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Abstract
This article surveys efforts on text mining of the pharmacogenomics literature, mainly from the period 2008 to 2011.
Pharmacogenomics (or pharmacogenetics) is the field that studies how human genetic variation impacts drug
response. Therefore, publications span the intersection of research in genotypes, phenotypes and pharmacology, a
topic thathas increasinglybecome a focus of active research in recent years.This surveycovers efforts dealingwith the
automaticrecognitionofrelevantnamedentities (e.g. genes, genevariants andproteins, diseases andotherpathological
phenomena, drugs and other chemicals relevant for medical treatment), as well as various forms of relations between
them. Awide range of text genres is considered, such as scientific publications (abstracts, as well as full texts), patent
texts andclinicalnarratives.We also discuss infrastructure andresourcesneeded for advanced text analytics, e.g. docu-
ment corpora annotated with corresponding semantic metadata (gold standards and training data), biomedical ter-
minologies and ontologies providing domain-specific background knowledge at different levels of formality and
specificity, software architectures for buildingcomplex and scalable text analyticspipelines andWeb servicesgrounded
to them,aswellascomprehensiveways todisseminateandinteractwith the typicallyhugeamountsof semiformalknow-
ledge structures extracted by textmining tools. Finally, we consider some of the novel applications that have already
beendeveloped in the field ofpharmacogenomic textmining andpointoutperspectives for futureresearch.

Keywords: text mining; information extraction; knowledge discovery from texts; text analytics; biomedical natural language
processing; pharmacogenomics; pharmacogenetics

INTRODUCTION
Among the many promises of the Human Genome
Project (http://www.ornl.gov/sci/techresources/

Human_Genome/home.shtml) was the prospect of

treating human diseases in a much more focused

manner and targeting specific parameters and condi-

tions based on finely grained phenotype or even in-

dividual genetic profiles. Such novel opportunities

have shaped the idea of ‘individualized medicine’

and have led to the emergence of a field called
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‘pharmacogenomics’ [1]. It can be defined as ‘the

study of how an individual’s genetic variation im-

pacts (originally: genetic inheritance affects) the

body’s response to drugs. The term comes from

the words pharmacology and genomics and is thus

the intersection of pharmaceuticals and genetics’

(http://www.ornl.gov/sci/techresources/Human_

Genome/medicine/pharma.shtml).

This combination of hitherto almost unrelated sci-

entific areas, on the one hand, opens up a plethora of

challenging research questions. On the other hand,

researchers in each of the camps involved often face

serious information deficits regarding what concerns

previous work and progress in the discipline(s) other

than their own research speciality. The tremendous

heterogeneity of the relevant themes to be covered

here—e.g. information about genes, gene variants and

proteins, diseases and other pathological phenomena,

drugs and other chemicals, as well as various forms of

semantic relations between them, constitute an infor-

mation acquisition and knowledge management

problem that gave rise to the emerging field of ‘phar-

macogenomic text mining’ (see Garten etal. [2], for a

recent survey). Work in this field builds on and com-

plements research previously carried out in closely

related areas such as biomedical text mining (see e.g.

Krallinger et al. [3], for a survey, and Rodriguez-

Esteban [4], for a basic tutorial) and clinical text

mining (see e.g. Meystre et al. [5] and Demner-

Fushman et al. [6], for surveys). Pharmacogenomic

text mining is concerned with automatically locating

and integrating biomedical knowledge that is cur-

rently scattered between millions of scientific publi-

cations and thousands of highly specialized, mostly

disconnected, public, as well as proprietary (e.g. clin-

ical) databases, often making use of a large variety of

biomedical lexicons, terminologies and ontologies.

Text mining is a field of applied natural language

processing that deals with automatically extracting

relevant information (single facts and assertions,

complex propositional or even hypothetical state-

ments, etc.) from written texts. There are excellent

and comprehensive text books available on the

methodological foundations of natural language

processing (NLP), information retrieval (IR), text

mining (TM) and information extraction (IE), such

as those by Manning and Schütze [7], Jurafsky and

Martin [8], Manning et al. [9], Jackson and Moulinier

[10], Feldman and Sanger [11] and Weiss et al. [12].

The TM task is much more ambitious than finding

relevant documents, the challenge that characterizes

IR systems such as Google and (life science-centric)

PubMed (http://www.ncbi.nlm.nih.gov/pubmed/).

The latter is based on MEDLINE (http://www.

nlm.nih.gov/bsd/pmresources.html), the largest

document repository for textual information in the

life sciences worldwide, with currently more than

21 M bibliographic units, most of them accompanied

by scientific abstracts, i.e. the author-supplied surrogate

of the original full text. It is complemented by

PubMed Central (http://www.ncbi.nlm.nih.gov/

pmc/), a continuously growing full text archive for a

subset of PubMed documents that currently comprises

more than 2.3 M documents. When applied within the

domains of medicine, biology and pharmacology, TM

primarily deals with scientific publications (historically

in the form of abstracts supplied by PubMed, but in-

creasingly in the form of full texts as from PubMed

Central or Open Access publishers such as BioMed

Central (http://www.biomedcentral.com/), the latter

currently has 220 biomedical online journals in its

portfolio). Clinical narratives (such as discharge sum-

maries, admission, X-ray, surgery or pathology re-

ports), patent texts, drug adverse effect reports

(including drug package inserts) and quite recent

contributions to collaboratively written and main-

tained document collections on the Web (such as

Wikipedia-type documents, see, e.g. [13]), blogs, mail-

ing lists or other sorts of electronic discussion fora,

many of them dealing with public health-related or

health consumer issues, are also increasingly being con-

sidered for analytic purposes (see, e.g. [14]).

Text mining (when defined as an ‘information

extraction’ task proper) identifies

� mentions of named entity types, considered rele-

vant—in this case for the life sciences (genes, gene

variants, proteins, protein mutations, diseases, treat-

ments, drugs, chemicals, tissues, species, etc.) or

� relationships among those named entities, either

explicitly lexicalized, and thus ‘semantically typed

relations’ holding between named entities [e.g.

various sorts of protein–protein interactions

(PPIs), drug–drug interactions (DDIs), locational

(is-contained-in, has-location, etc.) or functional

relations (is-caused-by, is-treatment-for, etc.)], or

purely associative, and thus semantically underspe-

cified relations.

For example, given a sentence such as ‘NF-kappa

B may activate the production of TNF-a’, an ideal

TM system would characterize ‘NF-kappa B’ as
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being an instance of the named entity type (or class)

‘TranscriptionFactor’ and ‘TNF-a’ as being an in-

stance of the class ‘Gene’. In addition to named

entity recognition, the text miner should also identify

two semantic relations, one embedded in the other.

First, a binary relation of the type ‘PositiveRegulation’

should be determined, consisting of two arguments,

namely ‘NF-kappa B’, the driver (or agent) of that

regulation process and second, something that is

acted upon—in our example not just ‘TNF-a’ but

‘the expression of TNF-a’, which we might encode

as the unary relation ‘GeneExpression(TNF-a)’. These

pieces can be combined in an expression that reads as

‘PositiveRegulation [NF-kappa B, GeneExpression

(TNF-a)]’, the final outcome of relation extraction.

Note that many linguistic subtleties (such as the fact

that this event might only potentially occur, indi-

cated by ‘may’) are discarded from these two tasks

in their standard setting. However, there is also re-

search going on that tries to incorporate indications

of certainty, plausibility, believability, trustability and

speculation, which modify the strength of confi-

dence in an extracted relation (see, e.g. [15–17]),

and further work reported, e.g. at the CoNLL

2010 Shared Task Learning to Detect Hedges and

their Scope in Natural Language Text (http://www.

inf.u-szeged.hu/rgai/conll2010st/), the 2010 ACL

Workshop on Negation and Speculation in Natural

Language Processing (http://www.clips.ua.ac.be/

NeSpNLP2010/), and in the 2009 (http://www-

tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/) and

2011 (http://2011.bionlp-st.org/) BioNLP Shared

Tasks on Event Extraction (see [18] and [19], re-

spectively) associated with the Association for

Computational Linguistics BioNLP workshops

(SIGBioMed is the Special Interest Group for

Biomedical Natural Language Processing of the

Association for Computational Linguistics, which

among other activities, hosts workshops at ACL

annual meetings. It is dedicated to NLP in the bio-

logical, biomedical, and clinical domain; their web-

site is located at http://www.sigbiomed.org/r02.01.

11/index.php?title¼Main_Page).

Text mining also has a second definition, where

the focus is on the recognition of implicit rather than

explicit (as above) relations among instances of

named entities. Typically, direct lexicalizations of

these relations are missing in the underlying docu-

ments. Work within this framework aims fundamen-

tally at finding hitherto unknown, i.e. ‘new’

knowledge in documents, which includes the

generation of hypotheses that have to be experimen-

tally tested. This heuristic approach to ‘knowledge

discovery’ from texts is either based on distributional

co-occurrence characteristics of terms or requires

logical reasoning over text-derived knowledge

representation structures (see Section ‘Knowledge

discovery: mining implicit and novel information’).

Still, the vast majority of TM systems focus on

extracting explicit information from texts, i.e. they

are true IE engines.

Literature in the field of pharmacogenomics

bridges at least three disciplines: pharmacology

(drugs and other treatment-related chemical sub-

stances), medicine (diseases or pathological phenom-

ena, treatments, including medication and tests) and

molecular biology in all of its forms. The complexity

and diversity of themes that have to be handled at the

overlap of these areas is unmatched in the field of IE/

TM, in particular when compared with mainstream

NLP research, which focuses mostly on newspaper

and newswire analysis [see classic research carried out

within the frameworks of the Message Understanding
Conference (MUC), e.g. http://www-nlpir.nist.gov/

related_projects/muc/proceedings/muc_7_toc.html,

and more recent work in the frameworks of

Automatic Content Extraction (ACE) (http://www.itl

.nist.gov/iad/mig/tests/ace/) and the Text Analysis
Conference (TAC) (http://www.nist.gov/tac/)].

When we directly compare the task of locating

person names in a newspaper article with perform-

ing the same identification task for genes or pro-

teins in a biological research paper, we encounter

an intrinsically higher level of task complexity in

the life sciences (see, e.g. the discussion of special

phenomena in the biological literature by Leser

and Hakenberg [20]). In terms of diversity, biolo-

gical TM has mainly focused on genes and pro-

teins and their various interactions (mainly PPIs),

whereas medical TM has dealt with disease–drug

relations (as well as many other relations not rele-

vant to this article). Pharmacological TM has

almost exclusively dealt with the recognition of

drugs and their properties (dosage, pharmacokinet-

ics, etc.), and only recently moved towards locat-

ing drug–drug interactions (DDIs) in documents.

The combined exploration of all of these efforts,

e.g. looking at drug–protein, gene–disease, or even

more complex gene–disease–drug relations, is new

and opens up an exciting opportunity for TM

research and applications—the unifying topics of

pharmacogenomic TM.
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Being aware of this challenge, the authors of this

survey, together with associated colleagues, created

a forum for this kind of research at the Pacific

Symposium on Biocomputing (PSB; http://psb.stan

ford.edu/index.html) in 2010, where the first

workshop on ‘Genotype-Phenotype-Drug Relationship
Extraction from Text’ took place (http://psb.stanford

.edu/psb10/gpdrxn-workshop2.pdf), followed by

the PSB 2011 workshop on ‘Mining the Pharmacoge-
nomics Literature’ (http://psb.stanford.edu/psb-

online/proceedings/psb11/wkshop-pharma.pdf). At

PSB 2012, the growing importance of this area was

recognized by the conference organizers, who

assigned a special conference track to this topic,

‘Text and Knowledge Mining for Pharmacogenomics:
Genotype-Phenotype-Drug Relationships’ (http://psb

.stanford.edu/psb-online/proceedings/psb12/intro-

textmining.pdf). Following up on these meetings,

this survey captures relevant work that has already

been done in this exciting new field, tries to iden-

tify missing links and research desiderata and con-

cludes with some challenges for future research in

this area.

MININGTHE
PHARMACOGENOMICS
LITERATURE
In this section, we will review the most recent results

on automatically mining the pharmacogenomics

literature. A distinction will be made in Sections

‘Genotype mining’ through ‘Mining pharmaco-

logical information’ between the identification of

relevant named entities and the identification of re-

lations linking them at the genotype level (mainly

covering genes, genomic variations, proteins and

protein mutations), the phenotype level (mainly cov-

ering diseases and other pathological phenomena, as

well as treatment efforts, i.e. therapies, in the context

of the biomedical literature of interest to this survey,

or animal models of these diseases and pathological

phenomena) and the pharmacological level (drugs

and other sorts of treatment-related chemicals). In

Sections ‘Genotype–phenotype mining’ through

‘Genotype–phenotype–drug mining’, we will then

discuss increasingly complex relation patterns that

cross the borders of genotype, phenotype and

pharmacological IE as they are investigated in the

literature. In Section ‘Knowledge discovery:

mining implicit and novel information’, we will

then consider the efforts that view TM as a

knowledge discovery task, with two different strands

of methodologies, while Section ‘Summarizing re-

marks on text mining approaches’ will wrap up the

entire discussion.

Besides discussing methodological aspects of these

research efforts, we also attempt to contextualize the

quality of the results achieved up until now by

presenting the outcomes of various evaluation

experiments. Very often, the ‘F-measure’ will be

mentioned, one of the most prominent and widely

used performance metrics for TM systems. It is

defined (see, e.g. [21]) as the harmonic mean of

precision (the proportion of true positive outputs

to total system outputs, or TP/TPþ FP, where TP

denotes true positives and FP stands for false posi-

tives; this measure comes close to specificity and is

most similar to positive predictive value) and recall

(the proportion of correct system outputs to total

correct answers in the gold standard, or TP/

TPþ FN, where FN denotes false negatives; also

called sensitivity). All values are here normalized to

the interval [0,100] where the value ‘100’ stands for

the ideal, best conceivable performance, whereas ‘0’

stands for the worst conceivable performance. Note

that we face a kind of ‘natural law’ in such evalu-

ations, where gains in precision come almost inevit-

ably with losses in recall, and vice versa [22]. The

F-measure thus provides a reasonable compromise

between both evaluation dimensions.

Genotype mining
The crucial named entity types at the level of geno-

types are genes and proteins (whose correct distinc-

tion in lots of papers is, interestingly enough, hard to

make even for biological experts [23], so that this

class commonly occurs in disjunctive combination).

Usually, a division is made between the task of

recognizing gene/protein name mentions in text

and, even more ambitious, normalizing these men-

tions in the sense that database identifiers corres-

ponding to these literal mentions are identified.

