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Abstract

Motivation: In searching for genetic variants for complex diseases with deep sequencing data,

genomic marker sets of high-dimensional genotypic data and sparse functional variants are quite

common. Existing sequence association tests are incapable of identifying such marker sets or indi-

vidual causal loci, although they appeared powerful to identify small marker sets with dense func-

tional variants. In sequence association studies of admixed individuals, cryptic relatedness and

population structure are known to confound the association analyses.

Method: We here propose a unified marker wise test (uFineMap) to accurately localize causal

loci and a unified high-dimensional set based test (uHDSet) to identify high-dimensional

sparse associations in deep sequencing genomic data of multi-ethnic individuals with random

relatedness. These two novel tests are based on scaled sparse linear mixed regressions with Lp

(0<p< 1) norm regularization. They jointly adjust for cryptic relatedness, population structure

and other confounders to prevent false discoveries and improve statistical power for identifying

promising individual markers and marker sets that harbor functional genetic variants of a com-

plex trait.

Results: With large scale simulation data and real data analyses, the proposed tests appropriately

controlled Type I error rates and appeared to be more powerful than several prominent methods.

We illustrated their practical utilities by the applications to DNA sequence data of Framingham

Heart Study for osteoporosis. The proposed tests identified 11 novel significant genes that were

missed by the prominent famSKAT and GEMMA. In particular, four out of six most significant path-

ways identified by the uHDSet but missed by famSKAT have been reported to be related to BMD or

osteoporosis in the literature.

Availability and implementation: The computational toolkit is available for academic use: https://

sites.google.com/site/shaolongscode/home/uhdset
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1 Introduction

Deep sequencing technologies have been generating huge amounts

of data of rare and common DNA sequence variants. A number of

sequence association tests have been developed to identify marker

sets, e.g. a group of SNPs or CNVs (copy-number variations), that

contain functional genetic variants. Most of these tests, however, do

not jointly model cryptic relatedness, population structure and other

covariates. With the growing demand of analyzing next generation

sequencing data of multi-ethnic individuals, linear mixed models

have become popular because of their demonstrated effectiveness in

accounting for sample relatedness (Amos, 1994) and population

structure which occurs when there are large-scale systematic differ-

ences in genetic ancestry among individuals in a sample. Typical ex-

amples include individuals with various levels of immigrant ancestry

and more recent shared ancestors than one would expect in a

homogenies population. Cryptic relatedness, refers to the presence

of relatives in a sample of ostensibly unrelated individuals, could

pose more serious confounding than population structure (Devlin

and Roeder, 1999), especially for samples from small and isolated

populations (Voight and Pritchard, 2005). Accounting for popula-

tion structure is more challenging when family structure or cryptic

relatedness is also present (Price et al., 2010). We paved the way to

correct for the effects of both confounders jointly.

Within the framework of linear mixed models, famSKAT (Chen

et al., 2013) and GEMMA (Genome-wide Efficient Mixed Model

Association) (Zhou and Stephens, 2012) appeared as two powerful

sequence association tests for identifying small marker sets that har-

bor dense functional genetic variants. FamSKAT is a set based test

which is an extension of SKAT to be applicable to family data.

GEMMA is a computationally efficient method for fitting multivari-

ate linear mixed models. These prominent tests require that the

number of markers in a testing set is much smaller than the sample

size. However, in deep sequencing studies, one encounters quite

often high-dimensional data sets (HDS), where the number of

marker loci is larger than the sample size and the number of func-

tional variants is very small. The aforementioned tests are incapable

of identifying such sparse HDS and the functional variants. Some

sparse regression methods were developed to localize individual

functional markers from high-dimensional marker sets, jointly mod-

eling pedigree structure and population structure. They include

Lasso (Rakitsch et al., 2013), Ridge regression (Endelman, 2011),

Elastic-net (Zou and Hastie, 2005) and the USR that we proposed

recently (Cao et al., 2014). However, these methods yield biased so-

lutions and are ineffective to prevent false discoveries of random

markers and high-dimensional marker sets irrelevant to functional

variants.

In this article, we first present a unified test (uFineMap) for ac-

curately localizing individual causal loci. The uFineMap is a marker

wise test under a scaled sparse linear mixed regression, which jointly

models marker wise effect, relatedness and population stratification.

