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Abstract. In this article, we present a very fast and easy to implement
method for reconstruction of metabolic pathways based on time series
data. To model the metabolic reactions, we use the well-established set-
ting of ordinary differential equations. In the present article we consider
a network leading to the accumulation of quercetin-glycosides in tomato
(Solanum lycopersicum). Quercetin belongs to a group of plant secondary
metabolites, generally referred to as flavonoids, which are extensively be-
ing studied for their variety of important functions in plants as well as
for their potentially health-promoting effects on human. We use time se-
ries measurements of metabolite concentrations of quercetin derivatives.
In the present setting, the observed concentrations are the variables and
the reaction rates are the unknown parameters. A standard method is
to solve the parameters by reverse engineering, where the ordinary dif-
ferential equations (ODE) are solved repeatedly, resulting in impractical
computation times. We use an alternative method that estimates the
parameters by least squares minimization, and which is, in the order
of hundred times faster than the iterative method. Our reconstruction
method can incorporate an arbitrary a priori known network structure
as well as positivity constraints on the reaction rates. In this way we
can avoid over-fitting, which is another often encountered problem in
network reconstruction, and thus obtain better estimates for the param-
eters. We test the presented method by reconstructing artificial networks
and compare it with the more conventional method in terms of residuals
between the observed and fitted concentrations, computing times and
the proportion of correctly identified edges in the network. Finally we
exploit this fast method to statistically infer the kinetic constants in the
flavonoid pathway. We remark that the method as such is not limited
to metabolic network reconstructions, but can be used with any type of
time-series data that is modeled in terms of linear ODE’s.
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1 Introduction

Flavonoids are a class of secondary metabolites in plants, most commonly found
in fruits and flowers. They are involved in various processes, for example in
flower, fruit and seed pigmentation, plant growth, protection against UV radi-
ation, and interaction with micro-organisms [I]. Daily dietary consumption of
these compounds has been associated with human health promotion and dis-
ease prevention, in particular reducing cardiovascular diseases, certain cancers
and other age related diseases [2[3]. In tomato, many genes involved in common
flavonoid biosynthetic pathways have been identified. Nevertheless the molecular
basis of the structural modifications in flavonoid glycosylation and methylation
pathways is still relatively unknown. Glycosylation is an enzymatic process that
modifies solubility, chemical stability and the biological properties of flavonoids.
It is also crucial for flavonoid accumulation. Several glycosylated flavonoids have
been reported in tomato fruits, most of them being derivatives of the flavonol
quercetin [4]. In this work we consider the quercetin biosynthetic pathway in
tomato seedlings.

Many popular models inferring metabolic reaction networks, rely on ordinary
differential equations [BI6J7], although this approach has its limitations, espe-
cially when using the conventional approach [8]. In the conventional approach,
one starts with an initial guess of the parameters (reaction rates), solves the
ODE’s and compares the resulting solution curves at discrete time points with
the observed values at corresponding time points. If they are not sufficiently
similar, one adjusts the parameters and repeats the comparisons until the so-
lutions are close enough to the measurements. Although efficient optimization
algorithms are available in most mathematical software packages, this approach
is inherently time-consuming, due to the fact that one needs to solve ODE’s
repeatedly [9J6]. This poses a major problem, especially if one wants to per-
form a large number of simulations, e.g., to study the effect of perturbations
or noise. In such case the computation time of a single reconstruction becomes
critical. In this paper, we overcome this by presenting a method for fast recon-
struction of metabolic networks from observed metabolite concentration data. In
[10], Schmidt et al. introduced a method to infer interactions of a small genetic
network via computing the Jacobian of the kinetic equations in the vicinity of a
steady state. They build on an example given by Kholodenko et al. [11], propos-
ing improvements by considering a series of constant perturbations. We apply a
similar method to time series measurements of flavonoids in tomato seedlings.
We adjust and extend their method to allow for constrains in the variables and
so that a priori known non-existing interactions can be excluded from the net-
work. This method can also be used to estimate unknown constant influxes from
the ambient metabolic system.

This paper is organized as follows. In Sect. [2] we derive our reconstruction
framework that modifies and extends the ideas given in [10], using only elemen-
tary calculus. In Sect. 3] we perform reconstructions using both, the conventional
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reverse engineering and the proposed method. As data for this comparison we
take time series generated from artificial networks. We compare the differences
in terms of residuals, computing times and the accuracy of the network topology.
In Sect. dl we statistically infer the quercetin glycosylation network by exploiting
the fast reconstruction scheme. We finish with conclusions in Sect. Bl

2 Metabolic Network Reconstruction

In this section we specify the mathematical model for the dynamics of metabolic
reactions, and derive a fast method for the reconstruction of metabolic networks.