The latter approach provides valuable links to

authoritative gene/protein databases such as

EntrezGene (http://www.ncbi.nlm.nih.gov/sites/

entrez?db¼gene) or UniProt (http://www.uniprot

.org/), which allow researchers to easily switch be-

tween literature- and database-oriented retrieval.

The current landmark performance for these

entities has been established in various iterations of

BioCreAtIvE competitions which, among other clas-

sification tasks, have dealt primarily with recognizing
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and normalizing gene/protein mentions, as well as

interactions between proteins (PPIs) for abstracts, as

well as for full texts (see the surveys of BioCreAtIvE I

[24], BioCreAtIvE II [25], BioCreAtIvE II.5 [26],

and BioCreAtIvE III [27]) (http://www.biocrea-

tive.org/events/biocreative-iii/). No steady increase

of performance for the normalization task can be

observed due to the fact that substantial parameters

of the task were changed from year to year, most

notably changing the organisms, moving from

abstracts to full texts, providing species a priori or

not, and changing performance metrics. However,

gene mention and normalization peak, using com-

bined systems, on F-scores in the low 90 s [the best

single system achieved, on abstracts (BioCreAtIvE

II), an F-score in the high 80s for gene recognition

(87), whereas the highest F-score for gene normal-

ization was in the low 80s (81)]. The top-scoring

GNAT system for gene normalization in

BioCreAtIvE II, in a follow-up study, achieves an

F-score of 86.4 [28], a result that could exactly be

replicated by the GeNo system [29] and seems to

constitute the current upper ceiling for this task,

not considering system ensembles, which usually

perform better than any single system alone.

Although BioCreAtIvE was also concerned with

PPI extraction, the current benchmarks for this task

have been determined within two consecutive

rounds of the BioNLP Shared Task on Event

Extraction [18, 19]. A particular to greater specificity

of PPIs has been made here—rather than

BioCreAtIvE’s focus on coarse-grained PPI, the

BioNLP Event Extraction competition came up

with a set of highly specific PPIs, such as Binding,

Phosphorylation, Transcription, ProteinCatabolism,

PositiveRegulation and NegativeRegulation, etc.

[18]. In 2009, the best system achieved 52.0

F-score [30], but was outperformed in the BioNLP

2011 Shared Task with 56.0 F-score [31]. The 2011

Shared Task also dealt with an interesting subtask,

namely the biomolecular mechanisms of infectious

diseases [32], where the over-all winner system of

the BioNLP 2011 Shared Task performed best as

well with 55.6 F-score. This task was construed as

an application and extension of the BioNLP 2009

Shared Task event extraction approach to 30 full

papers on infectious diseases that represented

biomolecular events relating to transcription factors

in human blood cells, and its adaptation to a domain

that centrally concerns both bacteria and their hosts.

That task involves a variety of novel aspects, such

as events concerning whole organisms, the chem-

ical environment of bacteria, prokaryote-specific

concepts (e.g. regulons as elements of gene expres-

sion), as well as the effects of biomolecules on large-

scale processes involving hosts such as virulence.

Besides these fundamental named entities and

PPI-style relations, pharmacogenomics needs to

deal with genetic variants and protein mutations as

well. Although sequence data about genetic variation

is found at databases such as dbSNP (http://www

.ncbi.nlm.nih.gov/projects/SNP/), clues about the

functional and phenotypic consequences of the

gene variations are generally found in the biomedical

literature. In order to find citations of allelic variants

of genes in biomedical texts, Furlong et al. [33] de-

veloped an extension of OSIRIS (http://ibi.imim

.es/osirisform.html) which incorporates a specialized

named entity recognition module and is built on top

of a local mirror of the MEDLINE collection and

HgenetInfoDB (http://ibi.imim.es/Hgenesform.

html), a database that collects data on human gene

sequence variations. The entity recognition module

is based on a pattern-based search algorithm for the

identification of variation terms in the texts and their

mapping (i.e. normalization) to dbSNP identifiers.

The performance of OSIRISv1.2 was evaluated on

a manually annotated corpus, resulting in an F-score

of 89 (precision: 99, recall: 82). These data almost

perfectly match results achieved with the pattern-

based MutationFinder system [34], with recall

(81.9) and precision (98.4) figures yielding an

F-score of 89.4 for variant recognition.

As to the automatic detection and extraction of

mutation impacts, Yeniterzi and Sezerman [35] de-

veloped the EnzyMiner system with the aim of the

automatic classification of MEDLINE abstracts based

on the impact of a protein level mutation on the

stability and the activity of a given enzyme.

EnzyMiner extracts the mutations and disambiguates

the cell line names and strain names from mutations.

Using a document classifier, the abstracts containing

mutations without any impacts are removed and the

remaining abstracts are classified into two groups of

disease-related and nondisease-related documents,

after which extracted mutations are listed for each

group. In the case of the nondisease-related abstracts,

the documents are further classified into two groups:

Documents containing impacts on stability; and

documents containing impacts on functionality.

Accuracy rates (accuracy is defined by the proportion

of correct versus all classification decisions,
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(TPþTN)/(TPþTNþ FPþ FN), using the short

cuts from the definition of precision and recall

from above) ranging from 93.3 (for mutation extrac-

tion) to 85 (for stability/catalytic classification) are

reported. Laurila et al. [36] continue on this work

and present a rule-based approach for the extraction

of mutation impacts on protein properties, categor-

izing their directionality (positive, negative or neu-

tral) and grounding these entities to their respective

UniProtKB IDs and selected protein properties,

namely protein functions to concepts found in the

Gene Ontology (GO; http://www.geneontology

.org/). TM is performed within the GATE software

framework [37] (http://gate.ac.uk/), a mutation

gazetteer list builds on the MutationFinder

[34]. The extracted entities are populated to a for-

malized OWL-DL (http://www.w3.org/2004/

OWL/) Mutation Impact ontology, thus not only

allowing sophisticated access to mutation impacts

using the SPARQL (http://www.w3.org/TR/

rdf-sparql-query/) query language, but also facilitat-

ing the deployment of novel semantic web services

based on the Semantic Automated Discovery and
Integration (SADI) framework (http://sadiframe

work.org).

Phenotype mining
Phenotype is the set of observable (molecular or

gross) characteristics of an individual resulting from

the interaction of its genotype with the environ-

ment. Special emphasis is put on pathological phe-

nomena—diseases in particular, as well as their

anatomical sites, conditions and treatment. Because

of the availability of a large variety of authoritative

disease terminologies (most important are the

Medical Subject Headings (MeSH; http://www

.ncbi.nlm.nih.gov/mesh), the Unified Medical

Language System (UMLS; http://www.nlm.nih

.gov/research/umls/), the International Classification

of Diseases (ICD-10; http://www.who.int/classifica

tions/icd/en/), the Systematized Nomenclature

of Medicine – Clinical Terms (SNOMED-CT;

http://www.ihtsdo.org/snomed-ct/), and the

Medical Dictionary for Regulatory Activities

(MedDRA; http://www.meddramsso.com/); see

also Section ‘Terminologies and ontologies’ below),

dictionary-based methods are very much favored for

this task because term variability is lower for standar-

dized phenotype terms (for instance, disease names)

than it is for genotype terms. However, the

dictionary-based methods are susceptible to definite

weaknesses, because nonstandardized phenotype

descriptions employ complex and highly variable lin-

guistic utterances (spanning long phrases, even entire

sentences) and are therefore, hard to locate in texts.

Jimeno et al. [38], e.g. report the highest recogni-

tion accuracy for dictionary look-up (68.4 F-score)

in comparison with a statistical, information

theory-inspired approach (66.6) and MetaMap

(65.4), (http://metamap.nlm.nih.gov/), a program

that maps text mentions to the UMLS Meta

Thesaurus (http://www.nlm.nih.gov/research/umls/

knowledge_sources/metathesaurus/index.html) or

finds MetaThesaurus concepts in text [39]. The re-

ported F-scores can further be boosted (up to 83.0)

using a parameterized voting schema that takes the

results of all three different approaches into account.

Whereas Jimeno’s focus is on PubMed abstracts,

another crucial text genre for phenotype recognition

is the clinical report. Such documents present en-

tirely new challenges—for instance, de-identification

of patient names (see the survey by Meystre et al.
[40]), the presence of large amounts of fragmented

and ungrammatical utterances, including misspell-

ings, an abundance of short forms (such as acronyms

or other types of abbreviations), and frequent spelling

variation (see the survey by Meystre et al. [5], for

approaches dealing with these matters). Kipper-

Schuler et al. [41] present an evaluation of the

dictionary look-up component of Mayo Clinic’s

Information Extraction system cTAKES [42]. It

was tested on a corpus of 160 free-text clinical

notes that were manually annotated with the

named entity type ‘Disease’. The dictionary used

for this evaluation was a subset of SNOMED-CT,

with semantic types corresponding to diseases/dis-

orders without any augmentation. The recognizer

achieves an F-score of 56 for exact matches and F-

scores of 76 and 62 for including right- and

left-partial matches, respectively. The over-all F-

score for all match types peaks at 81. Using the

same corpus, machine learning (ML) methodology

has also been tested in a comparison between con-

ditional random fields (CRFs) and support vector

machines (SVMs) by Li et al. [43], yielding 86 and

64 F-scores, respectively, with a dictionary look-up

baseline of 60 (using SNMOD-CT). There is a clear

advantage using specific ML approaches (here,

CRFs) rather than dictionary-based approaches

alone. Based on UMLS as a terminological source,

Roberts et al. [44] describe an SVM recognizer for

five named entity types (Condition, Drug or Device,
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Intervention, Investigation, and Locus). This entity

set is much more diverse and closer to clinical reality.

Using a corpus of 77 clinical documents, an average

F-score of 70.7 (only 3% points below human

inter-annotator agreement, discussed below) is re-

ported for all five entity types (see also Section

‘Phenotype-focused corpora’ where we discuss the

underlying CLEF initiative in more depth). This

result shows that conceptually rich clinical named

entity recognition is intrinsically hard—not only for

machines, but for human experts as well.

A fundamentally different approach is chosen for

BANNER [45]. This is an open-source biomedical

named entity recognition system based on advanced

ML technology (CRFs), intended to serve as a

benchmark for the field. It is not restricted to a spe-

cial entity recognition problem (such as capturing

disease names) by maximizing on domain independ-

ence. Evaluation on different corpora for gene men-

tion and disease/treatment recognition show

comparatively favorable results in relation to alterna-

tive off-the-shelf software, but also reveal a marked

decrease in performance, relative to recognizers dedi-

cated to specific entity types, for gene mention rec-

ognition [in the high 80 s (82.0) on F-score] on the

BioCreAtIvE II Gene Mention corpus, and disease/

treatment recognition [in the mid 50 s (54.8) on

F-score] on the BioText corpus ([46]; see also

Section ‘Phenotype–drug mining’).

Mining pharmacological information
TM with focus on pharmacological information tries

to identify drugs and other chemicals that are func-

tionally important in treating or causing medically

significant phenotypes in the course of treatments,

therapies, etc. As with phenotypical entities, pharma-

cological entities are well represented in a variety of

lists and nomenclatures that can serve as a primary

resource for identification programs. Segura-Bedmar

et al. [47] report in a ground-breaking study 78.0

precision and outstanding 99.3 recall for their

DrugNER system, which combines information

obtained from the UMLS, the MetaMap Transfer

(MMTx) program and nomenclature rules recom-

mended by the World Health Organization

(WHO) International Nonproprietary Names

(INNs) Program to identify and classify pharmaceut-

ical substances. Their system is also capable of detect-

ing possible candidates for drug names that have not

been recognized by the MMTx program by applying

these rules.

Kolárik et al. [48] start from a dictionary-based

approach as well, exploiting DrugBank (http://drug

bank.ca/), a resource that combines more than 13 K

entries for detailed drug (i.e. chemical, pharmaco-

logical and pharmaceutical) data with comprehensive

drug target (i.e. sequence, structure and pathway)

information, and then identify drug effect expressions

with the help of an extended rule system based on the

so-called Hearst patterns [49]. They describe quite

stable phrasal and lexical patterns that are indicative

of relevant information and thus enumerate crucial

linguistic structures explicitly. The system performs

with 89 F-score on DrugBank texts, whereas on

less formatted MEDLINE abstracts, an 83 F-score is

achieved. Interestingly, 29–53% of the terms

extracted from MEDLINE are new valid drug prop-

erty terms—information that can then be fed back to

further enhance resources like the DrugBank.

Drugs (as pharmaceutical products) are special

types of chemical substances with high relevance

for biomedical research. It might thus be worthwhile

to look at chemical substances that have not yet

found their way into the canonical vocabulary of

pharmacogenomics, or are discussed on the basis of

purely chemical considerations, without any imme-

diate link to biology, pharmacology or even medi-

cine. Since the number of chemical compounds

cannot be enumerated explicitly, static dictionary-

based methods are less likely to cover all required

data and must be complemented or even replaced

by ‘generative’ methods, such as rule systems or

ML classifiers.

Klinger et al. [50] report on such experiments

targeting the recognition of chemical names proper

whose mentions follow the International Union

of Pure and Applied Chemistry (IUPAC) rules

(expressions such as ‘‘7-ethyl-10[4-(1-piperidino)-1-
piperidino]carbonyloxycamptothecin’’. The IUPAC is the

body behind these standardization efforts unmatched

for the biology or medicine domains; http://www

.chem.qmul.ac.uk/iupac/). For the MEDLINE sec-

tion of the Fraunhofer corpus (see Section ‘Drug-

and chemicals-focused corpora’ below), they achieve

an F-score of 85.6 by combining dictionaries and

ML approaches (CRFs). For harder-to-process

patents, the F-score drops to 81.5. Also using ML

techniques, Corbett and Copestake [51] developed a

system to use character-based n-grams, Maximum

Entropy Markov Models, and re-scoring proced-

ures to recognize chemical names, and to make

confidence estimates for the extracted entities.
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This system is integrated in the Oscar-3 chemical

names recognizer [52] (https://sourceforge.net/pro-

jects/oscar3-chem). The Corbett-Copestake system

is more general than Klinger’s in that its focus is not

only on chemical names that adhere to IUPAC con-

ventions, but also on those which deviate from this

norm. It is also more flexible in that an adjustable

threshold allows the system either to be tuned to

high precision or high recall. At a threshold set for

balanced precision and recall, the Corbett-Copestake

system extracts chemical named entities at an F-score

of 80.7 from chemistry full text papers (see also

Section ‘Drug- and chemicals-focused corpora’)

and 83.2 from chemistry MEDLINE abstracts. This

pattern, drops in performance of TM software

running on full text documents compared with the

processing of abstracts by the same program, has

been observed with stunning systematicity (see also

[53]) and can be explained by the increase of linguis-

tic complexity when moving from abstracts to full

texts (see also Section ‘Conclusions and outlook’).

