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Abstract—Automatic land cover classification maps were devel- are compared against HyMAP image spectra at model-predicted
oped from Airborne Hyperspectral Scanner (HyMAP) imagery ac- pixels and at validated GPS waypoints.
quired May 8, 2000 over Smith Island, VA, a barrier island in the o o
Virginia Coast Reserve. Both unsupervised and supervised clas- ndex Terms—Barrier islands, hyperspectral, in situ spectrom-
sification approaches were used to create these products to eval-€try, Invasive plant species, land cover classification, neural net-
uate relative merits and to develop models that would be useful to WOrkS, principle component analysis, projection pursuit, super-
natural resource managers at higher spatial resolution than has Vised classification, unsupervised classification.
been available previously. Ground surveys made by us in late Oc-
tober and early December 2000 and again in May, August, and
October 2001 and May 2002 provided ground truth data for 20 . INTRODUCTION: THE VIRGINIA COAST RESERVE
land cover types. Locations of pure land cover types recorded with i .
global positioning system (GPS) data from these surveys were used HYMAP [1], [31] scene of Smith Island, VA, acquired
to extract spectral end-members for training and testing super- on May 8, 2000, served as the basis of the present study
vised land cover classification models. Unsupervised exploratory (Fig. 1). Smith Island is one of a series of barrier islands in the
models were also developed using spatial-spectral windows andVirginia Coast Reserve (VCR) and the site of the University

projection pursuit (PP), a class of algorithms suitable for extracting . . .
multimodal views of the data. PP projections were clustered by of Virginia’s ongoing Long Term Ecological Research (LTER)

ISODATA to produce an unsupervised classification. Supervised Program [32], [38]. The most extensive survey of the island
models, which relied on the GPS data, used only spectral inputs dates from 1974 [32], [35] and was based on ground obser-
because for some categories in particular areas, labeled data con-vations and interpretation of false-color infrared imagery for
sisted of isolated single-pixel waypoints. Both approaches to the 5 gat of 16 barrier islands that encompass the VCR. This his-

classification problem produced consistent results for some cat- , _ . .
egories such asSpartina alterniflora, although there were differ- torical reference data consisted of 26 land cover types. To de-

ences for other categories. Initial models for supervised classifica- VEIOp our automatic land cover classification models, we chose
tion based on 112 HyMAP spectra, labeled in ground surveys, ob- @ somewhat different approach, attempting to achieve species-
tained reasonably consistent results for many of the dominant cat- |evel classification in many instances, while considering in some

egories, with a few exceptions. For an invasive plant specig#irag-  cases plant communities that were similar to those described in

mites australis a particular concern of natural resource managers, - .
this approach initially had an excessively high false-alarm rate. [35]. Our land cover classification models consisted of 16 to

Increasing the number of spectral training samples by an order 19 categories. However, for purposes O_f thi$ iUUOdUCtion, we
of magnitude and making concomitant improvements to the geo- have grouped the land cover into five or six principal categories,
rectification led to dramatic improvements in this and other cat- some of which equate to those described in [35], while others
egories. The unsupervised spatial-spectral approach also found a 516 aggregates of several of these categories. New definitions for

cluster closely associated witlPhragmitespatches near the thicket .
boundary, but this approach did not identify the exposedPhrag- coastal vegetation are presently under development by the state

mites Examples ofin situ reflectance measurements obtained with Of Virginia [18].
an Analytical Spectral Devices FR spectrometer in early May 2001 Particularly in wetlands research and coastal applications,

past emphasis has been on either 1) broad-band sensors such

Manuscript received October 25, 2001; revised August 11, 2002, TH® L_andsat TM [16], [28] or 2) hyPersloe?”f'J" Sensors a_t lower
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Landsat TM RGB Composite of HYMAP RGB composite

Northampton County, Virginia, Smith Island, Virginia
Including the Virgimia Coast Reserve

Fig. 1. (Left) RGB composite of the red, green, and blue channels from a Landsat Thematic Mapper (TM) image taken in April, 1998 of Northampton County,
VA, showing a subset of the islands known as the Virginia Coast Reserve. Smith Island is highlighted in the box. (Right) RGB composite from 126/t#sPnel
imagery of Smith Island, VA and the southern portion of Myrtle Island, acquired May 8, 2000. A portion of Myrtle Island has been omitted.

was to be able to discriminate rapidly varying land cover typesarshes in the swale immediately adjacent. In most cases for
seen, for example, in the transition zone from the lagoonalir validation testing, the width of the stands that we consid-
shore to the upland. On Smith Island, six to seven distineted was at least a couple of pixels, although it is not uncommon
vegetation zones may occur in a distance as short as 50—73arfind stands whose width (extent perpendicular to the thicket
Although we do not explore mixture models in the presetine) is on the order of a pixel. In a sense, this is the ideal can-
study, they will be compared with the methods presented helidate for L-resolution methods, which assume that in at least
in a future publication. one dimension the category extent may be a pixel or less, but
The spatial distribution of land cover types included in ouhe spectral pattern associated with the category is repeated in
models varied considerably. Categories sucklpdca cerifera some regular spatial distribution that can be detected. This is
(bayberry) thicket occur only in the southern end of Smith Isur motivation for also considering spatial-spectral models that
land, striating the island in dense bands of vegetation. Thasse unsupervised feature extraction and classification based on
thickets are typically tens of meters in width and can extermojection pursuit and pincipal component analysis.
in some instances nearly the width of the island (about 2 km).As just mentioned, some vegetation communities have spatial
Categories such as these, therefore, whose spatial extent isdsgents that may be only a few pixels at the HyMAP spatial res-
guently greater than the resolution cell of the sensor (the H-redution of 4.5 m, so this resolution forms an upper bound on the
olution case described in [42]) are amenable to modeling thdeal spatial resolution. The utility of land cover classification
uses supervised classification, at least in the final stages of pnwedels is, of course, determined by the end-user [36], [37]. Be-
cessing. In contrast, in other areas some vegetation categoyi@sd the narrow goal of achieving ecological modeling at high
have a spatial extent that is of the order of a pixel or less (thesolution, there are practical reasons for why using this kind
L-resolution case [42]). In some cases, the spatial extent in asfadata will benefit natural resource managers. For example, as
dimension may be of the order of a pixel or less in one dimejust described, the invasive plant sped®wagmites australis
sion, while having a length of several pixels or more in the otheray exist in patches whose spatial extent may be on the order
dimension. The latter occurs in some instances for the invasifthe pixel size of HyMAP in at least one dimension. Likewise,
plant specie®hragmites australitn the southern end of Smith because it has spectral characteristics that are similar to other
Island (not all stands are so narrow; the width varies consid@retland plants, it is unlikely that systems with a few broad spec-
ably). In this part of the island?hragmites australiswhere it tral channels would be able to discriminate it, especially when
occurs, typically forms a narrow band of vegetation in the ecd-occurs in close proximity, as it often does on Smith Island, to
tone between the upland thicket and brackish and fresh wab¢er vegetation types such as tgrica ceriferathicket. Al-
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though there is some debate as to how problenittragmites Ammophila breviligulataand Andropogon spp(Broomsedge
is [39], many natural resource managers agree that it supplaiaigily).