2.1 Modeling Metabolic Interactions

Metabolic pathways are often visualized as graphs, where each node or vertex
represents the molar concentration of the substrate participating in the reactions,
and the edges represent the mass fluxes between the nodes. To reconstruct such
a graph, i.e., to infer the metabolic pathway, we estimate the reaction rates
from time-series measurements of concentrations of the compounds involved. A
popular and powerful mathematical model for metabolic networks consists of
a set of ordinary differential equations, depending on the initial concentrations
and the reaction rates [BIGITOT2]. Our present task is to find estimates for the
reaction rates such that:

— The model yields a good fit to the observations
— The model is not too sensitive to perturbations/noise
— The number of parameters is as small as possible

We note that in the case of flavonoid pathways, we cannot explicitly measure
the concentrations of some boundary(input/output) nodes, due to the extremely
fast conversion of one substrate into another. This hampers for example the use
of graphical models for initial analysis, since we have missing data. Here, we
show that we can still estimate these hidden substrates by including them as
constants in the ODE system.

Let us first look at an example of a putative flavonoid network (see Fig.[I) and
the corresponding mathematical model. Denoting the concentration of substrate

i at time t as X;(t), (i = 1,...,6), we can mathematically model this as
X1(t) = —k1oX1(t) — k12 X1(t) — k13 X1(t) + k21 X2 (t) + k31 X3(t) + ko
Xo(t) = —ka1 Xa(t) — koaXa(t) — kas Xo(t) + k12 X1 (t) + kao Xa(t) + k52 X5(t)
X5(t) = —ks1 X3(t) — ke X3(t) + k13 X1(t) + ko3 Xo(t)

Xa(t) = —kao Xa(t) + koa Xo(t)
X5(t) = —ksaX5(t) + kas Xo(t)
Xo(t) = —keaXo(t) + kae X3(t)
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Quercetin—3—O—rutinoside ity

k3
Fig. 1. A putative network model for quercetin glycosylation. This network has one
vertex with number 0, which is connected to a larger metabolic network and from which
a chemical precursor flows into the network.

In our example pathway, the substrate X, cannot be directly measured and has
to be estimated. This substrate corresponds to the vertex number 0 connecting
the quercetin pathway to the rest of the ambient metabolic network. In Fig. [I]
we have drawn those edges that are considered to be relevant from a biological
point of view. This putative network is based on the work of Iijima et al. [I3]
and the pathway model in KEGG [14].

Network inference is concerned with finding those edges that are most consis-
tent with the given data. This may imply that one starts with the assumption
that all possible edges are present and subsequently concludes that some rates
k;i;j are zero. A more general formulation of a linear ODE model is

Xi(t) == ki Xi(t) + > kjiX;(t) + b (2)
i i

where (i = 1,...,n). To simplify the notation, we introduce a matrix A with
components given by

Aij = k]‘i, 1 7£j

3)
Aii == kij,

Then, (2) becomes
Xi(t) = ZAinj(t) +b;, (4)
=1

with corresponding homogeneous system

Xi(t) = ZAinj(t) : (5)
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For the present reconstruction algorithm we need the concentrations X;(¢) at
equidistant time points t = tg, t1,...,t,, with n > N, where N is the number of
nodes in the network.

2.2 Derivation of the Objective Function

To reconstruct a metabolic network from time-series measurements, we have to
estimate the reaction rates k;;, which give the weights of the edges in the network.
Due to @), it is sufficient to estimate A. In what follows, we present a step by
step derivation leading to the minimization problem (I6]), whose minimizer gives
the required estimate for A. We denote the data, i.e., measured concentrations
of substrate ¢ at time point t;, as X; ;.