It applies scaled Lp (0<p<1) norm regularization to generate a de-

biased solution. Next, we present an additional significant test (uni-

fied high-dimensional set based test, uHDSet) for identifying high-

dimensional sparse associations in deep sequencing genomic data of

related individuals. The uHDset integrates the marker wise statistics

of the uFineMap to identify susceptible high-dimensional marker

sets. In the uHDSet, the dependence among markers is modeled to

appropriately control set-based Type I error rates. Under extensive

simulations, the uFineMap outperformed the GEMMA (Zhou and

Stephens, 2012) and a Scaled Lasso based method (Javanmard and

Montanari, 2014). The uHDSet yields higher statistical power than

famSKAT and GEMMA. Applications to Framingham Heart Study

also show that our methods yield novel interesting candidate genes

and pathways for follow-up studies, showing its advantages over the

two compared prominent alternative methods. Finally, caveats of

the proposed methods and perspective future efforts are discussed.

2 Methods

We focus on constructing statistical tests for high-dimensional gen-

etic data with cryptic relatedness. We propose two significance tests:

uFineMap test (single marker/variant test) and uHDSet test (unified

high-dimensional set test or whole regional test). Similar to

Bühlmann (2013) and Javanmard and Montanari (2014), we de-

velop uFineMap significance test for single variants based on the

scaled sparse regression (Sun and Zhang, 2012), which is a general-

ization of ordinary sparse regression. Furthermore, we build new

statistics for the uHDSet test based on a combination of marker wise

statistics. The uHDSet test facilitates us to identify susceptible genes

or genetic regions instead of single variants.

2.1 Unified scaled Lp norm regularized regression
At first, we need to define some basic notations. Let n denote the

number of subjects; m denotes the number of independent variables

(SNPs); and L represents the number of covariates. Suppose we have

dependent variable Y ¼ ðy1; y2; . . . ; ynÞT , which stands for pheno-

type for each subject. X ¼ ðx1; x2; . . . ; xnÞ is a nxm matrix where

the row xi ¼ ðxi1;xi2; ::; ximÞT represents genotype data for the ith

subject. Typically, genotypes are coded as 0, 1 or 2 which denote

the number of copies the minor allele. Un�n ¼ ðui;jÞ is the kinship

matrix or IBD (identity-by-descent) matrix. The kinship coeffi-

cient ui;j measures the relatedness between individual i and j. W ¼
ðw1;w2; . . . ;wnÞ is an nxL matrix, where wi ¼ ðwi1;wi2; . . . ;wiLÞT

represents the covariates, e.g. age, sex, height and weight.

We assume that the phenotypes, genotypes and covariates are

associated with the following linear mixed model:

Y ¼WaþXbþ e (1)

where e � Nð0;R ¼ r2
UUþ r2

e InÞ, a ¼ ða1; a2; . . . ; aLÞT and

b ¼ ðb1; b2; . . . ;bmÞT are the corresponding regression coefficients.

Both Emma and Gemma methods can evaluate the variance compo-

nent ratio r2
U=r

2
e of covariant matrix R. In this article, we use

Gemma method to evaluate the r2
U=r

2
e ratio.

In model (1), the regression coefficients b ¼ ðb1; b2; . . . ; bmÞT

represent the effect of variants which are the most important vari-

ables we are interested in. However, the high-dimensionally of gen-

etic data will easily lead to over-fitting problem under regular

regression model. To overcome this issue, a general form of the uni-

fied sparse regression model with Lp (0<p<1) norm regularization

was proposed by USR paper with the following minimization prob-

lem (Cao et al., 2014):

ðb̂; âÞ ¼ argmin
b2Rm ;a2RL

ðY�Wa�XbÞTR�1ðY�Wa�XbÞ þ kjjbjjpp (2)

where the Lp (0<p<1) norm regularization is defined by

kjjbjjpp ¼ k
Xm
i¼1

jbijp; 0 < p < 1

As is well-known (Cao et al., 2014; Chen et al., 2010; XU et al.,

2012) that Lp (0<p<1) norm regularization results in a sparser so-

lution than L1 norm regularization, which was widely popularized

by the Lasso (least absolute shrinkage and selection operator)
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(Tibshirani et al., 1996). In particular, previous simulation results in

Cao et al. (2014) suggest that the use of the L0.3 norm regulariza-

tion, in order to achieve a proper sparsity level of the solution with

great computational efficiency. To keep the method flexible, we also

offer users different choices for the Lp (0<p<1) norm in our R

code.

