
equi-distant code matrices give close to optimum performance when used with strong base
classifiers (James and Hastie 1997; Windeatt and Ghaderi 2003). Thus, in this study coding
of the ECOC matrix is performed by random generation such that each column of ECOC
matrix has approximately equal number of −1s and +1s. The solution set of the problem (8)
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Algorithm 1 ECOC with UP
Input: a k class problem
Base classifier
ECOC matrix Mk×n
Output: error rates of Test Set
1: Partition data X into Training Set Xtr and Test Set Xtest
2: Run base classifier for each column of Mk×n on Xtr

3: Compute matrix G̃ defined by Eq. (1) on Xtr
4: Compute a solution x of

min
x

xT
(
G̃ + τ I

)
x − τ ‖x‖22 + ρ

n∑

i=1

log (1 + |xi | /ε)
log (1 + 1/ε)

. (9)

5: Find all i ′s suchthat xi ≥ 0.5, i = 1 . . .m to be the indices of new classifiers in subset
6: Construct new ECOC matrix M̃k×m by choosing columns from indices in Step 5.
7: Run ECOC framework with M̃ on test set Xtest

constitutes the reduced number of base learners for ECOC. We used UCI machine learning
repository data sets of ecoli, glass, dermatology, yeast, wine and facial expression classifi-
cation data.2 As a base learner we used SVM with Gaussian kernels. Kernel parameters and
regularisation constant of SVM are chosen by 10 fold cross validation. In Zhang et al. (2006),
pruning size is set beforehand but in our formulation, it is part of the optimisation (8). Since
the solution of the problem (8) consists of continuous values, we approximated the solution
to binary values by well known heuristic rounding in combinatorial optimization. From the
experiments we observe that the solution converges if a threshold is placed on the real output
x of (8). The threshold is taken as x > 0.5 as indicated in Step 5 in Algorithm 1 where the
ith classifier is included to the subensemble if xi > 0.5.

In Tables 1, 2 and 3, error rates and running time in seconds (given in parenthesis) are
compared with different pruning methods REP and KP, ACEC in Zor et al. (2014), SDP in
Zhang et al. (2006) that are adapted toECOCand further randomguessing results are reported.
The highest accuracy is reported in bold in Tables 1, 2 and 3. For statistical significance,
student t test is performed to asses whether the error rate is in the confidence interval on 10
test folds and it is found that the error rates reported in Tables 1, 2 and 3 are in confidence
interval which are referred to CI. The statistical significance is found to be p > 0.99 with a
confidence level of 95% and H = 0which indicates that we should reject the null hypothesis.
Our null hypthesis is “Error rates are random for 10 test folds”. The subensemle size k is
determined from our pruning method Algorithm 1 by Step 5 where k refers to the number
of non zero elements of vector x in Eq. (4) and it is fixed for the other pruning methods
in order to make a meaningful comparison. The method “SDP” on which our algorithm is
based on is parametric on the subensemble size k. The error rate highly depends on k. If k is
too small it may give high error rate and if k is too big it may contain redundant classifiers
in the subensemble which also affects error rate. So it is important to determine the best
k. Finding k heuristically will be time consuming since it is necessary to try all k values,
i.e., k = 1, 2, . . . n. Thus comparison of error rates of “ECOC with UP” with the method
SDP is not strictly fair since k in SDP is found in “ECOC with UP” beforehand. Likewise,
comparison with ACEC is not strictly fair since it is an ordered aggregated method and cpu
time of ACEC is higher than all methods compared in this study. Thus for large data sets,
ACEC is not an efficient method although it gives higher accuracy.

2 Cohn Kanade Database, http://vasc.ri.cmu.edu/idb/html/face/facial_expression/.
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On the other hand, k is replaced with a new regularization parameter ρ introduced within
penalization term of our approach “ECOCwith UP” is determined by cross validation for val-
uesρ = [1 10 100 500 1000] on training set. Furthermore, it is important to observe that
running time for cross validation to determineρ is less than carrying out heuristically to find k.

We tested our algorithm on different size of pool of classifiers, i.e., different size of ECOC
matrices, such as 50, 100, 150 base classifiers on 5 data sets from UCI machine learning
repository (Blake and Merz 1998) and Facial Expression Classification (FAC) data (Kanade
et al. 2000) which will be explained in next Sect. 4.1 . These results show that ACEC
performs better in terms of error rate but it is very slow in running time since it is based
on ordered aggregation. If we compare our approach “ECOC with UP” with other methods
except ACEC, it performs mostly better than other pruning methods. Note that, SDP and
ACEC are not applicable for large scale data as it can be seen on facial expression data
“FAC” on each table. Observe that when any other pruning method except “ECOC with UP“
gives better results, it has always very slow running time. For instance, In Table 1 for FAC
data, Full ECOC and Random Guessing give better error rate but the running time is greater
than with ”ECOC with UP”. KP is still better than our method but the running time increases
significantly. In Table 3, for the wine data, even though REP is significantly better than all,
the running time is twice as long as “ECOCwith UP“method which has the second best error
rate. Likewise, for the glass data in Table 3, “ECOC with UP“ has the second best result with
a lower running time than Full ECOC, REP and KP. Especially, REP and KP can be very
time consuming because of the combinatorial structure of the algorithm, even though they
give better results in some cases, e.g., Table 3. As explained in Sects. 3.1 and 3.2, both of the
algorithms go through all combinations to find the minimum ensemble error which makes
these algorithms very slow. It should be also noted that pruning size must be determined as
an input variable for all methods that we compared in this section.