We start from the well known property that for any solution of a homogeneous
linear ODE with constant coefficients, such as the one in (), it holds that

X(t+ At) = exp(AA) X (1) , (6)

where exp(M) denotes the matrix exponential of M and At is some time step.
Now we construct matrices Xnew and X4 as follows

Xl,n Xl,nfl e Xl,l Xl,nfl Xl,n72 e XI,O

Xon Xopo1 ... Xog Xon—1 Xop—2... Xopo
Xnew = | . . ) Xold = :

Xn,n Xn,nfl e Xn 1 Xn,nfl Xn,n72 e Xn 0

s

If the data would perfectly follow the model, we would have that
Xnew = eXP(AAt)Xold ) (8)

where At = t;4+1 — t;. We assume the measurement times to be equidistant.
Taking the matrix logarithm we find an estimate for A

1 ~1
A= ) log (Xnewxol d) . 9)

One may often encounter difficulties in inverting X ;4. As a remedy one may
regularize the matrix using Tikhonov regularization (or ridge regression) [15].
For this, one solves for some small o > 0

1 -1
A= og (Xnew (Xgig +oD) ') - (10)

For an optimal choice of parameter o one may consult, e.g., [16].
We now turn to estimate A from the nonhomogeneous system (). We append
the scalar one to the vector X:

X4 (t)

xw=| |, (11)
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and to matrix A, we append the column of influx vectors b.

A Arg o Ain by
A* — . . (12)

Api Anso - Ay by .

Then we may concisely write (@) as
Xi(t) =Y A5 X;(t) . (13)
J

The essence of the approach is that we are incorporating the data directly into
our expression and that we have a homogeneous structure. Usually, the number
of measurements is not equal to the number of unknowns. Thus having a square
matrix is more the exception than the rule. As a consequence, typically we cannot
solve linear ODE’s using (@) or ([I0). Therefore, we approximate the derivatives
with finite differences.

) X — X s o
Xij~ m-HAt "o ZAi,ka,j ) (14)
k

thus in terms of the data matrices introduced in (@) we get the estimate for A*
using pseudo-inverse:

* 1 -1
A= (Xnew — Xo1q) Xoiq (Xoldxgld) : (15)

It goes without saying that this is very fast since it involves only matrix manipu-
lations. On the other hand it can result in over-fitting, since all possible edges are
included in the modeled network. Another serious shortcoming of this approach
is the fact that we cannot control the positivity of the reaction rates. Although
in [I0], positive(negative) coefficients were interpreted as activation(inhibition)
of the compounds, in many biological pathways, negative coefficients are not
allowed. This also holds for the example we will give in Sect.[dl Thus we need a
more general approach that does allow sparse networks, where one can exclude
all irrelevant edges that are not contained in any biologically feasible model, and
in which one can constrain the reaction rates to be positive, without substantially
compromising computation time.

To this end, we note that the formula in (I3 provides in fact an explicit
solution of the following minimization problem

) . 1 2
arg min (IIA Xold = 5y (Xnew —Xo1q) |l ) : (16)

This alternative formulation allows inclusion of expert knowledge in a simple
way. E.g., we can at will put Aj; = 0, when an edge from node 7 to node j can
not exist. Nearly all mathematical software packages (Mathematica, Matlab,
Maple etc. ) can numerically find the minimizer A* (and thus the reaction rates
k;;) with the constraint that k;; > 0.
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3 Experiments with Artificial Data

In the conventional reverse engineering method the parameters k;; are estimated,
using optimization algorithms to minimize the sum of squares between the ODE
solutions and the concentration measurements. This involves repeated solving
of the ODE’s, which is the major time consuming part in the process [6]. We
compare our direct inference method with this conventional reverse engineering
method. As an example we present here the case with six nodes, where five nodes
X1, X9, X3, X4, X5 correspond to measurable concentrations and one node Xj is
a boundary node that connects the network to the surroundings. We generated
artificial networks in which both, the positions and weights of the edges were
randomly chosen. For such a random network the ODE’s in (2]) were solved.
We sampled these solution curves and subsequently reconstructed the original
network based on these samples.

We generated these artificial networks as follows. We chose a (uniformly dis-
tributed) random integer to determine the number of zeros in an adjacency
matrix for nodes Xo, X3, X4, X5, Xg. After determining the topology of the net-
work in this way, we assigned a (uniformly distributed) random real number
between zero and one as the weight for each edge independently.