In addition to the selection of the Lp norm, the regularization

(tuning) parameter k largely affects the solution of Equation (2) as

well. In general, the choice of k is regarded as a difficult problem.

Popular methods for this purpose include the minimization of either

the Bayesian information criterion (BIC) or the Akaike information

criterion (AIC) as a function of k, cross-validation, and stability se-

lection (Meinshausen and Bühlmann, 2010) to select k. However,

none of these methods can be applied to control the Type I error, es-

pecially for a region-based significance test.

By adopting the idea of scaled sparse linear regression (Sun and

Zhang, 2012), which jointly estimates the regression coefficients

and the noise level of the data, we avoid the regularization param-

eter selection problem. The estimated noise level is used for bias cor-

rection. The obtained de-biased estimator is applied to perform

marker wise significance tests for each variant.

The scaled Lp norm based sparse regression model is given by

ðb̂;â;r̂Þ¼ argmin
b̂2Rm ;â2RL ;r>0

ðY�Wa�XbÞTR�1ðY�Wa�XbÞ
2nr

þr
2
þkjjbjjpp

( )

(3)

In the unified scaled sparse regression the tuning parameter k is

updated iteratively, which requires an initial value k0. However, the

sensitivity of the results to the selection of k0 is low. Moreover, de-

biased estimators can be constructed to balance out the bias in the

estimated noise level r̂ and the bias caused by the Lp norm regular-

ization, which are both proportional to the initial k0. The asymp-

totic distribution of the de-biased estimators can then be derived

without major difficulties.

To solve the optimization problem (3), we combine the algo-

rithm for unified Lp norm based sparse regression with that for the

general scaled sparse regression (Sun and Zhang, 2012) and propose

the following algorithm.

The algorithm for unified scaled sparse regression (3)

Step 1: Data centralization:
Pn

i¼1 xij ¼ 0, for j¼1,2, . . . m

Step 2: Initialize kð0Þ ¼ k0 ¼ 2
ffiffiffiffiffiffiffiffiffiffi
logðmÞ

n

q
, rð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
YTR�1Y

n

q
, âð0Þ ¼ 0

and b̂
ð0Þ ¼ 0, set iterative index r¼0, e ¼ 0:0001; Initialize,

bð0Þj ¼ 0, for j¼1,2 . . . m

Step 3: Update r̂; k; b̂; â coordinately

r̂ðrþ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
ðY�WâðrÞ �Xb̂

ðrÞÞTR�1ðY�WâðrÞ �Xb̂
ðrÞÞ

r

kðrþ1Þ ¼ rðrþ1Þk0

Update the regression coefficients by USR method (Cao et al.,

2014)

ðb̂ðrþ1Þ
; âðrþ1ÞÞ

¼ argmin
b2Rm ;a2RL

(
1

2nr̂ðrþ1Þ ðY�WaðrÞ �XbðrÞÞTR�1ðY�WaðrÞ �XbðrÞÞþkðrÞjjbðrÞjjpp

)

Step 4: If jjb̂ðrþ1Þ � b̂
ðrÞjj2 < e stop; otherwise return to Step 3

2.2 The bias correction of unified scaled Lp norm

regularized sparse regression
Lasso, Ridge regression, and many other popular regression methods

utilize a regularization term, in order to obtain a stable solution on an

HDS. The L1 norm regularization term used in Lasso typically shrinks

many regression coefficients to zero. This, however, introduces a bias

making the non-zero regression coefficients smaller in magnitude.

Adopting the idea of unbiased estimation (Javanmard and

Montanari, 2014), we develop a unbiased estimator to recover the un-

biased regression coefficients, and to assess the corresponding asymp-

totic Gaussian distribution. A detailed algorithm is presented below.

The algorithm for unbiased estimator

Step 1: Set c ¼ k̂
r̂, where k̂ and r̂ are the estimated parameters of

the unified scaled sparse regression (3)

Step 2: Set Z ¼ ðXTR�1XÞ=n
Step 3: For i¼1,2, . . . ,m, solve ui by the following constraint

convex program:

minimize uT
i Zui

subject to jjZui � eijj1 � c

Because the calculation of each ui is independent. To increase

the computation speed, we parallelize the calculation.