Recently, a linguistically much more informed

extension of OSCAR, the ChemicalTagger, has

been introduced [54]. It incorporates part-of-

speech and phrasal information using a standard

rule-based grammar and not only recognizes chem-

ical names, but also relations holding among

them (such as Adding, Dissolving, Cooling,

Purifying, Evaporating, etc.). ChemicalTagger has

been deployed for over 10 K patents and has identi-

fied solvents from their linguistic context with pre-

cision peaking at 99.5.

Regarding the creation of a large dictionary of

chemical names, Hettne et al. [55] describe a

rule-based method (primarily for term filtering and

disambiguation) that helps to identify names of drugs

and small molecules, including metabolites and

endogenous molecules, by incorporating a broad

collection of other dictionaries, such as the UMLS,

MeSH, Chemical Entities of Biological Interest

(ChEBI; http://www.ebi.ac.uk/chebi/), DrugBank,

KEGG (http://www.genome.jp/kegg/), HMDB

(http://www.hmdb.ca/) and ChemIDplus (http://

chem.sis.nlm.nih.gov/chemidplus/). They report an

overall performance of the combined dictionary on

the Fraunhofer corpus (see Section ‘Drug- and

chemicals-focused corpora’below) of 67 precision

and of 40 recall (80 for trivial names), which seems

modest in comparison with the approaches described

above using ML techniques for recognition. Still, the

combined dictionary performed better than the

dictionary incorporated in the chemical names

recognizer OSCAR3.

Medication information is one of the most

important types of clinical data in electronic medical

records (EMRs). As medication data is often expressed

in verbal prose in clinical notes rather than structured

coded data, they pose a particular challenge for TM.

There are a couple of NLP systems around that

automatically extract medication information from

clinical notes. For instance, Levin et al. [56] used lists

of abbreviations and open source software for the

recognition of spelling variations and normalized

drug information from free-text fields in EMRs

with the help of RxNorm (http://www.nlm

.nih.gov/research/umls/rxnorm/), a cross-referenced

lexicon of clinical drug nomenclature that was used as

the reference source for drug name verification and

for mapping trade (proprietary) names to their generic

equivalents. They achieved 92.2 sensitivity (recall)

and 95.7 specificity (precision) for the validation set

(14 655 cases), respectively.

MedEx [57], a semantic rule-based system, was

evaluated on a data set of 50 discharge summaries

and showed it performed well on identifying not

only drug names (F-score 93.2), but also signature

information, such as strength, route and frequency,

with F-measures of 94.5, 93.9 and 96.0, respectively.

Jagannathan et al. [58] compared four commercial

NLP engines on this task, which lag behind these

figures; they also report an identical F-score of

93.2 for capturing drug names, yet significantly

lower F-scores of 85.3, 80.3 and 48.3 for retrieving

strength, route and frequency, respectively. When

MedEx was applied unchanged to outpatient clinic

visit notes, similar F-scores over 90 on a set of

25 clinic visit notes were found.

As part of the 2009 i2b2 Challenge (the task

required accurate recognition of medication name,

dosage, mode, frequency, duration and reason

for drug administration; see [59] and Section

‘Phenotype-focused Corpora’), a slightly extended

version of MedEx [60] achieved an overall F-score

of 82.1 (second rank out of 20 participating teams).

The best system in this competition, a hybrid incor-

porating ML (CRFs for named entity recognition,

SVM for medication-specific relation extraction) and

rule-based technology, peaked at 85.7 F-score [61].

In a recent follow-up study, Halgrim et al. [62] make

use of that i2b2 Challenge corpus as well, which in

their study contains the original 696 discharge sum-

maries from which roughly 400 were gold-annotated

Mining the pharmacogenomics literature 467

Downloaded from https://academic.oup.com/bib/article-abstract/13/4/460/182347
by guest
on 28 July 2018

https://sourceforge.net/projects/oscar3-chem
https://sourceforge.net/projects/oscar3-chem
http://www.ebi.ac.uk/chebi/
http://www.hmdb.ca/
http://chem.sis.nlm.nih.gov/chemidplus/
http://chem.sis.nlm.nih.gov/chemidplus/
http://chem.sis.nlm.nih.gov/chemidplus/


in the meantime. In their hybrid system, a first pass

involves a cascade of statistical maximum entropy

classifiers (incorporating the FDA’s National Drug

Code Directory list) to identify crucial medication-

related named entities (name of medication/drug,

dosage, mode, frequency, duration and reason),

whereas a second pass uses simple heuristics to link

those isolated entities into medication events (e.g.

the dosage of a specific drug). While for ‘name of

medication/drug’ an F-score of 89.8, and for,

‘dosage’, ‘frequency’ and ‘mode’ F-scores from

93.1 to 93.3 were determined, ‘duration’ and ‘rea-

son’ yield bad performance figures on the test set

with 51.5 and 47.1, respectively, with an over-all

F-score of 86.9, whereas for linkage the system

achieved an F-score of 84.1.

Interactions among drugs are as important for clin-

ical research as interactions among proteins are for

molecular biology. This is due to the fact that mul-

tiple drug prescriptions are the norm for patients

rather than the exception. The various interactions

among drugs in multi-drug therapy have fuelled re-

search on DDIs. Early work on DDIs was reported

by Mille et al. [63]. More recently, a special DDI

Extraction Challenge (http://labda.inf.uc3m.es/

DDIExtraction2011/) was established to create a

benchmark data set (DrugDDI, see also Section

‘Drug- and chemicals-focused corpora’) and evalu-

ation task that will enable researchers to compare

their algorithms when applied to the extraction of

DDIs from textual descriptions in DrugBank (see

[64] for the challenge description). The best result

achieved in the first shared task, in which drug names

were already identified, is reported by Thomas et al.
[65], who use state-of-the-art dependency parsing (a

type of in-depth analysis of the syntactic structure of

a sentence) and combine this type of linguistic infor-

mation in an ensemble-based ML approach where

the best single classifier achieves 63.4 F-score and

the best ensemble yields 65.7 on the test set. These

results differ from the best PPI extraction results by

almost þ10% (note that in the Shared Task on Event

Extraction [18] gene/protein names were also

prespecified).

Previously, Segura-Bedmar et al. [66] reported on

experiments that combined shallow parsing (a type of

syntactic analysis which finds word groups within the

sentence, but does not provide a full syntactic ana-

lysis of the entire sentence) and simplification of

complex syntactic structures using pattern matching.

This system under-performed by all measures, with a

precision of 48.7, a recall of 25.7 and an F-score of

only 33.6, whereas an ML-based SVM approach

peaked at a considerably higher F-score of 66.0

(55.1 precision, 82.3 recall) on DrugDDI [67]. In

another system configuration, Segura-Bedmar et al.
[68] employ a supervised, linguistically shallow

kernel-based technique, with which 51.0 precision,

72.8 recall and an F-score of 60.0 were achieved on

DrugDDI. It appears that an F-score of 66 defines

the current landmark result for the DDI extraction

task.

Tari et al. [69] propose an entirely different meth-

odological approach we have not discussed before in

this article. They integrate biological domain know-

ledge with biological facts that are extracted from

applying TM to MEDLINE abstracts and other

curated sources (such as UniProt and GO) to auto-

matically derive enzyme-based DDIs on the basis of

automated reasoning. The authors thus distinguish

between explicit extraction of DDIs (basically, infor-

mation that can be recognized in their system by

dependency-based parsing and querying a corres-

ponding parse tree database) and implicit extraction,

the latter requiring logical inferences based on vari-

ous properties of drug metabolism, in their system by

using an AnsProlog-based reasoning engine (Prolog

is a logic programming language). With a

DrugBank-elicited gold standard of 494 DDIs, 77.7

precision is reported for explicit and 81.3 precision

for implicit extraction, thus revealing the added

value of inference-derived biomedical knowledge.

Also capitalizing on the prospects of combining

TM with formal reasoning, Percha et al. [70] describe

an ML-based approach (using random forests), which

builds on the previous work by Coulet et al. [71] in

extracting and normalizing gene–drug relationships

from MEDLINE abstracts, to infer DDIs possibly

interacting via a common genetic pathway. The clas-

sifier recognizes the combinations of relationships,

drugs and genes that are most associated with the

gold standard DDIs, correctly identifying 79.8% of

assertions relating interacting drug pairs. The meth-

odology enables the creation of novel predictions of

interacting drug-pairs, while maintaining links back

to the original evidence and sentences supporting

these predictions.

Inferring novel facts related to drug metabolism

and DDIs that are not explicitly mentioned in text

but have to be inferred by means of formal reasoning

is certainly an area of ground-breaking research;

we will discuss it further in Section ‘Knowledge
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discovery: mining implicit and novel information’. In

Sections ‘Genotype–phenotype mining’ through

‘Genotype-phenotype-drug mining’, we will deal

with several entity type-mixed relationships that

highlight research with a particular focus on

pharmacogenomics.

Genotype^phenotype mining
The first set of mixed relations we consider deals

with the role that genotype data (i.e. genes and pro-

teins, genetic variations, etc.) plays for phenotypic

phenomena (among them diseases and pathological

phenomena, but also nonpathological processes such

as aging). Krallinger et al. [3] surveyed the recent

approaches and systems combing gene-centric and

disease-centric TM, with focus on the molecular

oncology domain. Most of the literature deals with

disease-type phenotypic phenomena. Since the types

of semantic relations holding between these entities

are less clear than in the previous sections, unsuper-

vised ML methods, clustering algorithms in particular

and similarity scores between data sets increasingly

play a role here. Sophisticated NLP methods for re-

lation extraction are mostly lacking because usually

the lexicalization of the target relations remains un-

clear or is even unknown; rather, the computation of

association strengths between terms (entities) pre-

vails. Also, hybrid use of resources (databases,

terminologies and text collections) is a crucial issue.

As an example of sophisticated resource-juggling,

we consider the work of Butte and Kohane [72],

who try to identify genotype–phenotype and

environmental/experimental condition-genotype

relations by using publically available sample anno-

tations from the Gene Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/geo/), a repository

for microarray, next-generation sequencing and

other forms of high-throughput functional genomic

data, as well as vocabulary from the UMLS. The

annotations covering phenotype data and environ-

mental/experimental context data are processed

using MetaMap, leading to a mapping to UMLS

concepts. In order to extract genotype data, GEO

identifiers are manually linked to LocusLink

(http://www.ncbi.nlm.nih.gov/LocusLink) identi-

fiers, allowing nearly 55 M expression measurements

to be referenced. Gene expression data is then hier-

archically clustered by phenotypical, environmental

and experimental context (based on the UMLS map-

pings). A ranking of gene expression measurements is

computed and those measurements that show

significant differential expression form part of the

network of relations. This procedure has identified

novel genes related to concepts such as aging, among

others.

As a second example from this stream of work,

van Driel et al. [73] classify over 5000 human pheno-

types contained in the Online Mendelian Inheritance

in Man (OMIM; http://www.ncbi.nlm.nih.gov/

omim) database [using the MeSH hierarchies for

anatomy (A) and disease (C) sections for extraction

from OMIM] and, using MeSH concepts as features,

find that vector-based similarity between phenotype

records reflects biological knowledge of interacting

functionally related genes. These similarities are posi-

tively correlated with a number of measures of gene

function, including relatedness at the level of protein

sequence, protein motifs, functional annotation and

direct PPI. Since phenotype grouping reflects the

modular nature of human disease genetics, pheno-

type mapping may be used to predict candidate

genes for diseases, as well as functional relations be-

tween genes and proteins.

As a third example, Gonzalez et al. [74] combine

gene–disease relationships extracted from

MEDLINE abstracts and further augmented by con-

sulting the vocabulary services from resources such as

the HUGO Gene Nomenclature database (http://

www.genenames.org/), using the IE system IntEX

[75], with protein interaction networks extracted

from curated databases, such as the Biomolecular

Interaction Database (BIND; http://bond.unleashe

dinformatics.com/Action?), the Molecular Interac-

tion Database (MINT; http://mint.bio.uniroma2

.it/mint/Welcome.do), or the Database of Interact-

ing Proteins (DIP; http://dip.doe-mbi.ucla.edu/dip/

Main.cgi). The augmented list of genes and gene

products is then ranked, combining a score that

reflects the strength of and confidence in the rela-

tionship with the initial set of genes and another

score that reflects the importance of the gene in

maintaining the connectivity of the network. This

scoring is used to predict the proteins most likely

to be related to the disease under scrutiny.

Top-ranked proteins are related to the evaluation

example, atherosclerosis, with accuracy between

85–100 for the top 20 and 64–80 for the top 90, if

duplicates are ignored. Similar resource-heavy work

with emphasis on using OMIM and other databases

has been reported by Chen et al. [76].

As a last example, Bundschus et al. [77] apply

CRFs to extract relations between genes and diseases
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from GeneRIF (Gene Reference Into Function)

concise functional description phrases (available

from the EntrezGene database), where five relation

types (among them, AlteredExpression, Genetic

Variation, RegulatoryModification, etc.) were con-

sidered. In order to demonstrate the scalability of

their approach, the whole GeneRIF database is pro-

cessed, resulting in a gene–diseases network that con-

tains 34 758 semantic associations between 4939

genes and 1745 diseases. Disease recognition peaks

at an F-score of 78.0 (the gene entity is identical to

the EntrezGene ID, and thus trivial to get), whereas

relation recognition ranges between 80.0 and 78.9

F-score for GeneticVariation and AlteredExpression,

RegulatoryModification drops to 71.2 F-score

(over-all F-score is 78.0).

Tiffin et al. [78] stress the pivotal role of ontologies

by using the eVOC Anatomical System ontology

(http://www.obofoundry.org/cgi-bin/detail.cgi?id¼

evoc) as a bridging vocabulary that integrates clinical

and molecular data through a combination of text

and data mining. They then select candidate disease

genes according to their expression profiles within

tissues (taken from the Ensembl database; http://

www.ensembl.org/index.html) affected by the dis-

ease of interest. First, the association between each

eVOC anatomy term and disease name is found by

co-occurrence in MEDLINE abstracts. Then the

identified anatomy terms are ranked and candidate

genes annotated with the top-ranking terms are se-

lected. The system succeeds in selecting the correct

disease gene amongst other candidate genes in 15 out

of 17 diseases in the training data set (88.2% success

rate). Whereas the previous study considers ontolo-

gies only as a terminological resource, Coulet

et al. [79] use OWL-based ontologies by exploiting

their formal specification, relying on subsumption,

properties and class descriptions, for the purpose

of knowledge discovery of genotype–phenotype

relationships.