We compared the reconstructions using both, the conventional method and
our proposed method, first by using exact samples and then by adding +10%
(uniformly distributed) noise to the samples. Finally we did reconstructions as-
suming that the topology of the network is known a priori. This can be compared
to the situation when reconstructing real metabolic networks, since one usually
has some putative information on the possible connections between substrates.
A typical result using 20 sample points is plotted in Fig. 2l We observe that
although the conventional method is tuned to closely approximate the solution
curves, the resulting networks are not necessarily closer to the original. While it
is obvious that the fast reconstruction method based on first order approxima-
tion will generally give larger residual with respect to the original data, another
question is, what does this mean in terms of reconstructed networks. To an-
swer this question experimentally, we generated random networks as described
before. Then, to simulate a typical reconstruction situation, where only a min-
imum amount of data is available, we did repeated reconstructions using only
six sample points. From each reconstruction, we recorded the residuals (i.e., the
distances between the reconstruction and the original function at sample points)
and the computation times in seconds. We plotted them in logarithmic scale to
be able to include large values in the picture. In addition to this we compared
the topologies of the network adjacency matrices. That is we counted all those
edges that were missing or redundant compared to the adjacency matrix of the
original network. The results for 100 reconstructions are shown in Fig. Bl Tt
seems that the iterative method, while demanding a lot of computing time and
indeed resulting in better fit, does not necessarily deliver better results in terms
of network reconstruction. For illustration of this matter see Fig. [l
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Fig. 2. On the top: the original artificial network and the corresponding ODE solution
curves. Left column: reconstructions with the iterative method. Right column: recon-
structions with the fast method described in this paper. Top row, reconstructions from
exact samples. Middle row, reconstructions from samples with £10% noise. Bottom
row, reconstructions from the same noisy data, when the network topology is known a
priori.

4 Experiments with Flavonoid Data

The high efficiency of the present method allows a statistical strategy to dis-
criminate between relevant and redundant edges. The idea is to perform repeated
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Fig. 3. Red crosses correspond to the iterative method and the blue circles to the fast
method described in this paper. Top: logarithms of the computation times, in seconds.
Bottom left: logarithms of the residuals (in substrate concentrations) with respect to
the original concentration curves. Bottom right: the numbers of missing/redundant
edges compared to the original network.

network reconstructions using the putative network in Fig. [[l meanwhile adding
random noise to the measurements. If the reconstructions consistently assign a
zero value to a parameter k;;, we can suspect that the corresponding edge is
not likely to exist in a network derived from an ODE model. In our experiments
we took the substrate concentration data of the metabolites involved in the
putative quercetin pathway. These concentrations were measured from tomato
seedlings during days 5 to 9 after germination [17]. Subsequently, we performed
1000 reconstructions using formula (I€]), while adding +10% random noise to
the data. The resulting distributions for parameters k;; can be seen in Fig.
The number of bars in the histograms is approximately the square root of the
number of reconstructions. This kind of simulation can give a significant clue to
whether the nodes 7 and j are connected or not and also provide insight on how
sensitive the parameters are w.r.t. noise. From this result we could for example
conclude that the edge from node 1 to node 0 and the edge from node 3 to node
6 are redundant. The exact criteria for discarding edges depend on the context
of the network.
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Fig. 4. Columns from left to right: Reconstructed solution curves from samples us-
ing iterative method, reconstructed network matrices using iterative method, original
network matrices with which the data was created, reconstructed network matrices
using the fast method described in this paper, and correspondingly the solution curves
reconstructed with the fast method.
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Fig. 5. Histograms showing the distributions of reaction rates k;; estimated in a series
of 1000 reconstructions. A pre-selection of relevant edges was done based on the pu-
tative model in Fig. [[l In each reconstruction the concentration data were randomly
perturbed with +10% noise. From the results, we can immediately distinguish those
coefficients k;; that are distributed around zero and those which in turn accumulate
around a positive value.
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5 Conclusions

We have experimented with a method for network reconstruction that is very
fast compared to the conventional approach. The only requirements are that
time-series data are available, the dynamics of the network can be modeled with
ODE’s, and that the number of measurements n > N + 1, where N is the
number of nodes. Although our approach is inspired by [I0], the application is
different, since their work considers the approximation of the Jacobian of kinetic
equations such as those in [I1], in the vicinity of steady state and their time
series consists of in silico, constant rate perturbations to a maximal enzyme rate.
We, on the other hand model in vivo measurements, where the unknown influx
rates correspond to the constant rate perturbation. In either case the formula
(&) to estimate Jacobian is well known in numerical mathematics. We have
modified this to a minimization problem (8] to adjust it to our model, where
the kinetic constants have to be positive and where we have to be able to exclude
nonsensical edges from the network.