Step 4 : Set M ¼ ðm1;m2; . . . ;mmÞT (4)

If any of the above problems is not feasible, then set M ¼ Im�m

Step 5 : Define the unbiased estimator by

b̂
u ¼ b̂þ 1

n
MXTR�1ðY�Xb̂Þ (5)

where b̂ is the solution of formula (3).

2.3 Hypothesis tests and confidence intervals
To clarify the problem, we assume Y is the covariates adjusted

phenotype. After ignoring the covariates, the true model becomes:

Y ¼ Xb0 þ e; e � Nð0;R ¼ r2
UUþ r2

e InÞ (6)

where b0 is the ground truth regression coefficients and stands for

true signal.

We define the sparse level of b0 as S0 ¼ fi 2 f1; 2; . . . ;mgj
b0;i 6¼ 0g. In this article, we apply a weak assumption for the sparse

model, which is s0 ¼ jS0j ¼ oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=logðmÞ

p
Þ. Without any further no-

tice, we always assume that this assumption holds. Although the

sparse ground truth is preferred, our method is also robust for the

non-sparse setting, according to the simulation result in

Supplementary Figs 5.8S and 5.9S in the Appendix.

2.3.1 uFineMap test

For each predictor i, we need to develop a significance test to deter-

mine whether the corresponding regression coefficient bi is signifi-

cant or not. For a specific i 2 f1; 2; . . . ;mg, we define the null

hypothesis H0: bi ¼ 0 versus the alternative hypothesis H1: bi 6¼ 0

Supposing the model (6) stands and considering the unbiased esti-

mator (5), we prove that the following asymptotic distribution holds

nðb̂u � b0Þ!d Nð0;r2MXTR�1XMTÞ; (7)

where M is defined by formula (4). The detailed proof is given in

Theorem 1 in Appendix.
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With this theorem, we can directly derive the significance test for

each marker, e.g. uFineMap test. The p-value for each variable can

be calculated by the following:

PðiÞ ¼ 2 1� U
njb̂u

i j

r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½MXTR�1XMT�i;i

q
0
B@

1
CA

0
B@

1
CA; i ¼ 1;2; . . . ;m (8)

where U is the cumulative distribution function of a standard nor-

mal distribution.

2.3.2 uHDSet test

The next major question is how to control the family-wise error

rates (FWER) to claim the whole significant genetic region. Besides

Bonferroni–Holm correction or some existing multiple testing cor-

rection methods to control the FWER or false discovery rate

(Benjamini and Hochberg, 1995, 2000). We are commitment to de-

veloping a powerful and efficient multiple testing adjustment, taking

dependence into consideration, which would be more powerful than

uncorrelated adjustment.

For uHDSet test, the null hypothesis is H0: b1 ¼ b2 ¼ . . . ¼
bm ¼ 0, and the alternative hypothesis is H1: 9bi 6¼ 0; i 2 f1;
2; . . . ;mg.

Inspired by the idea of van de Geer et al. (2014), we develop a

new statistic for uHDSet significance test by utilizing the previous

uFineMap statistics: S ¼ maxi2f1;2; ... ;mg
njb̂u

i j
r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½MXTR�1XMT �i;i

p .

For an arbitrary z 2 R, the following equation holds

PðS � zjXÞ � Pð max
i2f1;2; ... ;mg

jWij

r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½MXTR�1XMT�i;i

q � zjXÞ ! 0

where W � Nð0; r̂2MXTR�1XMTÞ. The proof is presented in

Theorem 2 in Appendix.

Under null hypothesis H0: b1 ¼ b2 ¼ . . . ¼ bm ¼ 0, statistic S

is asymptotically equivalent to the maximum of a series of de-

pendent v2ð1Þ variables, whose distribution relies on the design ma-

trix XTR�1X. For any fixed matrix XTR�1X, we simulate its

distribution and use its quantile to estimate the p-value of the

uHDSet statistic S.

3 Results

To validate our proposed tests, we conducted simulations under var-

ious types of pedigree structures to demonstrate their performances

comprehensively, in terms of both Type I error rates control and

statistical power.

3.1 Nuclear family simulation
We use the following linear model to generate simulation data with

nuclear family structure (each family consists of two children and

their parents):

Y ¼ bXb0 þ e; e � Nð0;RÞ (9)

where b is the effect size for causal marker; R ¼ 1=3Uþ 2=3I.