More sophisticated NLP methods are used by

Chun et al. [80]. They describe a system for gene–

disease relation extraction that is based on the

co-occurrence of gene and disease name mentions

(found via dictionary look-up) and additional filter-

ing of false positives with a Maximum Entropy-based

named entity classifier accounting for gene and dis-

ease name entities. In the filtering mode, the system

achieves 78.5 precision and 87.1 recall on a manually

annotated corpus with 1000 co-occurrences of gene

and disease names. Taking exploitation of linguistics

further, Masseroli et al. [81] build on the output of

SemGen [82], a system that extracts semantic predi-

cations about the etiology of genetic diseases. They

apply phrase-based distance heuristics to the argu-

ment and its predicate, based on the intuition that

arguments which occur close to their predicate are

easier to identify than those at a distance, to filter the

extracted semantic relations according to their like-

lihood of being correct. Considering distance criteria

(or shortest path counts in parse tree structures,

i.e. formal representations of the syntactic structure

of a sentence) has turned out to be an important idea

for any sort of relation extraction relying on linguis-

tically informed analytics (see, e.g. the top-scoring

systems from the Shared Tasks on Event

Extraction; Section ‘Genotype Mining’). They com-

pare relations extracted in this way to those identified

with co-occurrence processing only. Postprocessed

SemGen predications are then used to investigate

the genetic basis of Parkinson’s disease. Two of the

genes extracted by postprocessing are likely to be

relevant to Parkinson’s disease, but were previously

not associated with this disease in several important

databases of genetic disorders. Finally, an interesting

use of an EMR system to conduct genome-wide

association studies is reported by Kullo et al. [83].

Trying to find genomic indicators for peripheral

arterial disease (PAD) they collected demographic

data and laboratory values from EMR, medication

use and smoking status from clinical notes (using

cTAKES [42]), as well as other cardiovascular risk

factors and co-morbidities based on, e.g. ICD-9-

CM codes, and linked this information to a clinical

biorepository of DNA and plasma.

Genotype^drug mining
Much of the current research on the genotype–drug

connection considers the potential to read from gen-

etic data how drugs can be effectively tailored to a

given genetic context. Under the heading of indivi-

dualized medicine, personalized drug dosage tuning,

adverse effect prediction, etc. are among the primary

goals of this research. It is this kind of information

that TM systems try to harvest from source docu-

ments. Methodologically, many studies start from the

co-occurrence of genotype and drug entities in some

formal text segment (usually, sentences) and then try

to filter out false positives using linguistic or statistical

criteria, or other kinds of heuristics.

Chang and Altman’s system [84] recognizes such

relations between genes and drugs in MEDLINE
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abstracts with a co-occurrence-based approach.

Subsequently, relations are classified into five cate-

gories, as specified by PharmGKB (see Section

‘Drug- and chemicals-focused corpora’ below),

using a Maximum Entropy-based ML approach.

The relation recognition step is evaluated against a

small data set of 215 gene–drug relations manually

extracted from a review article, whereas the classifi-

cation step is assessed against human-curated articles

from PharmGKB. Evaluation results for all five cate-

gories range from 88.0 recall with 75.0 precision for

predictions of pharmacokinetics, to 9.0 recall with

27.0 precision for the ClinicalOutcome category.

The authors concede that the selected PharmGKB

data set is really small, including only 325 gene–drug

pairs, and that the evaluation results depend heavily

on the size of the training data.

More recent systems for the extraction of gene–

drug relationships are Pharmspresso and GenDrux.

Pharmspresso [85] builds on the well known

Textpresso tool [86], a full-text search engine for

biological entities and facts such as PPIs.

Pharmspresso has been extensively evaluated con-

cerning the detection of gene and drug names.

With respect to relationships, it yields only 50.0

recall on gene–drug ‘association’ relations when

evaluated against 45 full-text articles that contain

178 gene name instances and 142 drug name

instances. GenDrux [87] is a Web-based retrieval

tool whose document collection consists of 4 K

MEDLINE abstracts collected using gene and drug

name filters. There is a focus on gene and drug

names related to breast cancer, while relation extrac-

tion is based only on the co-occurrence of relevant

terms in the titles of documents. Yet, no evaluation is

provided for the system. The first large-scale evalu-

ation study in this field was carried out by Coulet

et al. [71], who extracted PharmGKB-relevant rela-

tionships from 17 M MEDLINE abstracts. The ex-

tracted relationships are reported to have a precision

up to 87.7. However, this work does not evaluate

the recall of the relationship extraction approach.

In a comparatively large-scale experiment, yet

with an entirely different approach which resembles

the resource-juggling activities reported in Section

‘Genotype–phenotype mining’, Kuhn et al. [88]

developed a Search Tool for InteracTions of

CHemicals (STITCH) which integrates information

for over 68 K chemicals, including 2200 drugs, and

1.5 M genes. They mine both MEDLINE and

OMIM for term co-occurrence and then apply

NLP-based relation extraction machinery [89]. The

resulting relations (as well as metrics accounting for

chemical structure similarity) are used as evidence to

predict relationships between chemicals, drugs and

genes in particular.

A particularly innovative combination of re-

sources is reported by Xu et al. [90]. They linked

the DNA data bank at Vanderbilt University

Hospital, which contains over 100 K DNA samples

to de-identified EMRs from their hospital in order

to identify associations between genetic variations

and drug efficacy and toxicity. In manual experi-

ments they had already investigated associations be-

tween steady-state Warfarin weekly dose and

variants in VKORC1 and CYP2C9 in the biobank.

Since these experiments were overly time-

consuming, they develop an automated weekly

dose calculation system based on an existing

medication-IE system, MedEx [57], and applied it

to data sets from the aforementioned Warfarin

pharmacogenetic study. Using automatically ex-

tracted Warfarin weekly doses, they achieved similar

P-values for genetic associations to those from

manual data extraction, indicating that such

EMR-based pharmacogenetic studies could be

done in an in silico fashion.

An issue often raised is whether TM technology

can compete in qualitative terms with human efforts

on the same text sources—quantity-wise, computers

have an undisputable advantage already. Using a

gene–drug network automatically created from

sentence-level co-occurrence data in the full text

of scientific articles (1731 documents taken from

PharmGKB), Garten etal. [91] compare the perform-

ance with that of a network created by manual

curation of those articles. Under a wide range of

conditions, they show that a knowledge base derived

from text-mining the literature (using a combination

of Pharmspresso [85] and PGxPipeline [92]) per-

forms, as well as and sometimes even better than, a

high-quality, manually curated knowledge base. The

authors conclude that the use of relationships mined

automatically from the literature as a knowledge base

for pharmacogenomics is both reasonable and empir-

ically justified. Additionally, their system can accur-

ately extrapolate new relationships with 77.4

precision.

Phenotype^drug mining
Another major challenge for pharmacogenomic TM

is concerned with determining in which ways drugs
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affect certain phenotypic states—in particular, what

the effects of (particular dosages of) drugs are on pa-

tients, what side or even adverse effects might occur,

etc. These issues move the field from the biomole-

cular arena proper to clinical settings. From a meth-

odological perspective, NLP and ML methods for

relation extraction from MEDLINE or clinical docu-

ment sets, EMRs in particular [93], prevail in this

area. (see Warrer et al. [94] for a comparative

survey of TM technology for EMRs currently in

use.) Recently, the integration of disparate resources,

including terminologies, databases and clinical docu-

ment collections, to automatically generate an exe-

cutable and publically available drug-indication

knowledge base has become a major concern [95].

Early and ground-breaking work was performed

in the context of the BioText project (http://bio

text.berkeley.edu/ The corresponding corpus is

available at http://biotext.berkeley.edu/data/dis_

treat_data.html) [46], where a 7-way classification

of disease–treatment relations was developed (treat-

ments include the application of drugs, and relations

incorporate Treatment-Cures-Disease, Treatment-

Causes-Disease, Treatment-Prevents-Disease, etc.).

Based on suitable MeSH filtering of MEDLINE

documents, generative (maximum likelihood-based)

and discriminative (neural network-based) ML

models are used for relation extraction. The best

generative classifier achieves 74.9 accuracy, while

the neural network classifier does much better (79.6).

In a follow-up study using the same MEDLINE

corpus, Bundschus et al. [77] apply CRFs to extract

relations between diseases and treatments, where

seven relation types (such as Cures, DoesNotCure,

Prevents, SideEffect, Vague) are considered. They

get an F-score of 72.0 for disease/treatment recog-

nition (Disease recognition yields an F-score of 77.2,

while Treatments have a considerably lower F-score

of 64.6), and achieve 96.9 accuracy for relation

extraction when the entities are known, whereas

79.5 accuracy (almost identical with the results for

neural networks from the study discussed above)

were attained when the entities are unknown.

Based on the set of 826 patient records (349

documents for training, 477 for testing) from the

2010 i2b2 challenge [96] (see also Section

‘Phenotype-focused corpora’), Doğan et al. [97] con-

sider the extraction of three major entity types,

namely MedicalProblem, Treatment (including pro-

cedures and medications) and Test (lab procedures

and measurements prescribed to a patient), linked

by eight relationship types such as Treatment-

Improves/Worsens/Causes-MedicalProblem, or

MedicalProblem-Reveals/Conducted-Test. They

combine the outcome of a statistical model for con-

cept recognition (based on CRFs) with a linear SVM

approach for relation extraction and achieve for the

named entity task, for partial span match, F-scores of

91.2, 96.0 and 95.4 for Problem, Treatment, and

Test, respectively (for exact span, the F-scores are

81.0, 90.9 and 91.7, respectively), with an over-all

F-score of 93.9 (87.0). In their end-to-end system

(i.e. starting with the automatic recognition of

named entities and then predicting possible relation-

ships between two entities found in the same sen-

tence), they end up for relationship extraction using

automatically extracted concepts with an F-score of

70.4, which is comparable to that obtained using

manually annotated concepts (F-score 71.1), the

difference not being statistically significant.

Chen et al. [98] report on the comparative evalu-

ation of two IE systems, namely MedLEE [99, 100]

and BioMedLEE [101], on 81 828 randomized

controlled trial (RCT) articles from PubMed and

48 360 hospital discharge summaries. Disease and

drug entities are identified using the two NLP

systems, in addition to MeSH annotations for the

PubMed articles. Focusing on eight diseases,

co-occurrence statistics are computed and evaluated

concerning the strength of the association between

each disease and relevant drugs. Ranked lists of

disease–drug pairs are generated, and cut-offs are

calculated for identifying stronger associations

among these pairs for further analysis.

A very specific, yet clinically highly relevant

theme addressed in this area are unwarranted side

effects (or adverse drug reactions, ADRs) of pre-

scribed drugs, also referred to as pharmacovigilance.

Gysbers et al. [102] optimized the Cancer Text

Information Extraction System (CaTIES; https://

cabig.nci.nih.gov/community/tools/caties) [103] for

the identification of terms suggestive of ADRs in

text. Wang et al. [104, 105] applied the MedLEE

system [99] for the identification of side effect

profiles from discharge summaries for selected

drugs/drug classes on the market. Based on 437

(Japanese) discharge summaries, Aramaki et al. [106]

achieve 59 recall and 30 precision for ADR extrac-

tion. Leaman et al. [107] developed a framework for

extracting relationships between drugs and adverse

effects from user posts in health-related social

networks. The most recent work by Gurulingappa
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et al. [108] in this context deals with the classification

of sentences from clinical records that indicate ADRs

in patients, e.g. due to dosage errors. The authors use

a hybrid approach combining dictionary-based infor-

mation with a Maximum Entropy classifier, which

achieves 77.0 F-score.

In an attempt to extract such side effect informa-

tion from the literature, as well as from labels of

FDA-approved drugs without using heavy NLP

machinery, Kuhn et al. [109] developed the SIDER

resource. The system connects drugs to their pheno-

typic effect by extracting side effects from drug

labels.In total, 62 269 drug–side effect pairs covering

a total of 888 drugs and 1450 distinct side effects

were extracted.

Genotype^phenotype^drug mining
Binding everything together, in this section the focus

is on the interrelations between genotypes, pheno-

types and drugs. The interrelationships that occur at

the phenotype–drug level are traced back to possible

genetic traits here. Work in this area is at the heart of

pharmacogenomic TM. Typically, studies in this area

are hybrid in the sense that not only TM machinery

is used, but other types of resources such as inter-

action network (pathway) databases are also inte-

grated. There is some preliminary evidence that for

this kind of research, formal reasoning is particularly

helpful to put all of the different knowledge threads

together. Furthermore, a transition from explicit IE

to discovering implicit knowledge in structured

(database) and unstructured (document) resources

can be observed in some publications (see also

Section ‘Knowledge discovery: mining implicit and

novel information’).

Rindflesch et al. [110] carried out a classical study

when developing the EDGAR system for the extrac-

tion of information about genes, cell types and drugs,

as well as gene–drug relations relevant for cancer.

EDGAR exploits underspecified syntactic parse

trees (similar to the shallow parses discussed above)

and applies manually specified syntactico–semantic

rules for the extraction of relationships. A back-

ground knowledge representation composed of

gene–drug–cell relationships is used both to constrain

the extraction of explicitly stated relationships (e.g.

Drug–Suppress–GeneExpression), as well as the

inference of new ones. The EDGAR system was

also the first to extract nonbinary relationships

between these three entities. However, EDGAR

was not systematically evaluated.

Ahlers et al. [111] discuss the rule-based Enhanced

SemRep system, which extracts a range of gene–dis-

ease and drug–disease relations (such as Stimulates,

Disrupts, or Causes) from approximately 1 K

MEDLINE abstracts on pharmacogenomics. The

UMLS Metathesaurus and Semantic Network is

used to enforce semantic constraints on the extrac-

tion procedure that yields a recall of 55 and a preci-

sion of 73.

Roberts et al. [112] describe an ML-based system

for relation extraction, using SVMs, and trained and

tested it on a clinical subcorpus of CLEF (see Section

‘Phenotype-focused corpora’) dealing with 77 on-

cology narratives hand-annotated with clinically

important relationships. Over a class of seven relation

types (among them HasTarget, HasLocation,

HasIndication and HasFinding), the system achieves

an average F-score of 72, only slightly behind an

indicative measure of human inter-annotator agree-

ment (75) on the same task.