other wetland types, disrupting ecosystem balance Pmmeg-

mitescontrol and eradication programs are not uncommon. Il. HYMAP DATA FOR SMITH ISLAND, VA

Even within a single category, variations in spatial extent . . .
g gory P The HyMAP imagery was atmospherically corrected using

occur. For instance, one of the primary constituents of the lo ) ) .
marsh vegetation (Fig. 2gpartina alterniflora(Smooth Cord- 'X%- RE(I\,:I/(EB)FFpaS: t[(iat]j é)li/vsii/ah%csl érrnn?t?wmlglgzg isgﬁgy;';z

grass), occurs in large monotypic stands in the northern enstBTC

Smith Island, while at the southern end of the island, it occuf. quired at 4.5-m resolution with 128 spectral channells; the
in one or two narrow bands of vegetation at the water's edge rr'llal EFFORT product was the surface reflectance contained in
6 spectral channels ranging from 445-2486 nm. The image

the lagoonal (western) shore, and in small zones in the bracki . I . L
swales that cross the island. was acquired near high tide, so there is a significant degree of

High marsh species (Fig. 2) inclualicornia virginica(Per- inundation in the wetlands, especially in the salt marsh. For the
renial Glasswort)l.imonium carolinianung{sea lavenderBor- purposes of automated m_odel developmeni, we preprocesged the
richia frutescengSea Ox-eye)lva frutescengMarsh-elder), data on a per-sample basis in a number of different ways (Fig. 3).

Sueada linearis and Sueada mariti@ea-blite), an®partina Since the data points labeled in the global positioning system

patens(Salt-Hay or Saltmeadow CordgrassY¥he upper end (GPS) surveys consisted of a mix of both isolated points and
of the high marsh frequently has a zone of “wrack,” the dea! reas, the supervised automatic classification models used only

matted detritus of the previous year’s growth, which typicall _’e single pixel spgctrumasinput,whilethe unsupervised ”T'Ode's
marks the mean high-water line associated with tidal influenc d noi need t.o satisfy this constraint and, theref(_)re, could ingest
The swales (Fig. 2) that cross the southern end of Smith Islal %th single-pixel spectra and spatial-spectral windows.

contain brackish and fresh-water marshes. Swale vegetation in-

cludesDistichlis spicata(Saltgrass)Spartina patensuncus IIl. FIELD OBSERVATIONS GEOLOCATED SPECTRA
roemerianugNeedle Rush)Scirpus robustugSaltmarsh Bul- AND IN STU SPECTROMETRY
rush), andva frutescens We compared the unsupervised and supervised automatic

Narrow upland zones (Fig. 2) alternate with swales acroggssification category maps against situ observations
the southern end of the island. Here the typical vegetation cQfiade during two days of field observations and GPS surveys
sists of shrubs such &yrica cerifera(Bayberry), the dominant conducted in October and December 2000, a week of surveys
vegetation, an@accharis halimifoligGroundsel-tree), with at- carried out with GPS between May 7-11, 2001, two weeks
tendant vegetation such &snilax spp(Greenbriar). Stands of of differential GPS (DGPS) surveys conducted during August
hardwoods and Pine, suchRus taeaddLoblolly pine), also  20-23 and October 8-12 2001, and again between May 3-5
occur in some of the upland zones. In these areas, itis commgfyi May 13-15, 2002. During these trips, typical vegetation
to find shrubs such adyrica ceriferain the understory. categories were identified, and positions were recorded using

Flats (Fig. 2) appear throughout the island. These consistiGPS or DGPS. These same waypoints were also used to
mudflats, wash flats, and salt flats or salt pannes. Wash ﬂ@énerate Supervised classification maps. During the May 7-11,
result, for example, from sudden storm surge events in whigho1 and May 13-15, 2002 field trips, we also meastired
the dune line is breached. Salt pannes occur in places wheitg reflectance with an Analytical Spectral Devices (ASD) FR
water floods an area and evaporates, leaving behind a signifiectrometer, which covers a spectral range similar to that of
cant amount of salt. The high salinity tends to kill off most Veg=|y|\/|AP_ Our DGPS survey equipment consisted of a Trimble
etation, and typlcally onIy the most salt-tolerant plants such @()expk)rer 3 and Beacon-on-a-Belt. During these weeks,
Salicornia virginicawill survive in small clumps; wash flats arewe also surveyed four other islands to the extent that time
often predecessors of salt pannes [35]. permitted, taking data on Hog, Cobb, Wreck, and Myrtle, in