We randomly assign 30% of variables to be rare variants [minor

allele frequency (MAF)<1%], 20% of variables to be low fre-

quency variants (1%<MAF<5%) and the rest variables to be com-

mon variants (5%<MAF<50%).

3.1.1 Data generation

The basic procedure of performing nuclear family simulation is as

follows:

Step 1: Given MAF for each variable, set the ground truth b0 with

10 causal variants (five of them are rare variants); set the correl-

ation matrix Kij ¼ qji�jj, where i; j 2 f1;2; . . . ;mg and the coeffi-

cient q determines the correlation for each pair of variables. We

set q ¼ 0:6 throughout the simulation.

Step 2: Sampling E1
n�m � Nð0; I� KÞ and E2

n�m � Nð0; I� KÞ
Step 3: For each subject i and variable j, update the genotype matrix

by: Xij ¼ IðE1
ij > U�1ðmaf ðjÞÞÞ þ IðE2

ij > U�1ðmaf ðjÞÞÞ.
Step 4: Generate the vector of trait values of n subjects according to

model (9) for a given b. The selection of b is discussed at Section

3.1.3.

3.1.2 Type I error rates evaluation

To validate if the proposed significant tests can control the Type I

error rates, we generated genotype data by the procedure in Section

3.1.1, setting n¼500 and m¼1000. The trait value is generated by

Y ¼ e � Nð0;RÞ. We replicated this simulation 1000 times and re-

corded the corresponding p-values to draw quantile–quantile (Q-Q)

plots. Under null hypothesis, the quantile of the p-value should fol-

low the uniform distribution U(0,1).

Figure 1 illustrates most points are aligned near the diagonal

line, which is expected. The two dashed curves represent 95% con-

centration band (CB). With all the points concentrated within the

95% CB, we concluded that the observed p-values follow the uni-

form distribution over interval (0,1). The Q-Q plot assures that the

Type I error rates of uFineMap test is appropriately controlled.

Figure 2 shows that the distribution of uHDSet test’s p-values

agrees with the uniform distribution, indicating the validity of the

adjustment of multiple testing. Therefore, we can draw a conclusion

that both of our uFineMap test and uHDSet test can control the

Type I error rates appropriately.

3.1.3 Statistical power analysis

The design matrix is simulated by the same procedure as in Section

3.1.1. As typical, we set the nominal significance level at 0.05 and

generated the trait values with respect to various values of heritabil-

ity H. We define the heritability H to be the ratio of variance be-

tween true signal and the total variance of trait value, which can be

explicitly written as:

H ¼ b2VarðXb0Þ
VarðYÞ ¼ b2VarðXb0Þ

b2VarðXb0Þ þ VarðeÞ

Then we have b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HVarðeÞ
ð1�HÞVarðXb0Þ

q

Fig. 1. The Q-Q plot for uFineMap test. The x axis is negative log10 of ex-

pected p-values, and the y axis represents negative log10 of observed

p-values
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Let the ground truth signal to be

b0ðiÞ ¼
1 i 2 f1;3; 5; 7;9;11g

0 otherwise

(
, i.e. the true marker set to be re-

covered. We set two of the causal variants to be rare variants and

the other four as common variants. We increased the heritability H

from 0 to 1 and calculated its power at each point. For the sake of

saving computational time, we only repeated the procedure 2000

times for each given H.

The statistical power for the uFineMap test is defined as

Power ¼
PT

t¼1 s�1
0

P
i2S0

I½PðiÞ < 0:05�=T, where T is the simulation

replicates; PðiÞ is the p-value from uFineMap test of ith marker and

I() is the indicator function.

For uHDSet test, PðtÞ represents the p-value calculated at t-th

simulation. We define the empirical statistical power to be

Power ¼
XT

t¼1

I½PðtÞ < 0:05�=T

To evaluate our method, we compare the uFineMap test with

other high-dimensional inference methods [e.g. Scaled Lasso

(Javanmard and Montanari, 2014), single marker v2 test and

Gemma (Zhou and Stephens, 2012)]. For the uHDSet test compari-

son, we additionally consider a popular regional based association

test, famSKAT (Wu et al., 2011). The results are shown in Figs 3

and 4, respectively.

In Fig. 3, the uFineMap test performs uniformly better than

Scaled Lasso test, Gemma and the single marker test. It indicates

that the uFineMap test has a noticeable power gain to identify both

common and rare causal variants.