Whereas this research adheres to textual sources

only, Li et al. [113] integrate gene/protein and drug

connectivity information based on protein inter-

action networks with literature mining. Taking

Alzheimer’s Disease (AD) as an example, they first

incorporate molecular interaction networks taken

from OMIM and OPHID (http://ophid.scholar

sportal.info/) to reduce bias and improve the rele-

vance of AD seed proteins. Then MEDLINE

abstracts are used to retrieve enriched drug terms

that are indirectly associated with AD through mo-

lecular studies. Term frequency statistical methods

(the P-value of each term’s significance) are applied

that take advantage of term statistical distributions

from the entire MEDLINE collection; no further

linguistic processing is required here. Finally, a com-

prehensive AD connectivity map is created by relat-

ing enriched drugs and related proteins in the

literature. They show that their approach outper-

forms both curated drug target databases and

conventional IR systems. Furthermore, initial ex-

plorations of the AD connectivity map yielded new

hypotheses regarding candidate drugs for AD

treatment.

Linkage of heterogeneous resources is a crucial

concern behind the SNPshot system developed by

Hakenberg et al. [114] (http://bioai4core.fulton.asu.

edu/snpshot). It contains information on phenotypic

effects of genetic variants, focusing on effects on drug

response selected from close to 180 K MEDLINE

abstracts. They make available summarized
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information linking genes, gene variants, diseases,

drug efficacy, ADRs, populations and allele frequen-

cies, with cross-references to the literature,

EntrezGene, PharmGKB, DrugBank and dbSNP.

SNPshot achieves an impressive performance of

85–92 precision for the recognition of the main

entity types (Genes, Drugs and Diseases) and 79–83

for relationships involving these types.

Coulet et al. [71] describe an ontology of pharma-

cogenomic relationships built starting from a lexicon

of key pharmacogenomic entities and a syntactic

parse of more than 87 M sentences from 17 M

MEDLINE abstracts. The syntactic dependency

structure of pharmacogenomic statements is used to

systematically extract commonly occurring relation-

ships and to map them to a common schema. The

extracted relationships have 70.0–87.7 precision and

involve not only key pharmacogenomic entities such

as Genes, Drugs and Phenotypes (e.g. VKORC1,

Warfarin and clotting disorder), but also critical enti-

ties that are frequently modified by these key entities

(e.g. VKORC1 polymorphism, Warfarin response

and clotting disorder treatment). The result of this

analysis is a network with clear semantics of 40 K

relationships between >200 entity types. A signifi-

cant innovation in this work is the unbiased extrac-

tion of the relationships themselves, between subject

and object of the sentences. Whereas previous meth-

ods had prespecified relationships of interest (e.g.

Bind, Inhibit, Metabolize), Coulet et al. extract all

relationships commonly occurring in the literature,

connecting a drug-related entity to a gene-related

one.

Rather than only dealing with sets of single rela-

tions lacking further integration, Tari et al. [115] go

one significant step further and propose a novel

approach to automated ‘pathway synthesis’. Facts

are acquired from hand-curated knowledge bases

(such as DrugBank or PharmGKB), as well as

through automated extraction from MEDLINE

abstracts. The text analytics component contains a

syntactic parse tree database, while semantic analytics

are provided by MetaMap and the gene/protein

normalizer GNAT [28]. A flexible parse tree query

language was developed to perform IE at the parse

database level. An essential novel aspect of that

approach is to apply ‘logical reasoning’ to the

acquired facts based on biological knowledge about

pathways. By representing such biological know-

ledge as clauses, an AnsProlog-based reasoning

engine is capable of assigning ordering to the

acquired facts and interactions that is crucial for path-

way synthesis. As an example, 20 pharmacokinetic

pathways were synthesized and evaluated by recon-

structing the existing pharmacokinetic pathways

available in PharmGKB. The results show that this

approach not only is capable of synthesizing these

pathways, but also of uncovering information that

is not available in the manually annotated pathways,

a pharmacologically relevant use case of knowledge

discovery.

As an alternative to logical reasoning for know-

ledge discovery, Frijters et al. [116] combine a

co-occurrence-based recognition approach with

Swanson-style knowledge discovery in their

CoPub discovery system to search for new relation-

ships between genes, drugs, pathways and diseases in

MEDLINE abstracts. Several of the newly found

relationships were validated using independent litera-

ture sources. In addition, newly predicted relation-

ships between compounds and cell proliferation

were validated and confirmed experimentally in an

in vitro cell proliferation assay. Also using a

Swanson-style approach, Baker and Hemminger

[117] infer drug–disease associations by typing

B-terms to be proteins only, thus minimizing the

usually exploding number of B-terms (the notion

of B-term is explained in Section ‘Knowledge dis-

covery: mining implicit and novel information’

below). As with the previous system, a number of

well known but also entirely new hypothetical rela-

tions could be found. These results show that the

co-occurrence approach is also capable of identifying

novel associations between genes, drugs, pathways

and diseases that have a high probability of being

pharmacologically valid.

Knowledge discovery: mining implicit
and novel information
Work within the knowledge discovery framework

aims fundamentally at finding relations between enti-

ties that are not explicitly spelled out in the under-

lying documents. This area of research, rather than

locating already known facts literally mentioned in

the document, is primarily devoted to mine novel

and often hypothetical knowledge given appropriate

evidence from text. Two completely different

approaches prevail (much in the spirit of the systems

described in the last two paragraphs of the previous

section)—one has its roots in information retrieval

and capitalizes on distributional and statistical char-

acteristics of terms, the other derives from artificial
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intelligence and employs logical reasoning on

text-derived knowledge bases.

The so-called B-list paradigm (or ABC model)

originating from the seminal work of Swanson (for

a survey, see [118]) has been the most influential

distributional model. Its rationale can be described

as follows: if terms A and C (both being highly

relevant for the problem under scrutiny) do not

co-occur in the same text, then, first, consider all

nontrivial terms Bi and Bj that co-occur with A

and C, respectively. Those terms Bk that lie in the

set-theoretical intersection of Bi and Bj, the so-called

B-list, might be evidence for reasonable associative,

and thus implicit, bridges between A and C.

However, each of the ABkC hypotheses is kind of

speculative, an educated guess, and therefore, must

be empirically tested to determine whether or not it

is valid in the corresponding domain of discourse.

See also the reviews of earlier work that follows

this paradigm in [119, 120], whereas more recent

activities are portrayed in [116, 121, 122].

Creating knowledge from logical inferences is

increasingly becoming an issue for the life sciences;

see, e.g. [69, 79, 115, 123]. It requires, however, a

formal logical specification of domain knowledge,

usually a time-consuming and theoretically challen-

ging (research) activity. Although strictly deductive

reasoning has its inherent limits for finding ‘novel’

knowledge, nondeductive reasoning modes (for in-

stance, inductive or abductive reasoning; see, e.g.

[124]), can indeed find truly ‘new’ knowledge.

However, this comes at the price of not being able

to guarantee (unlike the case of deductive reasoning)

whether or not the newly derived assertions are

logically true (valid assertions). From a life science

perspective, such considerations might by an exag-

gerated argument that is outweighed by the heuristic

potential for finding and much-wanted guidance for

focusing on ‘interesting’ claims.

Summarizing remarks on text
mining approaches
Text mining software builds on, and often combines,

three different types of methodological approaches:

lexical resources, rule systems and machine learning.

Lexical resources incorporate a wide range of term

repositories—simple nomenclatures (term lists, no

additional information), linguistic and domain-

sensitive dictionaries (which add morphological,

syntactic or semantic knowledge, e.g. synonyms,

to terms), terminologies (which add conceptual,

i.e. taxonomic or partonomic, knowledge to terms)

and ontologies (which are based on some formal

knowledge representation format, e.g. logics or

graphs and thus, in principle, allow formal reason-

ing). Fortunately, the life sciences are incredibly rich

in these kinds of resources [see the multitude of lex-

ical repositories assembled at sites such as the UMLS,

the Open Biological Ontologies (OBO; http://

www.obofoundry.org/) or the NCBO BioPortal

(http://bioportal.bioontology.org/)] and thus, pro-

vide TM systems with richly structured background

knowledge of the underlying domain of discourse, if

coverage permits (see also Section ‘Terminologies

and ontologies’). On the flipside of this diversity of

resources lies the lack of interoperability of different

terminologies that TM systems have to account for

[125, 126].

Rule-based systems are used to specify systematic

extraction patterns usually observable at the surface

level of literal mentions in a text in order to capture

relevant structural configurations, as well as syntactic

or semantic variants in natural language. These

patterns either reflect regularities of lexical strings

(i.e. sequences of words or tokens) or graphs,

mostly parse trees or directed acyclic graphs

(DAGs), which represent syntactic structures of nat-

ural language. There is a long tradition in biomedical

NLP using regular expressions (RegExs) to specify

relevant patterns, or using corresponding finite-state

automata (FSAs) for pattern recognition. Formally

more expressive are context-free rule systems

(CFGs) or computationally more flexible production

rules, which are typically used to formulate elabo-

rated grammar systems for natural (sub)languages,

either subscribing to a dependency-based or a

constituency-based representation format (both are,

to a certain degree at least, translatable in both dir-

ections). Earlier systems contained mostly manually

created rules and were also maintained manually; in-

creasingly, rules are automatically learnt or adjusted.

Machine learning is today’s dominant paradigm of

research in NLP and human language technology. At

the core of ML technology lies the identification of

distinctive features relevant for classification, i.e.

deciding on class membership (e.g. for each word

in a text a classifier decides whether or not it belongs

to the class Gene or Disease), and the induction of

statistical decision models (classifiers) from some posi-

tive ground truth (usually, relying on annotated cor-

pora; see Section ‘Annotated corpora’). ML

methodology covers a wide variety of techniques—
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Hidden Markov Models (HMMs), Maximum

Entropy (MaxEnt) models, Conditional Random

Fields (CRFs) and different kernel parameterizations

of Support Vector Machines (SVMs) currently consti-

tute the most successful approaches; for textbooks on

ML, see, e.g. [127, 128], a tutorial perspective on ML

methods for biomedical NLP is provided in [129]. As

with lexical resources, researchers can choose among

many alternatives, in this case algorithms implement-

ing a large variety of ML techniques, which can be

accessed at some general purpose ML site such as

WEKA (http://sourceforge.net/projects/weka/), or

NLP-oriented sites such as Mallet (http://mallet.cs.

umass.edu/), OpenNLP (http://incubator.apache.

org/opennlp/) and LingPipe (http://alias-i.com/ling-

pipe/) (see also Section ‘Software infrastructure’).

The ML approach reflects the commonly shared

insight in the NLP community that natural languages

constitute an extremely complex system of regulari-

ties at many different, yet highly interrelated levels

(words/lexicology, sentences/syntax, meaning/

semantics, situatedness and intentions behind utter-

ances/pragmatics, discourse structures/text linguis-

tics) that has resisted manual descriptive efforts for

almost a century in modern linguistics. Note that

even after decades of intensive linguistic research, a

complete grammar and lexicon have not been

worked out manually for any of the natural

languages, including English. Rather than further

continuing to specify these regularities manually, as

a way to get out of this daunting dilemma, NLP has

moved to just providing reliable linguistic metadata

manually (i.e. from an expert perspective, these

are valid assertions about linguistic structures and

regularities in terms of annotations for the different

layers mentioned before, so-called ground truth; e.g.

‘horse’ is a NOUN, ‘a horse’ is a NOUN PHRASE,

‘horse’ denotes a type of ANIMAL, etc.). The task

on which humans have failed for a long time is dele-

gated to the machine (i.e. ML algorithms), namely to

automatically find the essential linguistic regularities,

usually a statistical model, underlying TM, e.g.

named entity recognition or relation extraction.

Because the provision of this ground truth for super-

vised ML is costly and time-consuming (note the

quite limited sizes of the annotated document col-

lections mentioned so far), efforts are also under way

to learn these regularities from the scratch, i.e. from

raw, nonannotated data in an unsupervised ML

mode. As can be expected though, supervised ML

in the vast majority of applications outperforms

unsupervised ML because of the surplus of discrim-

inative knowledge contained in the metadata.

For assessing the usefulness of such methodologies,

evaluation experiments are run where some baseline

system is usually compared with the particular

approach under scrutiny. For example, for named

entity recognition, often a hybrid solution involving

lexical resources, rules or ML approaches is compared

against a lexical off-the-shelves baseline (often

including some simple forms of variant normaliza-

tion, e.g. morphological stemming, easily available

synonym lists, etc.). The hypothesis being that the

new approach outperforms lexical matching based on

an already known term list. For relation extraction,

(automatically learnt) rule systems and ML

approaches co-exist, with emphasis on the latter

though. A typical baseline for evaluating relation ex-

traction builds on co-occurrence where n terms con-

stituting such a relation are required to co-occur in

some formal text segment, usually at the sentence

level, without any further structural constraint. The

hypothesis being that the new approach outperforms

simple co-occurrence because of the incorporation of

additional structural constraints. Note that co-occur-

rence relations are un-typed, i.e. their semantics is

merely association-based. Only typed relation extrac-

tion typically provides a meaningful linkage between

the entities involved in a relation (e.g. PPI relations

indicate that proteins or genes are supposed to inter-

act; hence, ‘Interact’ can be taken as the specific

semantic type (ako predicate symbol) linking the

gene/protein arguments within its scope).

Both the accuracy of the recognition (and nor-

malization to identifiers in standard gene data-

base resources such as UniProt or EntrezGene) of

the basic named entities, as well as relation types still

fall short of performance figures available for

nonbiological entities and relations (e.g. Person,

Organization or Location, as well as Employee-of,

is-Successor-of, etc. typical of the newspaper

domain) by rates from 10% to 15%. Although we pre-

sented lots of measurement efforts (mostly F-scores)

for the different TM tasks, the concrete values are by

no means directly comparable and thus should be

considered with utmost care. The parameters that in-

fluence the reported performance data are manifold.

Most important are the following distinctions and

methodological considerations:

� Named entity recognition versus relation extrac-

tion (recognition).
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� Arity (i.e. the number of arguments) of relations

(binary versus ternary, quadruple, etc.).

� Recognition versus normalization (to some

already established, community-wide used identi-

fier system, e.g. UniProt, MeSH).

� Single-type versus multi-type entity recognition

or relation extraction (e.g. Disease only, versus

Disease, Treatment and Test).

� Feature population of ML algorithms—although

we often mention, for instance, CRFs or SVMs

as ML algorithms of choice for certain applica-

tions, the performance we report for them is

mostly dependent on the feature set with which

they are equipped (this is optimized in the training

and development phases); hence, any discussion of

results for some ML algorithm must be seen in the

light of the feature set selected for a specific

experiment—there is no superiority of a particular

ML technique as such. Although some standard

feature subsets are applied in the vast majority of

cases (e.g. lexical features extracted from some

canonical lexical resource such as the MeSH),

top performance can only be achieved by introdu-

cing innovative (combinations of) feature classes.