The beach zone (Fig. 2) is highly variable. In the northern ergdition to Smith. Equipment problems prevented additional
of Smith Island, exposed peat outcrops are present in the sgfiectral measurements; however, two weeks prior to the
zone. These are the decomposed residue of what was onceggdfust 2001 survey at the VCR, we were able to acquire ASD
marsh, and they serve as a reminder that the island is undergaifghsurements at another site in southern New Jersey. During
constant change. In the foredune zone (also Fig. 2), “wractie August field trip and one week after the October field trip,
is frequently found, and in summer, a low band of herbaceogghorne hyperspectral data were acquired by PROBE2 [17]
vegetation, comprised principally of plants suciCasile eden- for all six of the VCR islands in our study area for comparison
tula (Sea Rocket) an8alsola kali(Russian Thistle). The duneagainst our May 2000 HyMAP data. These PROBE2 data
line (Fig. 2) typically is comprised of plant species sucthes will be the subject of future papers. This is motivated by our
mophila breviligulata(American beachgrassiniola panicu- desire to understand the effect that seasonal changes in the
lata (Sea oats)Salidago sempervirer{Salt Marsh Goldenrod), |and cover have on spectral characteristics. As described below,
and in some caseBanicum amarun{Seaside Panicum). Themodels that were produced for the spring HyMAP data may
back dune is dominated by vegetation suclspartina patens not necessarily apply to data taken in the summer or fall.
) i Likewise, tidal influences can have a significant impact on
Common names of coastal vegetation may vary somewhat from author to . . .
author as do definitions of species names listed in italics: in this paper, we hAJ&'Sh vegetation and their associated spectra because of the
used [15] and [43]. degree of inundation present.
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Low Marsh

Swale, Fresh Water and Brackish Marshes

Fig. 2. Typical Smith Island land cover. (First row, left) Upland zollyrica ceriferathickets and some stands of hardwood &ius taedgloblolly pine).

(First row, middle) Typical mudflat near salt marsh edge. (First row, right) Peat outcrop in surf zone. (Second row, left) Foredune vegetatiyn Qarite
edentula(Sea Rocket) (inset) arBhlsola kali(Russian Thistle). (Second row, middle) Dune vegetation and nearby backdune: priamamilgphila breviligulata
(American Beachgrass) (foreground), and ocassiothlipla paniculata(Sea oats) (background). (Second row, right) Inland portion of backdune: predominantly
Andropogon spp(Broomsedge family). (Third row, lef§partina alterniflora(Smooth Cordgrass), dominant in low marsh; (third row, ridg¢djrichia frutescens
typical high marsh plant; (third row, middle) “wrack.” Brackish marsh dwellers: (fourth row, Jeftcus roemerianuéNeedle Rush), (fourth row, middle and
inset)Scirpus robustugSaltmarsh Bulrush), and (fourth row, third coluni®ragmites australisan invasive plant species; (fourth row, fourth colurbigtichlis

spicataa dominant swale grass.
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Automatic Land Cover Classification Models TABLE |
Supervised Models (1) Phragmites australis (2) Spartina alterniflora
HYMAP Spectra Supervised Classifier: (3) Spartina patens (4) Salicornia virginica
From georeferenced _’PPOI' PCA '—’ BPCE o )
Waypoints (single pixel) | 77T (5) Borrichia frutescens (6) Juncus roemerianus
(7) Water (8) Distichlis spicata
Unsupervised / Exploratory Data Analysis Models
l P P y Y d } (9) Scirpus. spp. (10) “Wrack”
Single pixel . Projection Pursuit (11) Mudflat/saltflat (12) Ammophila breviligulata
HYMAP Specira ISODATA (13) Beach/sand (14) Uniola paniculata
HYMAP — - (Clustering) (15) Andropogon spp. (16) Myrica cerifera-dominated Thicket
spatial-spectral _'>< Projection Pursuit
Window (3x3x126) (17) Pine/hardwood complex  (18) Peat Outcrop
(Feature extraction/
Dimensionality reduction) (19) Iva frutescens (20) Foredune Vegetation

Fig. 3. Processing configurations for automated land cover classification

models. (Top) Supervised models used georeferenced HyYMAP spectra 'ab@i?cﬂimensionality reduction as a precursor stage prior to the
during GPS and DGPS ground surveys. The supervised classifier was BPCE. e . . . . .

Some models used PCA or PP for feature extraction/dimensionality reduct al classification algorithm, either unsupervised or supervised
as a precursor to BPCE. (Bottom) Single-pixel and spatial-spectral windogfsig. 3). The two unsupervised feature extraction algorithms that

were derived from a subset of the HYMAP data for the southern end of Smiflie ysed were the projection pursuit (pp) algorithm described in
Island. PP-filtered data were passed to ISODATA. For both unsupervised

supervised approaches, models were produced for the entire island. a[%(i ‘?‘nd the We”'k_nown prin_cipal component a_naIYSiS (PCA) al-
gorithm [47] that is popular in the remote sensing literature (e.g.,

see [23] and [44], and many others).