4.1 Facial expression classification

Automatic facial expression recognition has applications in areas such as human–computer
interaction, human emotion analysis, biometric authentication and fatigue detection. How-
ever, the emotions characterised in these different applications can be quite varied.While it is
possible to learn emotions directly from features derived from raw images, an attractive and
more generic approach is to decompose the face into discrete facial features. A commonly
used method is the facial-action coding system (FACS) (Ekman and Friesen 1978; Tian et
al. 2001), in which facial features are characterised as one of 44 types known as action units
(AUs). The advantage of FACS is that facial expressions of interest (e.g. emotions or fatigue)
can be learned by looking for particular groups of AUs so that the interpretation can be
de-coupled from their detection. Figure 2 shows example AUs from the eye region.

Fig. 2 Some example AUs and AU groups from the region around the eyes. AU1 inner brow raised, AU2 outer
brow raised, AU4 brows lowered and drawn together, AU5 upper eyelids raised, AU6 cheeks raised, AU7 lower
eyelids raised. The images are shown after manual eye location, cropping, scaling and histogram equalisation
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Table 4 Classes of action unit groups used in the experiments

Class number 1 2 3 4 5 6

AUs present None 1, 2 1, 2, 5 4 6 1, 4
No. examples 152 23 62 26 66 20

Class number 7 8 9 10 11 12

AUs present 1, 4, 7 4, 7 4, 6, 7 6, 7 1 1, 2, 4

No. examples 11 48 22 13 7 6

It is possible to define a series of two-class problems, in which a classifier is trained to
differentiate each AU from all other AUs (one versus rest). However, the presence of one AU
may affect the strengths of other AUs, in other words not all AUs are linearly independent.
In this paper, AU detection is posed as a single multiclass problem, in which groups of AUs
are assigned a single class. Therefore a single AU may appear in more than one group.

In order to detect AUs, the images first need to be pre-processed. Multi-resolution local
binary patterns (MLBP) are used for feature extraction (Smith and Windeatt 2010; Raja
and Gong 2006), and the fast correlation-based filter (FCBF) algorithm (Yu and Liu 2004)
is employed for feature selection. Further details of the pre-processing and normalisation
procedures may be found in Smith and Windeatt (2011).

Results are presented for the Cohn-Kanade face expression database (Kanade et al. 2000),
which contains frontal video clips of posed expression sequences from 97 university students.
The last imagehas available ground truth in the formof amanualAUcodingbyhumanexperts.
We focused on detecting AUs from the upper face region as shown in Fig. 2. In order to avoid
defining classes with very few training patterns, AU groups with three or fewer examples
were ignored. This led to 456 images available for training and these were distributed across
the 12 classes shown in Table 4.

We applied the same procedure in ECOC and in pruning, as described in Sect. 3. ECOC is
performed with 200 base classifiers, for which we used SVM with Gaussian kernel (Chang
and Lin 2011). Each run was based on a different randomly chosen stratified training set with
a 90/10 training/test split. The ECOC code matrices were randomly generated with balanced
numbers of 1s and -1s in each column, as proposed by Schapire (1997). Experimental results
of FAC data are compared with the proposed pruning algorithm in Tables 1, 2 and 3, They
show that appropriate subset of base learners gives approximately same error rate, so that
fewer base learners leads to less training time, which is proportional to number of base
learners.

5 Discussion and conclusion

In this study, we proposed a faster and more efficient pruning method for ECOC by opti-
mizing the accuracy and diversity simultaneously in the proposed cost function. Our new
algorithm prunes the set of base classifiers by solving a continuous optimization unlike in
Zhang et al. (2006). One of the important aspects of the proposed method here is that the
size of the pruned set comes directly from the optimization problem. The unconstrained opti-
mization formulation given in Eq. (4) does not need the ensemble size and finds the optimum
subensemble on the training set. In Zhang et al. (2006) and Zor et al. (2014), the pre-defined

123



268 Mach Learn (2015) 101:253–269

pruning size determines the error rate, while here it is determined by searching optimality
conditions. For higher number of classes and higher number of base classifiers, the pruning
will lead to a more efficient solution for multiclass classification. Different size of ECOC
matrices are tested for 5 different pruning method and for full ECOCmatrix without pruning.
For most of the data ECOC with UP reduces the error in a smaller running time as shown in
Tables 1, 2 and 3. It should be clarified that as decoding, we used Hamming distance and as
a future work, we will apply other decoding methods proposed in Sect. 2.1.
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