� Text genre of the corpus which includes con-

densed texts, such as text snippets from biological

or clinical databases or abstracts from scientific

publications, versus full texts of scientific publica-

tions, clinical notes or patent documents versus

social media texts from blogs, mailing lists or

other formats where threading and sender–recipi-

ent relations are crucial.

� Size of the corpus—with commonly low sizes (the

number of documents ranging between 100 and

300, and token sizes ranging between 30 K and

100 K; see also Section ‘Annotated corpora’) the

representativeness of a corpus for the underlying

text genre, and hence the generalizability of the

results for the chosen task (are the results statistic-

ally significant?), is somewhat hard to claim.

� Sampling method for the corpus—often content-

directed PubMed queries are run (e.g. ‘human’

and ‘disease’) to assemble a focused document col-

lection, which is then used for training and testing

purposes; even the replication of such queries at

different time points does not necessarily lead to

the same corpus because PubMed is dynamically

changing its MEDLINE data.

� Metrics for the evaluation of the quality of a text

mining system and its results—although we have

predominantly been dealing with F-scores here,

precision@k, recall@k (k stands for a rank pos-

ition in an ordered list), accuracy, as well as the

Relative Operating Characteristic or Receiver

Operating Characteristic (ROC) curve and

others are reasonable alternative metrics for

proper evaluation, though they are not directly

comparable.

� Quality of the training material and gold standard

for testing—this relates to the authors of the data

set in terms of their domain expertise, education

level (e.g. graduates versus PhD students, experi-

enced versus nonexperienced physicians) and

mutual agreement on their classification decisions

for different recognition tasks [measured by the

inter-annotator agreement (IAA), see also

Section ‘Annotated corpora’].

Under these premises and caveats, an F-score of

80.0–85.0 (�5.0) for life science entity types (recog-

nition, as well as grounding in companion databases)

and 55.0–65.0 F-score for life sciences relations (PPIs

versus DDIs, respectively) constitute the current state

of the art. Overall, recognition rates vary substantially

among different biomedical entity types (see the

results reported in Sections ‘Genotype mining’ to

‘Mining pharmacological information’). One reason

for the comparatively lower level of performance

may be that biomedical TM still suffers from a cer-

tain poverty of reference data, since really large

annotated document sets (comparable with those

available for newspaper analytics) are still missing.

The CALBC silver standard initiative [130, 131]

can be considered as a step in the direction of ad-

dressing this problem; see the discussion of CALBC

in the final paragraph of Section ‘Annotated

corpora’.

From a text genre perspective, it turns out that

preselected snippets from free-text fields in databases

are easier to deal with than scientific abstracts, the

currently still prevailing resource for pharmacoge-

nomic text analytics. Scientific full texts are harder

to analyze than their associated abstracts. Clinical re-

ports and patents—highly relevant for pharmacogen-

omics—present the strongest challenge for TM

because they usually even exceed the level of linguis-

tic complexity found in scientific full text

publications.

While in the biological TM community, the em-

phasis of work on named entity recognizers and re-

lation extractors is devoted to genes or proteins and

their interactions, the medical TM community

Mining the pharmacogenomics literature 477

Downloaded from https://academic.oup.com/bib/article-abstract/13/4/460/182347
by guest
on 28 July 2018



focuses on disease and drug recognition, as special

cases of phenotype- and pharmacology-oriented

TM, respectively. Both camps are actively pursuing

their research agenda and benefit a lot from the

achievements made within competition-based chal-

lenges—as evidenced, e.g., by BioCreAtIvE for the

biological community and by the i2b2 Challenge or

the DDI Extraction Challenge for the medical com-

munity—see also Sections ‘Phenotype-focused cor-

pora’ and ‘Mining pharmacological information’,

respectively.

INFRASTRUCTURERELEVANT
FORMININGTHE
PHARMACOGENOMICS
LITERATURE
TM relies on the availability of a considerable

amount and variety of resources—for setting up a

system (e.g. training data for ML-based systems),

for testing it (gold standard data), for implementing

it according to good software engineering standards

(e.g. middleware frameworks), for providing know-

ledge of the underlying domain (in terms of ter-

minologies and ontologies) and for reporting the

acquired knowledge to the biomedical and pharma-

ceutical users in a comprehensible way (e.g. visual-

ization tools). This infrastructure will be described in

the subsequent subsections.

Annotated corpora
In recent years, we have seen an enormous growth of

document corpora annotated with relevant biomed-

ical named entities and relations. Typically, human

experts (annotators) while reading (snippets of) raw

text data assign special kinds of metadata, so-called

tags, from a predefined tag set to relevant stretches of

text based on coding conventions that are laid down

in annotation guidelines (on which the annotators

were trained). Assuming we were given the sentence

‘NF-kappaBmayactivate the production ofTNF-a’ and the

task would be to assign biological named entity tags

of the type TranscriptionFactor (TF) and Gene to

this sentence. Then an annotation would encapsulate

the relevant text tokens and look like the following:

‘<TF>NF-kappa B<\TF> may activate the production of
<GENE>TNF-a<\GENE>’.

TM relies on the availability of such metadata for

at least two reasons. First, in order to evaluate TM

systems, some undisputed ground truth must be pro-

vided against which system performance can be

measured. Second, the development of a large

proportion of TM systems relies on some sort of

supervised ML approach for their named entity and

relation extraction classifiers and annotations imple-

ment that supervision. In order to induce the models

of these classifiers, informative input data has to be

provided for model generation. Even for setting up

and maintaining manually created rule systems, some

credible and diverse data resource is needed to for-

mulate rules that cover a maximal variety of linguistic

phenomena.

The creation of corpora, i.e. annotation with

metadata, is a time-consuming and intellectually

demanding task—both for those who plan and

manage such an annotation project, as well as for

the staff involved in actually generating the

annotations. Wilbur et al. [132] define five qualitative

dimensions along which this process can be struc-

tured, including the design of adequate annotation

guidelines and measurement of inter-annotator

agreement. Appropriate software tools for supporting

the annotation process are also important. For

example, the Knowtator system [133] is a

general-purpose text annotation tool that is inte-

grated with the Protégé knowledge representation

system (http://protege.stanford.edu/). Knowtator

facilitates the creation of training and evaluation cor-

pora for a variety of biomedical language processing

tasks (http://knowtator.sourceforge.net/). It may

also be used to view text-mined relationships, if

stored in the appropriate Protégé frames format.

Similar to the importance of the F-measure (and

its constituent precision and recall metrics) as a means

to quantify system performance, the measurement of

agreement among several annotators (inter-annotator

agreement, IAA) allows to assess the quality of an

annotated corpus. It captures the overall consistency

of the judgments of a group of usually human anno-

tators as an indicator of shared understanding of the

contents of a document (for a survey of various met-

rics, see [134]). Depending on the complexity of the

task, it is common (although often challenged)

received wisdom to consider different values as ac-

ceptable based on community consensus. One of the

most widely used IAA metrics is the kappa statistic,

which measures the agreement of annotators ad-

justed for chance agreement (see, e.g. [135, 136]).

Kappa values lie in the interval [0,1], with ‘0’

indicating complete lack of agreement and ‘1’ indi-

cating perfect agreement between the annotators.

Since some of the statistical assumptions holding

478 Hahn et al.

Downloaded from https://academic.oup.com/bib/article-abstract/13/4/460/182347
by guest
on 28 July 2018

http://protege.stanford.edu/
http://knowtator.sourceforge.net/


for kappa might not carry over to corpus annota-

tion in the biomedical domain (e.g. the non-

independence of terms occurring in biomedical

taxonomies), the F-measure using one annotator as

the gold standard for the other(s) can be a more

adequate alternative [137].

Particularly interesting are several attempts at

saving annotation efforts (in terms of time and in

terms of the number of decisions to be made) in

the course of the annotation process. A ‘weak’

approach to tackle time-consuming human annota-

tion was proposed by Craven and Kumlien early on

[138], who re-used database information for building

training material for machine learners. A consider-

ably ‘stronger’ approach relies on Active Learning,

where random selection of examples to be annotated

is replaced by an intentional sampling bias that

favors the elicitation of human classification decisions

on ‘hard’ (i.e. difficult to interpret) annotation in-

stances, whereas the easier ones are already dealt

with automatically using the model learnt thus far.

This procedure resulted in almost dramatic cost sav-

ings for coding biological named entities along the

above mentioned dimensions, ranging from 48% to

72% of the number of tokens to be considered, with-

out seriously sacrificing annotation quality (see, e.g.

[139]).

A totally different idea underlies the CALBC an-

notation approach. Rather than eliciting human

judgments to build a gold standard manually, the

organizers of the CALBC initiative have constructed

a so-called ‘silver standard’ from the contributions of

several automatic named entity taggers only. This

ensemble-style procedure requires some harmoniza-

tion and voting efforts to create a consensus annota-

tion. There is a large variety of named entity types

being covered, with emphasis on Genes/Proteins,

Diseases, Drugs and Species. For Genes/Proteins,

recognition numbers for entity taggers trained

on CALBC data of around 60 F-score are reported.

For Diseases, an F-score of 79 is reached [130, 131].

CALBC features not only an unusual diversity of

entity types, but is also unmatched with respect to

the sheer number of documents being annotated.

Around 1 M (automatically) annotated MEDLINE

abstracts constitute the largest annotated corpus

ever created in the biomedical community. This

research, however, needs further validation, since

large-scale usage of that corpus and comparisons

with much smaller corpora and with human anno-

tations are still lacking.

Genotype-focused corpora
In the past years, the BioNLP community has gen-

erated a plethora of PPI-annotated corpora. Whereas

earlier attempts [e.g. LLL (http://genome.jouy.inra

.fr/texte/LLLchallenge/), AIMed (ftp://ftp.cs

.utexas.edu/pub/mooney/bio-data/) and BioInfer

(http://mars.cs.utu.fi/BioInfer/), as well as several

iterations of BioCreAtIvE] dealt with this issue at

a fairly general level of genes and proteins and

binary PPIs (see also a quantitative comparison of

five PPI corpora, including LLL, AIMed and

BioInfer, based on PPI extraction performance

[140]), requests for biologically finer-grained dis-

tinctions of the complex interactions between

genes and proteins were pronounced. This led,

for example, to the development of the GENIA

event corpus [141] and the GENIA event

corpus-derived BioNLP 2009 Shared Task data

[18], which consist of 1 K abstracts (more than 9 K

sentences and 36 K event annotations) and 1.2 K

abstracts (more than 11 K sentences and 14 K event

annotations) from MEDLINE, respectively, and

contain detailed annotations of PPIs (amongst

others; see also [142] for related efforts). The

BioNLP Shared Task was a first step toward

the extraction of specific pathways with precise in-

formation about the molecular events involved. This

level of specificity is certainly needed to account for

the analysis of the pharmacogenomic literature, par-

ticularly when interfaced with pathway databases

such as KEGG.

The GeneReg (Gene Regulation) corpus

[143] consists of 314 abstracts dealing with the

regulation of gene expression in the model

organism E. coli. The emphasis of this work is on

the compatibility and thus, linkage of the

GeneReg corpus with the GENIA event corpus

and with several in-domain and out-of-domain lex-

ical resources, e.g. the biomedical sublanguage

Specialist Lexicon (http://lexsrv3.nlm.nih.gov/

Specialist/Home/index.html), as well as general-

language lexicons such as WordNet (http://word

net.princeton.edu/) or FrameNet (https://framenet.

icsi.berkeley.edu/fndrupal/). Such links are crucial

to broadening the lexical coverage of TM systems.

More recent work aims at the annotation of full texts

(complementing the annotation of abstracts), as well

as the broadening of the number of entity types

under scrutiny, e.g. including compounds, biochem-

ical reactions, physiological states and laboratory tech-

niques as well [144].
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Phenotype-focused corpora
While genotype-focused corpora deal almost exclu-

sively with scientific publications, phenotype-

focused ones are mainly concerned with clinical

notes. They vary considerably in structure, genre

and the type of jargon (technical language); see also

Section ‘Phenotype mining’ and the survey by

Meystre et al. [5]. Consequently, the types of entities

and relations being used also differ markedly from

genotype-focused corpora. A true representative of

this stream of work is the CLEF (CLinical E-Science

Framework) corpus [145–147], which is composed

of clinical narratives, histopathology reports and ima-

ging reports from 20 K cancer patients. For each of

these three genres, 50 documents were meticulously

annotated with several disease-specific types of clin-

ical entities, namely Condition (including symptom,

diagnosis, complication, conditions, problems, func-

tions, processes and injury), Result (the numeric or

qualitative finding of an investigation, excluding

Condition) and Locus (the anatomical structure or

location, body substance or physiological function,

typically the locus of a Condition). Very often,

Conditions are mentioned in relation to Locus as,

for example, in ‘[melanoma]Condition located in

[groin]Locus’ or ‘[left breast]Locus [cancer]Condition’.

Furthermore, several relation types are annotated,

including HasFinding, HasIndication, HasLocation,

HasTarget and Modifies. For time-sensitive named

entities even temporal annotations (such as Before,

After, Overlap, Includes) based on the TimeML

TIMEX3 standard [148] are provided (http://

timeml.org/site/timebank/documentation-1.2.

html). Thus, the annotation process for diseases is

broken down into the annotation of many diverse

fundamental clinical and anatomical entities and their

relationships. A wide range of IAA scores are

reported for such a relational decomposition of

annotation, with kappas ranging widely (depending

on the type of entity and relation and the way how

IAAs were measured—strict or lenient (partial)

match), which indicates that this fine-grained rela-

tionship annotation for clinical entities is an

extremely difficult task.

On a similar quantitative scale, Ogren et al. [149]

report on a corpus which contains 1556 annotations

on 160 clinical notes using 658 unique concept codes

from SNOMED-CT corresponding to human dis-

orders. IAA for four annotators is reported, among

others, for span (0.91) and concept code (0.82). In

earlier work, Pestian et al. [150] describe one of the

rare clinical notes corpora, composed of almost 2 K

documents annotated at the document level for

billing codes (45 categories taken from the disease

classification ICD-9CM; http://www.cdc.gov/

nchs/icd9.htm).

Completely different text genres were considered

for two other disease-centric corpora, namely the

Disease Corpus from the EBI [38] and the Arizona

Disease Corpus (AZDC) [151]. Both deal with dis-

ease annotations only, a proper subset of pathological

phenomena. The EBI corpus contains 600 sentences

from OMIM, for which an IAA of 0.51 kappa

(which is low, even by biomedical standards) is

reported for two annotators. AZDC provides 3228

disease mention annotations (1202 unique disease

names) for 2856 MEDLINE abstracts. Mentions of

organisms and species were explicitly excluded from

the disease annotation span. So, for ‘human

insulin-dependent diabetes mellitus’, the span

‘insulin-dependent diabetes mellitus’ would be

annotated as Disease.