We recorded the environment at many of the waypoints usingThe underlying philosophies of PP and PCA are quite dif-
digital still photographs and video. Based on these field observyarent. PCA uses the directions of maximal variance and derives
tions, we initially defined a set of 16 categories, some of whicin orthonormal set of basis vectors to identify significant struc-
appear or were aggregates of categories in Table I. We endedw in the data; these views of the data are not always easily
using all but the foredune category in the final set as the bagiserpreted with respect to specific underlying categories be-
of our supervised classification models (primarily because tBguse of the orthogonality requirement [7], [8], [14]. Because
foredune vegetation in early May will typically be nascent andCA looks for directions of maximal variation in the data, it is
sparse or completely absent). After the May and August 20fHcapable of detecting multimodal and other non-Gaussian de-
surveys, two additional categories were added (Table I): Pgairtures that do not happen to be parallel, or nearly parallel, to
outcrop andScirpus robustusand we split two aggregate cat-the principal axes of the projected data distribution. In contrast,
egories into their primary constituent plant species: backdupe [7]-[10], [12], [20], [21], [46] uses higher order statistical
becameAndropogon sppandAmmophila breviligulataand the  information to overcome this difficulty and identify directions
thicket vegetation was separated into Pine/Hardwood compi@xvhich the projected data distribution (view) is non-Gaussian
andMyrica ceriferadominated thicket. We created spectral lior multimodal.
braries from individual HyMAP spectra extracted at the associ- only within the last ten years has PP been applied in the field
ated waypoint, or where appropriate, small regions of interegtremote sensing (see [2]-[5], [7], [8], [25], [29], and [30]) and
(ROIs) bounded by GPS waypoints. After the DGPS data wefeother disciplines (see [19], [26], [33], and [34]). The PP al-
collected, points, lines, and areas were available with an acgléyithm described in [8] (the PP algorithm used in this paper)
racy estimated to ber1-5 m, similar to the spatial resolutionjs hased on an algorithm originally proposed in [20]. However,
of the May HyMAP data. These were used to train and test S4-[g], projections are optimized simultaneously rather than in
pervised automatic classification models more rigorously as desidual subspaces, as is sometimes the case in PP algorithms
scribed below. The DGPS ground data also were used to ifp1], [24], and projections are nonlinear, in order to remove sen-

prove georectification of the imagery. sitivity to outliers, rather than the linear form found in [20]. Al-
though further details are provided in [8], the basic idea is that
IV. METHODS a cost function, emphasizing both intracluster spread and com-

Both supervised and unsupervised classification models pz*ctness within each cluster, is to be optimized. This function
P b . ) . of the projected data distribution is the product of two func-
the land cover were produced. In this section, we outline hq[w . oo o
ions, one measuring compactness of the data projection within
the models were produced. . !

a particular search scale and another measuring the spread of
the data in that projection. The user defines a range of search
scalesg, that correspond to fractions of the standard deviation
Unsupervised feature extraction algorithms were used for twbprojected data distributions onto initially selected random di-

purposes in this study. In both cases, these fulfilled the ralections (the projection vectors) in pattern input spaceis

A. Unsupervised Feature Extraction and Classification
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ominated Thicket

1e
M Peat Quicrop

Iva frutexcens

Fig. 4. (Top, left) Sixteen-category land cover supervised BPCE classification based on 112 georeferenced HyMAP spectral end-members |&fed from
field surveys in October and December, 2000. Prediction of salt marsh vegetation in the north end, and many of the marsh and swale categorteappdae sout
consistent. Gaps in the center of salt marsh zones to the north are areas of heavy inundation which were declared as water by the model. Biggest@rrors oc
for Phragmites australisuncus roemerianysand Uniola paniculata all of which had high false-alarm rates. (Top, right) Nineteen-category supervised land
cover classification based on 3656 HYMAP spectral end-members, labeled from DGPS and GPS surveys for training the model, showing dramatit reduction
false-alarm rate for these categories. (Bottom, left) RGB composite of three PP projections of HyMAP spatial-spectral windows; (bottoncatgatrg4and

cover map produced by ISODATA clustering in a five-dimensional PP projection space, including the three PP projections shown in the RGB composite.

chosen at random within the user-specified range, andwptie with 7 (p,v) = | cx(p) — cx(v) | 4

associated with each data projection. cr(pt) = 1y - f’( 1) (5)
The Friedman—Tukey Projection Index [2@],o0n which our

projection index is based, was the product of a trimmed varianaterec (1) is thekth data projection of theth sample vector,

4

S and a compactness function denotedf (), and unit projection vectoi; 6 is a step func-
tion; R is a scalar compactness or cluster scale; (1, v)) is a
Maximize: I(cy) =S(cx)N(ck) (1) monotonically decreasing function of the distance between pro-
Mo jected sample pains, (1, v); M, is the number of samples; and
S (ex(p) — E(cx))? m the numbgr of qutllgrs 'removeq in the trimmed variance. We
S(ex) p=1 @) replaced their projection index witk
k =
M, —m . ./~ - -
P Maximize: I* (7, v)) =n(Fk(n, v))D(Fx(,v)) ~ (6)
N(e) = 323 olra(on») 17(1:)) = Epais uag (o) ()
ot D71, 7)) = Bpies, ()

X O(R = ri(p,v)) ®) A =g, )] (8)
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PCA-BPCE
DGPS

Fig. 5. Extract from four land cover classifications, showing results for the southern end of Smith Island. (Top, left) BPCE model based on DigiiveAR1

spectral end-members, shows high false-alarm ratelieagmites australislJuncus roemerianysndUniola paniculata (Bottom, left) BPCE classification using

3656 spectral end-members with improved georeferencing, showing dramatic reduction in false alarms; model also discriminates some durtypegaiatio
separateblyrica ceriferafrom Pine/Hardwood complex. (Top, right) PP-BPCE composite, using expanded spectral set, and (bottom, right) PCA-BPCE composite
trained on same. PCA-BPCE shows higher rate of false alarmHi@gmites australishan PP-BPCE.