The main advantage of this method is that, though it is slightly less accu-
rate than the iterative method that minimizes the residual between the ODE-
solutions and measurements, it is significantly faster allowing one to do statistical
analysis that require large number of simulations. From the simulations in Sect.
we see that, it is around hundred times faster than the conventional iterative
method and thus highly suitable for repeated reconstructions. We remark that
the residual between the solution curves is not the best measure of successful
network reconstruction. We have also experimentally observed (see Fig. B]) that
in terms of the network structure, i.e., the adjacency matrix of the nodes, the
proposed method performs similarly to the residual-based iterative method.
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and financed by the Netherlands Genomics Initiative.

References

1. Koes, R., Quattrocchio, F., Mol, J.: The flavonoid biosynthetic pathway in plants:
Function and evolution. The American Journal of Clinical Nutrition 16(2), 123-132
(1994)

2. Martin, C., Butelli, E., Petroni, K., Tonelli, C.: How can research on plants con-
tribute to promoting human health? Plant Cell (May 2011),
doi:10.1105/tpc.111.083279

3. Bovy, A., Schijlen, E., Hall, R.: Metabolic engineering of flavonoids in tomato
Solanum lycopersicum: the potential for metabolomics. Metabolomics 3(3), 399—
412 (2007)

4. Slimestad, R., Fossenn, T., Verheul, M.: The flavonoids of tomatoes. J. Agric. Food
Chem. 56(7), 2436-2441 (2008)



108

5.

10.

11.

12.

13.

14.

15.

16.

17.

L. Astola et al.

Hatzimanikatis, V., Floudas, C., Bailey, J.: Analysis and design of metabolic reac-
tion networks via mixed-integer linear optimization. AIChE Journal 42(5), 1277—
1292 (1996)

Chou, I.-C., Voit, E.: Recent developments in parameter estimation and struc-
ture identification of biochemical and genomic systems. Math Biosci. 219(2), 57-83
(2009)

Zhan, C., Yeung, L.: Parameter estimation in systems biology models using spline
approximation. BMC Systems Biology 5(14) (2011)

Hendrickx, D., Hendriks, M., Eilers, P., Smilde, A., Hoefsloot, H.: Reverse engineer-
ing of metabolic networks, a critical assessment. Molecular BioSystems 7, 511-520
(2011)

Kimura, S., Nakayama, S., Hatakeyama, M.: Genetic network inference as a series
of discrimination tasks. Bioinformatics 25(7), 918-925 (2009)

Schmidt, H., Cho, K.-H., Jacobsen, E.: Identification of small scale biochemical
networks based on general type system perturbations. The FEBS Journal 272,
2141-2151 (2005)

Kholodenko, B., Kiyatkin, A., Bruggeman, F., Sontag, E., Westerhoff, H., Hoek,
J.: Untangling the wires: A strategy to trace functional interactions in signaling
and gene networks. Proc Natl. Acad. Sci. USA 99(20), 12841-12846 (2002)

Jha, S., van Schuppen, J.: Modelling and control of cell reaction networks. Pna-
r0116, CWI, Amsterdam (2001)

lijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., Suzuki,
T., Suzuki, H., Okazaki, K., Kitayama, M.: Metabolite annotations based on the
integration of mass spectral information. The Plant Journal 54(5), 949-962 (2008)
Kyoto Encyclopedia of Genes and Genomes: Flavone and Flavonol Biosynthesis
(2010), http://www.genome. jp/kegg/pathway/map/map00944 . html

Golub, G., Hansen, P., O’'Leary, D.: Tikhonov regularization and total least squares.
SIAM J. Matrix Anal. & Appl. 21(1), 185-194 (1999)

Hansen, P., O’Leary, D.: The use of the l-curve in the regularization of discrete
ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487-1503 (1993)
Gomez-Roldan, M.V., Bovy, A., de Vos, R., Groenenboom, M., Astola, L.: LC-
MS metabolite profiling on tomato seedlings in a systems biology approach. In:
Metabomeeting, Helsinki, Finland (September 2011)


 http://www.genome.jp/kegg/pathway/map/map00944.html

	Metabolic Pathway Inference 
from Time Series Data: A Non Iterative Approach
	Introduction
	Metabolic Network Reconstruction
	Modeling Metabolic Interactions
	Derivation of the Objective Function

	Experiments with Artificial Data 
	Experiments with Flavonoid Data
	Conclusions
	References