Furthermore, there exist highly specialized cor-

pora that deal with particular disease types only.

For example, Cano et al. [152] discuss the develop-

ment of annotation guidelines for PPIs and gene–

disease relations and report agreement rates of 75%

for a small autism MEDLINE collection made of 139

snippets. The PennBioIE corpus [153] comes with

an oncology portion made of 1414 MEDLINE

abstracts annotated for the molecular genetics of

cancer, as well as a genotype portion made of 1100

MEDLINE abstracts annotated for the inhibition

of cytochrome P-450 enzymes (http://lists.ccs.neu

.edu/pipermail/bionlp/2008-November/001208

.html). The oncology portion, finally evolved into

the PennBioIE Oncology 1.0 corpus (http://www

.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId¼

LDC2008T21).

The most diverse corpus construction efforts for

the medical informatics community are currently

centred around various rounds of the i2b2 initiative

(https://www.i2b2.org/). It has turned into a series

of competitions (comparable with BioCreAtIvE) that

provides (similar in spirit with CLEF) clinical docu-

ment resources. In the first contest, 502 de-identified

discharge summaries were provided with smoking

status annotations [154]. For the next challenges, an-

notations for obesity [155] and medication data [59]

were provided. For instance, the classification task for

the smoking challenge—identifying each patient

either as a smoker, current smoker, past smoker,
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nonsmoker or unknown—was solved by the

best-performing system with accuracy peaking at

93.6 using an SVM approach [156]. In the latest

2010 Challenge, i2b2 has moved its thematic scope

to account for clinical named entity recognition and

relation extraction tasks [96]. The winner system

achieved for concept extraction (finding entities

related to Problems, Tests and Treatments) an

F-score of 85.2, for assertion detection (asserting

for each Problem whether the context describes it

as ‘present’, ‘absent’, ‘possible’, ‘conditional’, ‘hypo-

thetical’ or ‘associated with someone else’.) 93.6, and

for relationship detection (entities co-occurring with

Problems) 73.1 [157]. The different i2b2 corpora not

only contribute lots of diverse annotation types to

the community but also extend the thematic scope

beyond well defined diseases into less discrete types

of pathological phenomena. Chapman et al. [158]

discuss the value of i2b2-style challenges for the bio-

medical NLP community but also point out special

problems encountered in trying to adopt results from

this research in the clinical domain.

Drug- and chemicals-focused corpora
Corpora focusing on the annotation of drugs and

chemicals not only consider MEDLINE abstracts

but also involve full-text journal articles, patent

texts and free-text fields from relevant databases.

Corbett et al. [159] report on a corpus built from

42 full-text chemistry papers annotated with chem-

ical names from five categories (among them

Compounds and Enzymes), while Kolárik et al.
[160] discuss the annotation of the Fraunhofer chem-

ical names corpus, which contains about 1500

MEDLINE abstracts (The corpus is available at

http://www.scai.fraunhofer.de/chem-corpora.html).

The DISAE corpus constructed by a Fraunhofer

team [161] originally contained 400 MEDLINE ab-

stracts randomly selected from the PubMed query

‘Disease or Adverse effect’. Two annotators (with

0.84 and 0.89 kappa) provided 1428 Disease and

813 Adverse effect annotations, although informa-

tion on the drugs involved in adverse effects was

not annotated. Since the original publication, the

corpus has grown to almost 3000 MEDLINE docu-

ments containing approximately 5000 Drug and

5800 drug Adverse effect annotations [108].

DrugDDI, the corpus constructed for the DDI

Extraction Challenge [64], is based on 1000 ran-

domly chosen drug names selected from the

DrugBank database, for which links to documents

describing DDIs in unstructured texts were ex-

tracted. These documents were then analyzed with

the UMLS MetaMap Transfer (MMTx) tool, leading

to a linking of phrases with UMLS Metathesaurus

concepts. This corpus contains 579 documents

describing 3160 positive DDIs.

The PharmGKB repository (http://www

.pharmgkb.org/) [162] comes perhaps closest to the

vision of an all-embracing pharmacogenomics

corpus. It represents a major step towards an

interdisciplinary biomedical information store.

PharmGKB incorporates data on genetic variations

and associated phenotypic manifestations [163]. The

resource covers information on the pharmacokinetics

of therapeutic drugs (how drugs are absorbed,

metabolized and excreted by an organism) and the

pharmacodynamics of drugs (how drugs act in an

organism). It also covers certain nonpharmacological

aspects of phenotypes, including susceptibility to dis-

ease. Currently (as of December 2011), PharmGKB

contains information about 1164 pharmacogenes and

1753 drugs and the relations between them; and it

continues to grow.

The crucial role it might play as a future bench-

mark standard for pharmacogenomic TM has just

been demonstrated in a recent study by Buyko

et al. [164]. They used PharmGKB as a resource for

retraining the JReX system (which was second-best

in the 2009 Shared Task on Event Extraction, with

46.7 F-score) and adapting it to account for Gene–

Drug, Gene–Disease and Drug–Disease relations.

Data are presented for an internal 10-fold

cross-validation on the PharmGKB corpus [Gene–

Drug (F-score: 82.3), Gene–Disease (F-score: 76.0)

and Drug–Disease relations (F-score: 79.0), with an

overall F-score of 80.1], as well as for an external

evaluation incorporating PharmGKB relation test

sets [Gene–Drug (F-score: 73.6), Gene–Disease

(F-score: 68.8) and Drug–Disease relations

(F-score: 77.5), with an overall F-score of 73.3].

Terminologies and ontologies
Terminologies and ontologies have a variety of uses

in pharmacogenomic TM, ranging from providing

targets for the grounding of concepts mentioned in

text to addressing the need for a structured definition

of the domain for the purpose of annotating corpora.

The latter use is not typically seen, and when it is

used, ad hoc ontologies are typically applied, as in the

case of the GENIA and BioInfer corpora. An excep-

tion to this is the CRAFT corpus [165], which was
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annotated with reference to several OBO ontologies,

such as the GO and ChEBI (http://bionlp-corpora

.sourceforge.net/CRAFT/index.shtml).

Genotype-focused resources
In pharmacogenomics, a primary need is to unam-

biguously identify and refer to genes, diseases and

drugs. Contrary to popular misunderstanding, the

GO (http://www.geneontology.org/), currently

containing 35 500 fully defined concepts, is not

about genes, but rather gene functions, broadly

construed. For obtaining unambiguous names for

referring to genes, there are several options, such as

using EntrezGene identifiers from NCBI. For human

readable names, the HUGO Gene Nomenclature

Committee (HGNC) has assigned unique gene sym-

bols and names to more than 32 000 human loci

(http://www.genenames.org). It is a curated online

repository of HGNC-approved gene nomenclature

and associated resources, including links to genomic,

proteomic and phenotypic information, as well as

dedicated gene family pages.

Phenotype-focused resources
Disease name standardization is important in

pharmacogenomics for the purpose of combining

observations from different studies, databases or

texts. One of the most elaborate ontologies for

diseases [we here use the term ‘ontology’ to refer

to artifacts—(informal) terminologies, as well as

true (i.e. formalized) ontologies—that can provide

a hierarchy of parent–child terms for disease condi-

tions] is the Systematized Nomenclature for

Medicine-Clinical Terms (SNOMED CT; http://

www.nlm.nih.gov/research/umls/Snomed/snomed_

main.html), which is considered to be the most

comprehensive, multilingual clinical healthcare

terminology in the world. Currently, SNOMED

CT contains more than 311 K active concepts with

unique meanings and formal logic-based definitions

organized into multiple hierarchies. The disease hier-

archy is available under the ‘Clinical Finding’ root

node (analogous to the ‘Biological Process’ root

node in GO).

Another widely used disease ontology is the

National Cancer Institute thesaurus (NCIt; http://

www.cancer.gov/cancertopics/cancerlibrary/termin

ologyresources; the NCIt thesaurus can be browsed

via the NCI Term Browser available at http://ncit.

nci.nih.gov/ncitbrowser/). The NCIt provides def-

initions, synonyms and other information about

nearly 10 000 cancers and related diseases, 8000

single agents and combination therapies and a wide

range of other topics related to cancer and biomed-

ical research. NCIt is a recognized standard for bio-

medical coding and reference, used by a variety of

public and private institutions, including the Clinical

Data Interchange Standards Consortium Terminol-

ogy (CDISC), the US Food and Drug Administra-

tion (FDA), the Federal Medication Terminologies

(FMT) and the National Council for Prescription

Drug Programs (NCPDP). The disease hierarchy is

available under the root node ‘Diseases, Disorders

and Findings’.

The most widely used disease ontology, which

also includes a wide variety of signs, symptoms,

abnormal findings, complaints, etc. is the ICD,

which is part of the WHO Family of International

Classifications. Version 10 of ICD contains 155 K

different codes (http://www.cdc.gov/nchs/icd/

icd10.htm), Version 9 of ICD (http://www.cdc

.gov/nchs/icd/icd9.htm) is widely used in the

United States for billing purposes in the health care

system, although a conversion to 10 is mandated in

the near future. Finally, there is an effort to create an

ontology of human diseases that conforms to the

principles of the Open Biomedical Ontologies

Foundry (http://www.obofoundry.org/). This

Human Disease ontology has been under review

by the OBO Foundry since 2006.

Drug- and chemicals-focused resources
Drugs are another entity type that needs to be con-

sistently named and referred to in pharmacogenom-

ics TM. Analogous to the different disease

ontologies, there are several alternative ontologies

for drugs. For researchers interested in a consistent

way of naming clinical drugs, RxNorm is an excellent

resource, containing around 190 K terms and

>800 K relationships (http://www.nlm.nih.gov/

research/umls/rxnorm/; statistics are available at

http://www.nlm.nih.gov/research/umls/sourcerele

asedocs/current/RXNORM/sourcemetastats.html).

Over the past 6 years, RxNorm has become a central

resource for communicating about clinical drugs and

supporting interoperation between drug vocabul-

aries. It provides names and relationships for medi-

cations at a given level of abstraction. The current

version is based on 11 different source vocabularies,

including the National Drug File Reference

Terminology (NDF-RT) from the Veterans

Administration [166].
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ChEBI (http://www.ebi.ac.uk/chebi/) is a freely

available ontology of molecular entities focused on

‘small’ chemical compounds, with almost 27 K

entries. The molecular entities in question are

either natural products or synthetic products used

to intervene in the processes of living organisms.

The term ‘molecular entity’ refers to any constitu-

tionally or isotopically distinct atom, molecule, ion,

ion pair, radical, radical ion, complex, conformer,

etc. identifiable as a separately distinguishable

entity. ChEBI includes an ontological classification,

whereby the relationships between molecular entities

or classes of entities and their parents/children are

specified. ChEBI uses nomenclature, symbolism

and terminology endorsed by the IUPAC and

Nomenclature Committee of the International

Union of Biochemistry and Molecular Biology

(NC-IUBMB). All data in the CheBI database are

nonproprietary or are derived from a nonproprietary

source [167] (The text on CheBI is from http://

www.ebi.ac.uk/chebi/aboutChebiForward.do and

is used under http://creativecommons.org/licenses/

by/3.0).

Software infrastructure
Recent years have seen considerably increased

attention to software engineering and infrastructure

issues, even in the domain of academic software

construction. This has led to the development of

end-to-end systems that realize fully-functioning,

high-throughput-scaled TM (e.g. capable of process-

ing the whole of MEDLINE, currently comprising

21 M documents) that can be easily combined with

other TM components to create full-text processing

pipelines.

Much current attention has been focused on the

Unstructured Information Management Architecture

(UIMA; http://uima.apache.org/) [168]. UIMA was

originally developed by IBM to facilitate the process-

ing of any sort of unstructured data, ranging from free

text to audio and video. It has since been released

Open Source and has seen its greatest use by far in

the context of TM and NLP. UIMA is based on the

simple premise that all TM components should have

an interface that consists of passing along ‘annotations’

of the input text in the form of character offsets into

the original document. This simple contract allows

for flexible integration of any TM component that

adheres to the character offset constraint.

UIMA systems are based on semantic character-

izations of the nature of the annotations that are

added in the course of the document analysis by

TM components. The limiting factor in interoper-

ability of UIMA-based text analytics so far has been

the lack of a community-wide consensus on these

semantic characterizations, known in UIMA

parlance as ‘type systems.’ Influential efforts in the

direction of UIMA TM components and type

systems have included work from the JULIE

Lab [169, 170], the U-Compare project [171]

for genomics publications and the Open

Health Natural Language Processing (OHNLP)

Consortium for clinical documents (http://www

.ohnlp.org/), which among other systems includes

the Mayo Clinic cTAKES system [42].

A striking example of what can be achieved with

the UIMA architecture is the U-Compare project

[171]. It offers a fully-featured platform for evaluat-

ing TM workflows and components (http://

u-compare.org/). It makes available corpora, tools

and evaluation metrics, and allows users to assemble

their own workflows through a simple

drag-and-drop interface, or to carry out TM tasks

without assembling workflows on their own by

using predefined workflows. Performance statistics

are generated automatically, making U-Compare a

powerful tool for evaluating the contribution of dif-

ferent TM components to overall system perform-

ance. For example, a user might want to compare the

performance of a PPI extraction system when differ-

ent gene mention taggers are used; U-Compare

makes such a comparison simple. Quite recently,

nine event extraction systems have been integrated

in the U-Compare framework, making them

intercompatible and interoperable with other

U-Compare components [172].

One of the commonest uses of ontologies in

pharmacogenomics TM is as a source of lexicons

for the entities of interest (genes, diseases and

drugs). Several efforts have appeared in recent years

that facilitate the use of ontologies for lexicon gen-

eration. For example, using a user-provided textual

corpus, the Ontology Recommender Web service

from the NCBO [173] suggests which ontology to

use as a source of standard terms to tag the corpus. In

addition, the Lexicon Builder Web service from

NCBO [174] reduces the investment of time and

effort involved in lexicon creation from ontologies.

The service has three components. Inclusion selects

one or several ontologies (or its branches) and

includes preferred names and synonym terms.

Exclusion filters terms based on the term’s
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MEDLINE frequency, syntactic type, UMLS seman-

tic type and match with stop words. Output aggre-

gates information and handles compression and

output formats. Similarly, the BioLexicon (http://

www.ebi.ac.uk/Rebholz-srv/BioLexicon/biolexi

con.html) effort [175] gathers together different

types of terms from several existing data resources

into a single, unified repository, and augments

them with new term variants automatically extracted

from biomedical literature. The BioLexicon was

built specifically for the purpose of enabling TM

tools at several levels.