with F2(p,v) = (érp(p) — éx(v))? can be included. Each compactness funcyom,(u,v)) has
. (B () ar)? a clustering search scate, associated with it. Eacly, is
97k, v)) =e ) obtained by multiplying an estimate of the initial standard
deviation of the projected data, with a random fraction drawn
Gilp) =0 Z Lije;(1) (10) from a user-determined search range. We optimizgdby
J stochastic gradient ascent ift.
While the approach that we defined in [8] does not specifi-

where o(x) =atanh(aAz) cally aim to derive an orthonormal PP filter set, it did incorpo-
(a, A, constants (11) rate a mechanism for decorrelating projections in the stochastic
. optimization process. Essentially, a coupling matrix, labélgd
cj(p) = - f(p) +b; (12) above, is defined between the projections, and this matrix is si-

multaneously optimized along with the projections in such a
wheren is a continuous compactness function, of a nonlinegfay that the relative entropy between the projections is maxi-
projection, ¢;(11), D measures spread by sampling pairs ghized (decorrelation). The degree of decorrelation can be con-
projections and approaches asymptotically a constant weigfiflled by altering the size of the initial coupling and the relative
outside scaleay; and Ep.i. 4. Signifies expected value rates of optimization of the relative entropy cost function used
over projected sample pairs. Other differences included fby the coupling and the PP cost function used for the projec-
optimization of multiple projections at the same time, rathejons. Additional implementation details can be found in [6] and
than serially, and the use of a coupling matiy; that is [g].
adjusted via gradient ascent to maximize the relative entropy ofTo optimize the unsupervised PP and PCA filters, we used
the data projections, and 2) our use of a saturating nonlineawiyher the end-members associated with our GPS and DGPS
o to remove sensitivity to outliers, meaning that all data poinfround data surveys or, in some instances, larger spectral sub-
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Fig. 6. Models associated with upland thickets and tree stands for (top row, left) PP-ISODATA and (top row, right) the first BPCE model based dral12 spec
samples. Distributions for the two are largely consistent, with the exception that the unsupervised approach has included an area of glinzaméhef shef

eastern shore. (Middle row, left) Spectral reflectance plots for HYMAP data at GPS waypoints associatdgnigihceriferg (middle row, right) mean and
standard deviation of PP-ISODATA category (includes glint zone); (bottom row, left) mean and standard deviation of upland thicket and trestrittatids di
predicted by the BPCE model; (bottom row, right) ASD reflectance measurembfyrinfa ceriferaleaves taken on May 11, 2001. Note that the relative height

of the first peak in the NIR is somewhat higher in the ASD measurment (gaps are removed atmospheric absorption windows, where spectrometdedounts crea
numerical instabilities in the reflectance calculation), and overall reflectance is slightly higher in the ASD measurement.

sets derived from the southern end of the island that were ré&p- Supervised Classification Models

resentative of the typical spectral variation seen in the data,n g)| supervised clasification models considered in this paper,
PP and PCA filters were derived from eithex1l x 126 O ¢ fina| stage of classification was a variant of the backward

3_>_< 3>_< 126 spatial—speqtral vyindows. For the supervised C|6}§f0pagati0n of error model [41] with a cross-entropy cost func-
sification models, described in Section IV-B, we always usgf,, (BPCE) [40]. The BPCE cost function is

the spectral end-members associated with our GPS and DGPS

surveys. In the latter case, because the size and shape of these, _ (s e (= "
ROIs were quite variable, we restricted ourselves to inputs tha%txi% B 21.:((1 4i(@))In(1 - &(&)) + di(7) In(&(7)))
were 1x 1 x 126 (single-pixel spectra). (13)

The feature extraction stage of the unsupervised classificativhered; is the desired output, either 0 or 1, for one of the cate-
models considered in our experiments used either 1) projectigory nodes at the output of the model, aids the actual re-
pursuit or 2) pincipal component analysis. The final stage of tlsponse of the output node to a particular input pattern prop-
process was the ISODATA [45] algorithm. agated forward through the model. We use the cross-entropy
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Fig. 7. (a) Overall classification accuracies for ten candidate classification models, showing relatively similar average performancedthiossahg model
architectures.

cost function because it is less prone to local minima than tivhere errors are more likely. This is particularly useful when
originally proposed least mean-square (LMS) error [40], owirgpme categories are sparsely represented, as is the case in this
to the form of the gradient used in the stochastic gradient daaplication. Details of this error-resampling buffer are beyond
scent. Comparing this with the more commonly used LMS errdghe scope of this paper, but this approach tends to accelerate
E(@) = X,(ci(®) — di(%))?, defined in [41], it can be seenmodel convergence and can lead to higher asymptotic classifi-
that the cross-entropy cost function eliminates a factor in tlsation rates [7].
gradient descent rul& (w;;) = —n(t)0=/0w;; for the weight HyMAP reflectance data corresponding to the spectral end-
vectorsw;. Specifically, for LMS, the derivative of the transfermember sets delimited by the GPS and DGPS ground measure-
functiond (Z) = ¢;(%)(1—¢;(Z)) that appears in the gradientinments for each category were the input to the model. These
the last layer weights, and in earlier layers through the backprafata were divided into three groups, one for training and two
agation of error, can cause the updates to become “frozen” ngartesting generalization, as described in greater detail in Sec-
zero whery; (Z) is antipodal to the desired response. The lattéion V. A few unreliable bands were eliminated in the vicinity of
occurs because the derivative of the transfer function has ti@ two major atmospheric absorption windows. In some of the
zero crossings. The expression is also zero when the respamselels described in Section V, the data were first projected into
is near the desired response, but it is the antipodal response ¢hkiwer dimensional set of features using either preoptimized
causes the undesirable behavior. The form of (13) eliminates fiiers derived with the PP algorithm described in Section IV-A
second zero crossing that causes this behavior because an extRRCA. In these models, the input to the BPCE model con-
factor appears in the gradient due to the presence of the logsted of the lower dimensional feature vector (see Fig. 3); in
rithms. other models, the spectral end-members were input directly to
One additional feature of our supervised classification modetee BPCE model.
was the use of an error-resampling buffer, which increased theVhen PCA was the precursor stage of processing, we retained
frequency with which spectra-causing misclassifications wettge first 42 eigenvectors. This number of features may have been
presented to the model. This forces filter adjustments to iraxcessive from the standpoint of noise reduction in most cate-
prove the model on boundaries between land cover categoiesies, since all but 1.% 107*% of the variance is explained
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Fig. 7. (Continued)Relative category abundances for (b) cross-validation test set and (c) sequestered test set.