Figure 4 evaluates different methods’ performance with respect

to sample size changes. It illustrates that our uFineMap test overall

outperforms other two methods especially when the sample size are

small. Meanwhile, all the competing methods show a similar pattern

for a large sample problem.

Similar to Figs 3, 4, 5 and 6 indicate that the statistical power of

all regional tests will increase with the growth of sample size and

heritability, which is consistent with our expectation. In addition, at

the lower sample size area, our uHDSet test performs much better

than famSKAT and Gemma. With the increase of the sample size,

the powers of the three methods converge to the same value.

In conclusion, our proposed tests have higher power than com-

peting existing methods regardless of heritability. Meanwhile, it per-

forms almost equally well for large sample size data.

3.2 Complex family simulation
To further compare different methods fairly, instead of using our

own or over-simplified simulation data, we used the software

SeqSIMLA2. SeqSIMLA2 can simulate sequence data in families

under quantitative disease models.

Using SeqSIMLA2, we generate quantitative traits for 8 large

families with 67 individuals (the family tree for each family is shown

in Supplementary Appendix Fig. 5.1S) with 1000 SNPs in total.

3.2.1 Type I error rates evaluation

To verify the validity of our proposed tests, we need to evaluate if

the Type I error is well controlled under the null hypothesis.

Supplementary Figs 5.1S and 5.2S (in Appendix) show the Q-Q

plots for uFineMap test and uHDSet test, respectively. The results

Fig. 2. The Q-Q plot for uHDSet test. The x axis is negative log10 of expected

p-values, while the y axis represents negative log10 of observed p-values

Fig. 3. Power versus heritability for marker wise tests. The legend ‘uFineMap

test’ stands for our proposed method; ‘Lasso’ is the Scaled Lasso test;

‘Gemma’ refers to Gemma method and ‘Single marker test’ represents v2 sin-

gle marker test

Fig. 4. Power versus sample size for uFineMap tests

Fig. 5. Power versus heritability for regional tests. The legend ‘uHDSet’ stands

for our proposed method

Fig. 6. Power versus sample size for uHDSet tests

334 S.Cao et al.

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/32/3/330/1743896
by guest
on 28 July 2018

 ,
.,
,
;
,
(
.,
Chi-square
)).
,
.
Fig 
Fig 3. Power vs. heritability for marker wise tests. The legend ``uFineMap test'' stands for our proposed method; ``Lasso'' is the Scaled Lasso test; ``Gemma'' refers to Gemma method and ``Single marker test'' represents Chi-square single marker test.Fig 4. Power vs. sample size for uFineMap tests.Fig 5. Power vs. heritability for regional tests. The legend ``uHDSet'' stands for our proposed method.Fig 6. Power vs. sample size for uHDSet tests.
 and Fig
Fig 
 Fig
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv586/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv586/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv586/-/DC1


indicate that the Type I error rates is appropriately controlled in

complex family structure.

3.2.2 Power comparison

We randomly assign 50 causal variants (25 common, 25 rare) to

generate the continuous phenotype. Additionally, we proposed two

simulation setting for markers effects. We assign all causal markers

to be positively related to the trait value for the same causal direc-

tion setting. For the different causal direction setting, half of the

causal markers are randomly given a negative relationship with the

trait value.

Figures 7 and 8 present the comparison of three competing meth-

ods under same direction and different direction settings, respect-

ively. The similar patterns also occurred at a marker wise tests

comparison. To make the presentation concise, we only show the re-

sult of regional tests, and the result of marker wise tests can be

found in the Appendix (Supplementary Figs 5.3S and 5.4S). We can

draw the conclusion that all three methods are robust with respect

to causal variants direction. But our uHDSet test is almost uniformly

more powerful than Gemma and famSKAT for SeqSIMLA simula-

tion data.

3.3 Analysis of sequence data from Framingham Heart

Study
To demonstrate the effectiveness of our methods for real genetic

variants detection, we applied them to the analysis of sequence data

of Framingham Heart Study. This dataset contains both GWAS and

next generation sequencing (NGS) data from 4229 subjects with

HipBMD data. We used the FISH (Zhang et al., 2014) method for

genotype imputation and selected HipBMD as the phenotype data.

After quality control, we obtained 3322 individuals with 6 500 475

SNPs in total. We apply two kinds of data analysis strategies: whole

genome analysis and pathway-based analysis.