Disseminating and presenting the
results of text mining
Disseminating the results of TM to the biomedical

target community is an ongoing challenge. As a cor-

ollary to the advances in NLP and TM, the role of

the World Wide Web for knowledge generation,

distribution and exchange, as well as the increasing

sophistication of the methods being used, the sheer

size and complexity of the output has increased

considerably. Different systems output different

attributes of the recognized relationships between

entities, and there are efforts underway to harmonize

and interact with the various presentation formats to

enable life scientists to deeply comprehend and flex-

ibly use the results of TM for data analysis, model

building, as well as inference and reasoning.

Accordingly, we not only witness the trend

towards performing text analytics over the Web,

but also presenting their results over the Web.

Similar to U-compare (see the previous Subsection),

Web services are available that perform both disease

and drug tagging based on the UMLS and the

NCBO BioPortal, and thus automatically add valu-

able semantic metadata to documents [176]. There

are efforts underway that espouse the use of an

ontology of relationships—which can be learned

during the process of TM—that can aggregate and

normalize alternative formulations of the same rela-

tionship and present the aggregated ‘facts’ in a know-

ledge base which is based on the Resource

Description Format (RDF) recommendation by the

W3C (http://www.w3.org/RDF/). For example, in

the work by Coulet et al. [71, 177, 178], the PHAr-

macogenomic RElationships Ontology (PHARE),

comprised of 200 curated relations from over 40 K

heterogeneous relationships extracted via TM, serves

as a common framework to form the foundation of a

knowledge base named PHARE-KB that can be

queried via SPARQL. In a similar vein, Dumontier

and Villanueva-Rosales [179] populate their Phar-

macogenomics Ontology (PO) with data gathered

from PharmGKB Web services. They instantiated

40 core concepts incorporating drugs, genotypes,

phenotypes and drug treatments, a procedure that

yielded 4266 KB instances.

An entirely Web-specific form to publicize scien-

tific data and results are so-called ‘nanopublications’

(http://www.nanopub.org/), which are also based

on the RDF framework. At its core, a nanopublica-

tion has three basic elements: (i) An assertion

whereby two entities (called the Subject and the

Object) are associated (using a third entity called

the Predicate); (ii) Metadata regarding conditions

under which the assertion holds and (iii) Metadata

regarding the provenance of the assertion, such as its

author, a time-stamp marking when it was created,

links to DOIs, URLs, etc. [180]. There are also ef-

forts such as Bio2RDF [181] and Chem2Bio2RDF

[182], which attempt to facilitate the conversion of

diverse data sources (including text-mined relation-

ships) into RDF for publication on the Semantic

Web. Also, the Linked Open Data (LOD; http://

linkeddata.org/) initiative might play an important

role here in the future [183].

Other approaches focus primarily on comprehen-

sively presenting text-mined relationships inside of

existing tools (such as the visualization tool

Cytoscape; http://www.cytoscape.org/) already in

use by many biologists. For example, the Hanalyzer

system [184, 185] can present text-mined relation-

ships in context with other high-throughput datasets

in a network view to allow interactive exploration.

As the complexity of text-mined assertions increases,

moving from binary to n-ary relations (e.g. consider

the following five entities A to E that have an impact

on Activates; ‘gene A activates protein B in the con-

text of disease C in organ D under the influence of

chemical E’), more sophisticated visualization

approaches might be required, e.g. involving hyper

graphs [186].

Among the most recent developments are the

DOMEO framework (http://code.google.com/p/

domeo/), which allows users to annotate and then

publish relationships in Web pages, and the Utopia

document format (https://sites.google.com/site/

beyondthepdf/utopia) and its associated annotation

framework, which allows the exchange of relation-

ship annotations between online documents and

PDFs [187].
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APPLICATIONS
A variety of applications are informed by the results

of pharmacogenomic TM, such as discovery of inter-

action and potential cause–effect phenomena (e.g.

candidate gene ranking, drug–drug interaction and

adverse drug interaction prediction), as well as guid-

ance in human database curation.

Crucial portions of discovery work are already

enabled by TM of pharmacogenomic knowledge.

Candidate gene ranking, i.e. ranking genes based

on an objective relevance score, has often been

used in identifying disease genes [72–74, 76, 78].

Past work in the pharmacogenomics arena includes

using gene–drug relationships mined from the litera-

ture to inform a candidate gene ranking algorithm to

predict pharmacogenes for a given drug, thereby

replacing the need for using manually curated know-

ledge [91]. Recent adaptation of the GeneRanker

system [74] enables prediction of genes related to

ADRs. The methodology enables studying the mo-

lecular scope of ADRs, to aid in the study of known

ADRs and indicate potential unknown ones.

Drug–drug interactions (DDIs) are another dis-

covery area for pharmacogenomics TM. A DDI

occurs when the use of one drug by a patient influ-

ences the effects of another drug that is concomi-

tantly used by that patient. This has great clinical

value, since the knowledge of a DDI may impact

the choice of medication or dosage by the clinician.

Tari et al. [69] have developed a method that com-

bines TM with automated reasoning to extract novel

DDIs. Comprehensive extraction of pharmacoge-

nomic drug–gene relationships, as presented recently

in [71, 177], enables inference of known and novel

DDIs from existing interactions described in papers

buried deep within the scientific literature, across

multiple journals and fields [70]. This application

area might shift gears with the outcomes of future

DDI Extraction Challenges (see also Section ‘Mining

pharmacological information’).

Literature-based ADR prediction and drug repur-

posing have been a recent area of focus, as surveyed

by Deftereos et al. [188] and Andronis et al. [189] in

extensive reviews. Agarwal and Searls [190], as well

as Plake and Schroeder [191], review the latest ap-

plications of TM and ontologies suitable for target

and drug–target interaction discovery, showing how

drug discovery, in general, can benefit from TM.

Curation guidance has been a much more recent

area of focus by a number of groups (see

Winnenburg et al. [192] for a survey of TM

approaches that are relevant to annotation and avail-

able online services analyzing biomedical literature

by means of TM techniques). Wiegers et al. [193]

performed curation guidance experiments for the

Comparative Toxicogenomics Database (CTD), a

publicly available resource that promotes under-

standing about the etiology of environmental dis-

eases. It provides manually curated chemical–gene/

protein interactions and chemical– and gene–disease

relationships from the literature. Prototype TM

applications were developed and evaluated using a

CTD data set consisting of manually curated mo-

lecular interactions and relationships from 1600

documents. The prototype found 80% of the gene,

chemical and disease terms appearing in curated

interactions. These terms were used to re-rank docu-

ments for curation, resulting in increases in mean

average precision (63.0 for the baseline versus 73.0

for rule-based re-ranking), and in the correlation

coefficient of rank versus number of curatable inter-

actions per document (baseline 14.0 versus 38.0 for

the rule-based re-ranking).

Interest in this area of research is gaining pace both

on the side of the database curation community

[194] as well as on the academic side. A single

track in the latest BioCreAtIvE III competition was

entirely devoted to TM-based curation support

[195]. PharmGKB is developing methods for assist-

ing curators via an NLP pipeline. In the SASEBio

project a version of PharmGKB has been processed

to investigate the use of a text annotation interface to

guide curation [196]. Further work also focuses on

automatic approaches to extracting information from

the biomedical literature to help expand the scope

of PharmGKB (PSB 2011 Workshop; http://psb.

stanford.edu/psb-online/proceedings/psb11/wkshop-

pharma.pdf).

CONCLUSIONSANDOUTLOOK
The motivation for investing long-standing efforts in

the development of methodologies and implemen-

tation of systems devoted to automatic TM is 2-fold.

First, humans, whether in their role as database cur-

ators, as bench scientists or as clinicians, are unable to

keep up with the ever-increasing flood of scientific

publications [197]. Second, human authors are not

good at encoding their own findings in a semiformal

representation format, e.g. using controlled ter-

minologies [198].
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Fortunately, some optimistic observations can be

made relating to certain problems of TM for

pharmacogenomics. For example, a series of shared

tasks (most notably, BioCreAtIvE) have resulted in

the creation of gene mention recognition systems

that function at a level nearly as high as that achieved

years ago for person names, organizations, and geo-

spatial locations for the analysis of newspapers.

Mutations and variants, which are crucial for estab-

lishing individual responses to drugs, can be recog-

nized with exceptional accuracy [33, 34]. Low-level

TM tasks that appear simple but are actually highly

complex, such as finding sentence boundaries and

splitting input texts into ‘tokens’ (the basic unit of

textual analysis, including words, as well as punctu-

ation marks), can now be tackled with sophisticated

tools like LingPipe that have been specialized for the

biomedical domain (see also [199]). Similar tools, e.g.

ARC [200] and cTAKES [42], are available for pro-

cessing clinical documents.

However, other problems remain in need of sig-

nificantly more progress. In general, performance

figures for relation extraction always lag largely

behind entity recognition, as have those for the

more difficult problem of entity normalization (map-

ping terms to common database identifiers).

Relationship normalization is a particularly difficult

problem—both at the linguistic variant level (e.g. ‘X
activates Y’ [active voice]¼ ‘Y was activated by X’

[passive voice]¼ ‘the activation of Y (by X)’ [nom-

inalization], see, e.g. [201, 178], and at the level of

mapping text terms to ontology entries (e.g. GO

molecular function terms). Prosaic but important

challenges such as extracting data from tables or

properly converting PDFs of full text into some pro-

cessable XML format continue to pose problems for

high-coverage TM.

Overall, these are exciting times for TM for

pharmacogenomics. NIH policies have resulted in

the availability of large collections of full-text journal

articles (PubMed Central), which present enormous

new opportunities for TM, but significant new chal-

lenges as well.

In a recent study, Cohen et al. [53] focused on

differences between abstracts and full texts.

Content-wise they found substantial distributional

differences in entity mentions, such as significantly

higher frequency of mutations mentioned in the

bodies of articles, which did not mention the muta-

tions in the abstracts at all. The authors also evaluated

the differential performance of TM tools, reporting,

e.g. that commonly used gene taggers perform sub-

stantially better in abstracts than in article bodies.

Blake [202] discusses empirical evidence for commu-

nication patterns of authors which indicate huge

losses of empirical statements (e.g. explicit versus

implicit claims, under-specified claims such as cor-

relations, comparisons and observations) when com-

paring the information in abstracts with that in

associated full texts.

From the perspective of full-text analytics, other

crucial challenges must be handled (see also [203]),

e.g. the increased proportion of reference relations of

all sorts—pronominal, nominal and bridging

anaphora [204–208]—which establish cohesion

among sentences at the cost of introducing different

mentions for the same entity [e.g. ‘IL-7’ . . . ‘this

protein’ (¼IL-7; nominal anaphora) . . . ‘it . . .’
(¼IL-7; pronominal anaphora)], macro-level forms

of text structuring (e.g. formal, layout-oriented text

segmentation, but also rhetorical and argumentative

zoning [209, 210]; see also recent efforts to provide a

biomedical discourse relation bank [211] along the

lines of the Penn Discourse Relation Treebank;

http://www.seas.upenn.edu/�pdtb/), as well as the

problem of interactions between text passages, tables,

graphics and other forms of nontextual data [212].

As already mentioned, ‘deep’ text analytics invol-

ving some form of formal reasoning have long been

missing in the field, but recently have begun to see

some adoption (see, e.g. [79, 69, 115]). Although

deductive reasoning might be fully appropriate for

taxonomic inferences in OWL-style ontologies

(see, e.g. [79, 177, 179, 213] for examples from

pharmacogenomics), nonstandard forms of formal

reasoning might be more adequate for knowledge

discovery tasks (for instance, involving inductive or

abductive inferencing; see, e.g. [124]) and for grading

the credibility of extracted knowledge (using prob-

abilistic inferencing techniques, e.g. based on

Bayesian Network [214, 215]). Furthermore, the

inherent ‘glue’ of complex events, their temporal

and causal structure, remains largely under-

explored territory up to the present (see the reviews

[216, 217, respectively] and as concrete examples,

e.g. [218, 219]). We claim that such novel meth-

odologies will have a high potential for advanced

text analytics that go beyond merely extracting

simple unconnected pieces of explicit information

from full-text documents.

This leads us, finally, to the Holy Grail of TM—

knowledge discovery. In this area, researchers aim at
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finding new pieces of knowledge; knowledge that,

unlike in the IE scenario, is not already explicitly

stated in natural language documents. Knowledge

discovery systems unveil associations between

relevant entities, hint at implicit assertions, help

find new speculative hypotheses (which then have

to be experimentally validated) and assist in shaping

assumptions and claims in silico. Some implemented

systems, such as BITOLA [220], LitLinker [221], the

GeneWays project [222] and FACTA þ [223],

already focus on some aspects of these hard problems,

but a stable methodology is not in sight. Certainly,

these challenges need years of basic research not only

on TM but also on NLP and text understanding

proper and its many links to an amazing variety of

formal reasoning styles.

Key Points

� We argue that automatic text mining has turned into a viable
alternative to human database curation and literature indexing
because natural language processing technologies have become
robust and mature, are scalable on very large document collec-
tions (e.g. millions of Medline documents) andwork on a variety
of genres in the life sciences (scientific publications, clinical
notes, patents, blogs, etc.).

� Wereview the increasing diversity of named entities and seman-
tic relations among entities that are crucial for text mining in
the field of pharmacogenomics, with particular emphasis on gen-
otypes (genes/proteins), phenotypes (diseases, disorders, tests,
treatments, etc.) and drugs/chemicals.

� We review the underlying infrastructure for text miningçin
terms of annotated document corpora, domain knowledge
resources (terminologies, ontologies, etc.), as well as software
available open source.

� We point out current applications and opportunities of future
research, with emphasis on full text analytics, credibility of auto-
maticallyharvesteddata, visualization of largeknowledgereposi-
tories harvested by text mining systems, automatic reasoning
for deeper text analytics and text-based knowledge discovery.
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1st DDIExtraction-2011 challenge task: extraction of
drug-drug interactions from biomedical texts. In:
DDIExtraction 2011çProceedings of the 1st Challenge Task on
Drug-Drug Interaction Extraction. 2011;1–9. http://ceur-ws.

org/Vol-761/proceedings.pdf (20 Dec 2011, date last
accessed).

65. Thomas P, Neves M, Solt I, et al. Relation
extraction for drug-drug interactions using ensemble
learning. In: DDIExtraction 2011çProceedings of the 1st
Challenge Task on Drug-Drug Interaction Extraction. 2011;
11–18. http://ceur-ws.org/Vol-761/proceedings.pdf (20
Dec 2011, date last accessed).

66. Segura-Bedmar I, Martinez P, de Pablo-Sanchéz C. A lin-
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