with this many components; however, it ensured that we woutdirsor stage, we used 32 PP projection vectors that were first op-
not be discarding small-scale spectral features that might pertitized before insertion in the end-to-end classification model.
discrimination of highly similar but distinct land cover types. A variety of model architectures and complexities were ex-
For the results described in this study, when PP was the ppdered using this framework, and the performance of a set of
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Fig. 7. (Continued)Performance versus category for the ten models: (d) cross-validation test set.

ten examplar models is shown in Section V. An analysis of the After the development of the first automatic land cover
variability in the models suggested that smoothing in functionaiodels, we visited the island to obtain additional survey data
(classifier) space might achieve more reliable results. for validating the results. During the visit between May 7-11,
2001, a year from the time of the initial HyMAP data acquisi-
tion, we collected ASD FRn situ spectra and a large number
V. RESULTS AND DISCUSSION of additional survey points (examples of ASD spectra appear
in Figs. 6 and 8). Followup visits in August and October 2001
Both supervised and unsupervised classification models afd May 2002 (while this paper was being revised) established
the land cover were produced. Of these, the first supervisemre accurate ground data using DGPS as described above.
classification maps consisted of 16 of the 20 land cover cat&lthough the temporal gap between airborne and ground
gories in Table I, with one aggregate category that combinddta acquisitions is not ideal, the interval is short enough for
Andropogon sppand Ammophila breviligulatainto a “back- many of the categories that survey data would still be reliable.
dune” category. These first models used 112 ground-referenéeateptions to this are mudflats/salt pannes and wrack, although
spectral end-members (Fig. 4). Many of the categories, sutie dominant distribution of wrack at the mean high tide level
asMyrica ceriferaThicket, Distichlis spicata Spartina alterni- is relatively stable.
flora, Backdune vegetation, “Wrack” (Fig. 2) appear to have The second set of supervised classification models that we
produced consistent results based on our field observations anoduced was comprised of 19 of the 20 categories (Figs. 4 and
historical data [32], [35]. A few categories were problemati®) listed in Table I, omitting the foredune vegetation, which is
however, and these includ&hragmites australisluncus roe- often sparse or nascent in the early part of May in our study
merianus andUniola paniculata all of which had high false- area. (Models described in future papers using PROBE2 data
alarm rates. Our first models did not attempt to distinguish tleequired in the summer, when this vegetation is fully present,
Myrica ceriferathicket from the pine-hardwood complex, parwill include this category.) In these experiments, we took ad-
ticularly sinceMyrica ceriferatypically appears in the under-vantage of the additional spectral data labeled during the DGPS
story of these tree stands (Fig. 2), and our field surveys had sotveys. The new experiments with the expanded set of labeled
at that point sufficiently documented the location of represespectra included 3656 training samples spread across the 19 cat-
tative pine and hardwood stands. Subsequent models describgaries previously described. Additionally, two test sets were
below did include a distinction between these two land coveet aside, one for cross validation, which was used to deter-
types after additional ground data had been acquired. mine a stopping point for optimization with the training set, and
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Fig. 7. (Continued)Performance versus category for the ten models: (e) sequestered test set.

one sequestered test set, used as a second estimate of expsoted cases the PP-ISODATA map has grouped two or more
generalization capability. The cross-validation test set containestegories that are distinct BPCE categories, e.g., backdune
2049 spectral samples, while the sequestered test set consigéggttation and “wrack” are grouped in the PP-ISODATA
of 2836 spectral samples. These models showed immediate map. In some instances, the opposite is true. For example, the
provement because of the improved georectification and larg&gpartina alternifloracategory was divided into two groups in
set of georeferenced spectral end-members that were usetheoPP-ISODATA model, while it is, of course, a single distri-
train these models. Particularly noticeable was the large redbetion in the supervised BPCE classifications. The distinction
tion in false-alarm rates fdPhragmites australisluncus roe- made by the PP-ISODATA may be related to differences asso-
merianusandUniola paniculata Heavily inundated portions of ciated with short versus tall forms of tl&partina alterniflora
the northern salt marsh that were declared as water in the earfiég. 2). Taller forms tend to be located near the berm edge of
models are now either declared$artina alternifloraor Mud- creeks and channels in the salt marsh at the northern end of
flat, and the surf zone, where glint was present is now correc®mith Island, while shorter forms are found in the interior of
labeled as Water, rather than Beach/sand (this is a high—tidette salt marsh where elevation is lower and tidal inundation
sult, so much of the beach is under water). The amount of Mugkeater. Fig. 6 compares the distribution Mirica cerifera
flat declared is probably too large and is the result of a numband tree stands predicted by the original BPCE model using
of factors, including the early stage of growth, the sparsenekk2 spectral training samples and the PP-ISODATA category
of the Spartina alterniflorain areas of heavy inundation, theassociated with these vegetation types. While the distributions
fact that spectra used to model the Mudflat category may alace similar, one principal difference is that the PP-ISODATA
have been partially inundated, and the occurence in mudflatshafs aggregated an area strongly affected by glint, and this leads
sparse vegetation or small deposits of wrack. Nevertheless, thalistortions when compared with the BPCE-predicted model
overall categorization oSpartina alterniflorain the northern and ASD FRin situ measurements. Several PP-ISODATA
end of the island is significantly improved. categories are coherent in structure but unlabeled at this point,
Fig. 4 illustrates the unsupervised approach, depicting panding further survey efforts.
RGB composite of three PP projections and a 34-categoryA more exacting test of accuracy was made possible by the
PP-ISODATA category map derived from this and two othddGPS data that we collected on Smith Island in follow-on sur-
PP projections. In contrasting this with the supervised classieys. Although we have taken ground data on five of the Virginia
fications shown in Fig. 4, it can be seen that a number of ti@ast Reserve barrier islands during these subsequent visits, we
categories in the two approaches are correlated, althoughhave spent roughly half of that time on Smith Island. While
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Fig. 7. (Continued)Performance versus category for the ten models: (f) typical confusion matrix from the first candidate model.