3.3.1 Whole genome analysis

We separate each chromosome into several genetic windows and

then apply our uFineMap and uHDSet tests in each window. We set

the window size to be 100 kb base pairs. After the separation, the

whole genome is separated by a total number of 16 514 sets of

markers. The phenotype is adjusted by the covariates and the top 10

principle components of the genotype before the application of the

proposed method. Following the same process as in the simulation

studies, we obtain the results and draw the Manhattan plots for 22

chromosomes, as shown in Figs 9 and 10, respectively. Additional

results of Manhattan plots for the whole genome (i.e. from chromo-

some 1 to 22) with higher resolution are presented in Appendix.

By combining the overlapped region of Figs 9 and 10, the

uHDSet test report 68 regions of highest susceptibility that exceed a

p-value threshold of 0.001. The reported p-value is based on the

whole regional test. According to GeneCards websites, there are 11

genes (Table 1) within the selected regions that are associated with

BMD or osteoporosis disease, which further confirms our findings.

However, these 11 genes are missed by the use of famSKAT and

Gemma method. The reported p-value of Gemma is generated by

the minimal p-value after Bonferroni correction for the SNPs within

the region.

For the marker wise test, the uFineMap test report 82 susceptible

SNPs that exceed a p-value threshold of 10�5. Table 2 shows the six

reported SNPs that are associated with BMD or osteoporosis disease

according to GeneCards websites.

3.3.2 Pathway analysis

To further illustrate the benefit of the uHDSet test, we collect 880

pathways from KEGG, REACTOME and BIOCARTA pathway

analysis databases. We first extract genes belonging to each

Fig. 7. Power comparison with same causal direction

Fig. 8. Power comparison with different causal direction

Fig. 9. The Manhattan plot for uFineMap test of 22 chromosomes. Each point

represents p-value of its corresponding SNP

Fig. 10. The Manhattan plot for uHDSet test of 22 chromosomes. Each point

represents p-value of a 100 kb window SNPs region
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pathway, then select the corresponding SNPs. The selected SNPs of

a specific pathway are combined to form the design matrix for asso-

ciation tests. We list six most significant pathways that pass p-value

cut-off 10�3 in Table 3 for which the prominent famSKAT methods

fails to detect. The two P38/MAPK pathways were previously found

to play a critical role by other publications (Kim et al., 2013; Lee

et al., 2008). Endogenous Sterols pathway is also related with BMD

reported by another study (Warriner and Saag, 2013). Chemokines

pathway is important regulator in development, homeostasis and

pathophysiological processes associated with osteoporosis

(Lazennec and Richmond, 2010).

Each p-value in Table 3 is generated based on a whole pathway-

based region. It can be seen that, our uHDSet method is more

powerful than famSKAT in identifying significant pathways which

contain a relatively large number of genetic markers.

4 Conclusion

Some promising association tests with the adjustment of family struc-

ture have been established on the LDSs (low dimensional sets).

However, these tests would suffer power loss in high dimensional

data. To overcome the limitations of these tests, we propose the

uFineMap and uHDSet tests for assessing the significance of the

HDSs with cryptic relatedness, which are based on novel scaled linear

mixed sparse regressions. The proposed tests are designed to address

the challenge of variants detection under complex pedigree structures,

which implement an explicit way to properly control the Type I error

rates at both single marker level and SNPs set level.

The promising results of testing on both simulated and real data

indicate that the uFineMap and uHDSet tests yield considerably

higher statistical power gains in comparison to other competing

methods, especially for high dimensional data with cryptic related-

ness. The uFineMap test can pinpoint single susceptible variants

with higher resolutions, even for rare functional variants. In add-

ition, our methods also maintain substantial power for detecting

susceptibility variants in low dimensional data of large samples.

Last but not least, our methods can identify both rare and common

variants efficiently.

One limitation of the proposed methods is that we assume linear

mixed relationship between phenotype and genotype, which might

not be true in the real world. Therefore, non-linear regression mod-

els with adjustment of relatedness and population stratification may

be more suitable. In addition, the overall computational complexity

is Oðn2m3Þ, which is much higher than simply solving the sparse lin-

ear mixed model or other efficient methods designed for LDSs, par-

ticularly for extremely large data. To solve this issue, parallel

computing is implemented to reduce the total computational time

for large scale genetic data analyses.
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