additional data will be needed to validate PROBE?2 data ac-Relative abundance of categories in the training and test sets
quired in other seasons, these DGPS data, nevertheless, @also reported in Fig. 7. It shows that for the cross-validation
vided us a much higher degree of precision in determining relet, in 13 of the 19 categories, one or more models lie within
ative classification accuracies on Smith Island. As describ#tke range between 65% and 95% accuracy, while 14 fall within
above, data labeled during the GPS and DGPS surveys ware range between 65% and 98% in the sequestered test set. Not
divided into training data, cross-validation data (used to stsprrprisingly, some of the dominant categories sudbiaschlis
training of the supervised models), and sequestered test dafacatg Myrica ceriferaThicket, Water, Pine/Hardwood Com-
and 19 of the categories listed in Table | were used in the modgitex, and Wrack are at the top end of this range. At the same
Ten candidate models were developed using the algorithms tieie, there is a high degree of variability in the models. While
scribed in Section IV. Of the ten portrayed in Fig. 7, the first fivpart of this is due to differences in algorithms, a significant con-
were BPCE models of varying complexity; models six and sevéribution is due to the high degree of spectral overlap in many
were composite PP-BPCE models, models eight and ten wef¢he categories present in the early part of the growing season.
BPCE-BPCE composite models, pooling the results of seve€xhe surprising result is the performance for the invasive plant
BPCE and BPCE composite models, and model nine wasdhragmites australisin both test sets, for the categdPrag-
PCA-BPCE composite. While overall accuracy for the trainingites australisat least one model exceeds the 65% threshold,
data reached as high as 90% for the training data in someobftaining 73% and 68% accuracy respectively on the cross-val-
these classifications, a more important measure is the extenidation and sequestered test sets. In the southern end of Smith
which these models generalize to sequestered test data wistand, this invasive species typically grows in the ecotone be-
challenged. Overall accuracy ranged between 72% and 90%tiween thicket and the marsh vegetation (Fig. 8) and is, therefore,
the training set, between 71% and 80% for the Cross-Validdifficult to detect due to mixing with other categories, such as
tion Set, and between 58% and 69% for the sequestered testiggtica ceriferaThicket. The left-hand column of spectral plots
Fig. 7 compares the performance of a set of candidate model$-ig. 8 portrays this mixing, comparing the spectral response
that were produced for Smith Island using the expanded specthHyMAP at areas known from our ground survey to consist
end-member sets derived from the DGPS and GPS surveys.of exposedPhragmites Myrica cerifera andPhragmites aus-
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Fig. 8. (Top row photographs) ExposBtiragmites australisMyrica ceriferathicket, and®hragmitesnear the thicket. Spectral plots, left column: (top) exposed
Phragmites australigmiddle) Phragmites australimearMyrica ceriferg (bottom)Myrica cerifera Spectral plots, top row: (left) Mean and standard deviation of
PP-ISODATA category associated wifthragmites australimear thicket, and (middle) BPCE classification forRHragmites exposed and near thicket; (right)
ASD FR spectrum oPhragmites australisSpectral plots, bottom row: (left) PP-ISODATA category associated Mittica ceriferaand tree stands, distorted by
glint grouped with the category, and (middle) BPCE clasificatioMgfica ceriferg (right) ASD FR spectrum of lower canopyyrica ceriferaleaves.
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PP an

Fig.9. Comparison of model performance Ritragmites australisunsupervised versus supervised models (in red). (Top row) PP-ISODATA; (middle row) BPCE
model based on original 112 spectral samples; (bottom row) BPCE model based on expanded spectral set of 3656 training samples and improsatibgeorectifi
Also shown: areas identified &hragmites australisluring DGPS surveys. Zoomed areas show predictions in viciniBhohigmitesear thicket. PP-ISODATA

and first BPCE model based on 112 spectra were prior to improved georectification, so tRéafagmitegpatches shown (areas in yellow from DGPS) appear
shifted toward the bottom of the figure relative to the predicted distributions in the top and middle rows.

tralis adjacent to théyrica ceriferathicket. Phragmites aus- model using the expanded set of spectral inputs, also shown in
tralis is not one of the dominant vegetation types on this islanBig. 9. While the false-alarm rate could still be further improved,
which also makes it a challenging category to model. Inspatshows the most consistent predictiorRifragmitesoth in the

tion of the predicted distributions d?hragmites australisn  open and along the thicket boundary. We conjecture that data ac-
Figs. 5 and 9 shows that the models based on the expandedjséed on dates later in the growth cycle may eventually allow
of spectral end-members has achieved a substantial reductisrto reduce the false-alarm rate further. One additional observa-
in false-alarm rate, when compared with the first set of modeisn concerning the supervised classification is thatRheag-

that used 112 spectral end-memb@&isragmiteds detected by mitesresults for the PP-BPCE model and PCA-BPCE model
this model both along the thicket edge and in areas where ithiad higher false-alarm rates than the BPCE model in isolation,
more exposed. The PP-ISODATA category most closely assoiit the PP-BPCE model did have a markedly better false-alarm
ated withPhragmites australi®nly detected®hragmitesnear rate than PCA-BPCE (Fig. 5), which is not surprising given ear-
the thicket; however, looking at Fig. 9, it can be seen thatlier arguments developed in Section IV.

lacked the desired specificity, tending to group other shrubs onLooking at the results in Fig. 5, we note that similar problems
the edge with thé®>hragmites The best result was the BPCEthat had existed for the categalyncus roemerianuis terms
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of false-alarm rate in the original BPCE classification are nosessfully from HyMAP imagery, even in the early part of the
largely corrected in the models based on the expanded spedralwving season when spectral differences in vegetation may not
set with improved georeferencing. be as pronounced. The expectation is that a more ideal data ac-

Categories such as Beach/sand, that would ordinarily not besgasition date in late summer or early fall would improve results
difficult to identify, were more problematic because the HyMARurther. PROBE?2 imagery acquired during those intervals will
scene had a significant area of glint in the beach and surf zonemnused to evaluate this conjecture. The use of a hyperspectral
the eastern shore of Smith Island, due to the high sun angle atskasor with spatial resolution of 4.5 m was deemed necessary in
time of the data collection, and this contributed to the high degreeder to be able to discriminate rapidly varying land cover types
of variability in performance acrossthe ten candidate models. Tégen, e.g., in the transition zone from the lagoonal shore to the
presence ofthe glintalso effected performance for categories supkand. On Smith Island, six to seven distinct vegetation zones
as Peat Outcrop, although this category can be challenging in amaly occur in a distance as short as 50-75 m.
of itself because of its presence in the surf zone, depending orsome technical difficulties such as extensive glint present in
whether data are acquired near high or low tide. the HYMAP data in the beach and surf zone limited what could

Although in many areas the dune vegetation shows the achieved given a more ideal time of day for data collection.
proper delineation oAndropogon spptoward the upland and Other challenges stemmed from the fact that the data was ac-
Ammophila bretoward the beach, the BPCE models based qquired near high tide. Despite these difficulties and the fact that
the expanded spectral sets all tended to comfusmophila brev. the early part of the growing season may not be the ideal time for
with the Andropogon sppin many of the specific ROIs used todistinguishing many types of vegetation, we have demonstrated
evaluate accuracy. At this time of year, grasses and sedges sugttess in identifying both plant communities and, in some in-
asthese anflpartina patenslso found in the dune environment stances, individual plant species from HyMAP through our field
are alltonally similar. For example, Fig. 7(e) shows tBpartina validation efforts with GPS, DGPS, aisitureflectance mea-
patenss most often confused with eithBistichlis spicatathe surements. Supervised classification models based on spectra
dominant swale grass, éindropogon sppData acquired in the labeled during GPS and DGPS surveys were used to demon-
early fall, when Andropogon is quite distinct visually from thestrate that models could discriminate 19 land cover types. Some
other two, is likely to improve results. Thus, we expect that thef these categories were defined at the plant community level,
October PROBE2 data acquisition will achieve higher accuraayjth others being specific plant species.
when classification models are developed. Although there were differences betweiensitu measure-

Other sources of difficulty for these models stem from theents and the airborne hyperspectral data, there were strong
time of the year that the HyMAP data were acquired. At the beerrelations between spectral shape. Unsupervised models
ginning of May, it is early in the growing season in the VCR, sbased on a PP-ISODATA hybrid were found to agree with
many vegetation communities contain a mixture of new growthe supervised models for a number of categories. In some
and senescent or dead vegetation from the previous growtses, the exploratory PP-ISODATA approach may have
cycle. Distinguishing vegetation types such as, for examphientified subgroups within a major category suctSpsutina
Distichlis spicatafrom Scirpus spp. may be very difficult alterniflora, for which it was observed that the unsupervised
to achieve spectrally at this time of year, and this probabfjpproach may be dividing the data into low and high vigor
accounts for the fact that the majority of errors for the categofgrms of the same species. Witha@upriori knowledge of pixel
Scirpus sppare the result of confusion withistichlis spicata labels, the PP-ISODATA approach was found to be correlated
As we have noted earlier, tidal influences provide additionalith Phragmites australighat grows in the margin between
sources of spectral variability for many of the marsh vegetationarsh and upland; however, this approach did not identify
communities because of variations in degree of inundation, aexposedPhragmites The partial success of this exploratory
it obviously effects the beach zone, depending on the degreeapproach also benefited from the ability to input both spectral
inundation or wetting present. Many points that we acquirethd spatial-spectral windows. Accuracy and specificity of
in the beach zone in the first surveys were effectively undeupervised models based on BPCE and composite models,
water due to tidal stage or in an area of strong glint due to thepecially forPhragmites australiswere found to be highly
time of data acquisition and, therefore, could not be used in thependent on the size of the labeled spectral training samples
analysis. Although more than one model obtains a respectabtel on the accuracy of the georeferencing. Increasing this
score for the category Beach/sand, the poor performance éacuracy and expanding the number of spectral samples used
this category in the other models is almost certainly due to thetraining provided a significant reduction in false-alarm rate
presence of glint. for multiple categories, includinghragmites The best model

overall for Phragmitesused BPCE and the expanded set of
VI. CONCLUSION spectral training samples.

Our goal was to develop land cover maps that would be useful
to natural resource managers at higher spatial resolution than
has been available previously. Both unsupervised and superThe authors wish to acknowledge computing resources pro-
vised classification approaches were used to create these praded by the DOD High Performance Computing Moderniza-
ucts and to evaluate their relative merits. We have seen that aon Program, including the Army Research Laboratory’s Major
tomatic land cover classification models can be developed s&hared Resource Center, SMDC, and the NRL Origin.
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