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Abstract. As radar backscatter values for oil slicks are very similar to
backscatter values for very calm sea areas and other ocean phenomena,
dark areas in Synthetic Aperture Radar (SAR) imagery tend to be mis-
interpreted. In this paper three feature sets are used to identify the oil
slicks in SAR images. These images are submitted to different MLP ar-
chitectures to verify the separability performance over each feature set.
This analysis is very suitable for remote sensing of environment appli-
cations concerning marine oil pollution. The estimated resulting perfor-
mance points out which feature set is the best suitable for the suggested
application.

1 Introduction

Since the last decade Synthetic Aperture Radar (SAR) systems have played an
important role in remote sensing of environmental disasters. These systems pro-
vide oil spills detection and monitoring, that seriously affect the marine ecosys-
tem, providing a more rigorous and effective environment monitoring. Further-
more, SAR images have considerably contributed to understand atmospheric
phenomena, land use mapping and monitoring, deforestation assessment, geo-
graphic evolution, urban growing rates assessment, agricultural crops monitor-
ing and so on. The potential damage for the environment and economy of the
area at stake requires that agencies be prepared to rapidly detect, monitor, and
clean up any large spill [1]. Remote sensing of dark spots in the sea is a complex
process, due to the simultaneous movement of radar and spots. The presence of
an oil film on the sea surface damps out the small waves and reduces the rough
surface due to the increased viscosity of the top layer and drastically reduces the
measured backscattering energy, resulting in darker areas in SAR imagery [2].
The interest in appraising texture features in this work becomes from the differ-
ent rough degrees presented in SAR images. Oil spill images are characterized by
being less rough when compared to the similar slicks. Moreover, the procedures
to extract texture features are independent of segmentation methods. The diffu-
sion of the electromagnetic waves in the surface of the sea depends, mainly, on
the rough surface which is influenced by the presence of winds, currents, waves
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and parameters of the radar, such as incidence angle, frequency, polarization and
resolution. The sea behaves as a specular surface when there are not waves and
winds. However, dark areas might not be oil slicks but merely local wind effects
or natural oil films due to low winds [3].

Automatic identification of oil spills in SAR images is a very complex task
because similar images of oil spills frequently occur, particularly in low-wind
conditions [4] requiring a careful interpretation. In general, the human interpreter
determines if a dark object is an oil spill or a look-alike one. The contrast between
oil spectral and water radiance around the oil determines which might be oil
slicks. Studies have been carried out to improve methods to detect oil spills in
satellite images. Liu et al.[5] proposed algorithms to detect and track mesoscale
oceanic features employing multiscale wavelet analysis using the 2-D Gaussian
wavelet transform to track oil slicks, eddies, fronts, whirlwinds and icebergs. The
authors concluded that the wavelet analysis can provide a more cost-effective
monitoring program that would keep track of changes in important elements of
the coastal watch system. In [4] it was proposed a semi-automatic algorithm for
spots detection which identifies objects in the scene with larger probability of
being oil spills. A neural network approach for oil spills detection in European
Remote Sensing Satellite-Synthetic Aperture Radar (ERS-SAR) imagery has
been explored as an alternative tool in [2]. Del Frate et al. [2] proposed an
algorithm to classify spots based on a set of geometric features extracted from
real oil spots and look-alike ones. The input of the network consisted of a set of
features regarding an oil spill candidate and the output concerns the probability
for the candidate to be a real oil spill. The authors reported that the introduction
of physical characteristics related to atmospheric conditions such as wind speed
and water temperature could improve the algorithm results.

Concerning evaluation of feature selection issue, Jain and Zongker [6] applied
feature selection algorithms to SAR images in order to classify land use combin-
ing features of four different texture models. The researchers also evaluated the
potential difficulties of performing feature selection in small sample size situa-
tions due to the curse of dimensionality.

This paper proposes an analysis of the discrimination power of three different
feature sets, comparing the performance of a classifier based on neural networks
applied to each set: the physical-geometrical feature set generated by statistical
measures on geometric characteristics [7], the texture feature set obtained as
described in Bevk et al [8], and the third one as a composition of the previous
sets. To minimize the computational effort of the classifier, principal component
analysis (PCA) is used to reduce the dimensionality of each feature set and the
reduced sets are compared with the original ones. The overall performance of the
classifier is evaluated for different feature sets based on geometrics and texture
attributes aiming at optimizing oil spills detection in SAR images. The proposed
method can be used to support environmental remote monitoring.

This paper is organized as follows. The next section describes the method-
ology, the feature extraction process and the approach used to detect oil spills.
Section 3 presents the simulation results and the last section concludes the paper.
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2 Methodology

The feature data sets are generated using SAR images collected from different
sources. After extracting the features from the spots, the data is divided into
three feature sets and two different analysis are made: a) a classifier processes the
original feature sets and b) a classifier processes the reduced sets using principal
component analysis. The classifier estimated performance states the discrimi-
nation power of each set. Fig. 1 exhibits the block diagram of the previously
described proposed methodology.

Fig. 1. General steps for feature sets evaluation of dark spots in SAR images

2.1 Feature Extraction

Texture analysis is able to provide an automatic classification of features pre-
sented in SAR images [1]. In general, texture characteristics are important for
surface or object identification from aerial, satellites or biomedical images and
for other applications such as industrial monitoring or product quality, remote
sensing of natural resources, and medical diagnosis with tomography [9]. De-
spite its importance and ubiquity in image data, a formal approach or precise
definition of texture does not exist [10]. The term is used to point to intrinsic
properties of surfaces, especially those that do not vary smoothly in intensity.
Texture includes intuitive properties like roughness, granulation and regularity.
More formally, it can be defined as the set of local neighborhood properties of
image grey levels [11].

Statistical information of texture characteristics is based on the representation
of texture using properties governing the distribution and relationships of grey
level values in the image [12]. The spatial grey level dependence matrix proposed
in [13] is used to extract features, i.e., energy, contrast or entropy. In this paper
the first and second order statistics of the segmented images are extracted to
provide the textural features of oil spills.

The first-order probability distribution of the amplitude of a quantized image
may be defined as:

H (g) =
ng

N
; g = 0, 1, . . . , G − 1 (1)

where N represents the total number of pixels in the image, G denotes the num-
ber of grey levels and ni denotes the number of pixels of grey value i in a given
image. The histogram is a probability function of pixel values, therefore we can
characterize its properties with a set of statistical parameters (also called first-
order statistics). Many parameters may be derived from the histogram such as
its mean, variance and percentiles. The following parameters are also computed:
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mean (SM ), standard deviation or image contrast (SD), skewness (SS), kurtosis
(SK), entropy (SEnt) and energy (SE) [8].

Second-order statistics operate on the probability function (P (i, j|d, θ)), that
measures the probability of observing a pair of pixel values that are some vector−→
d apart in the image [8].

The grey level cooccurrence can be specified in a matrix of relative frequen-
cies Pi,j with which two neighboring pixels separated by distance d in a given
direction, occur on the image, one with grey level i and the other with grey level
j. Generally, the cooccurrence matrix is computed for a finite number of pixel
orientations, formally for angles in intervals of 45◦. The cooccurrence matrices
are symmetric.

The results of the grey level coocurrence are averaged for each angle with its
transposed matrix as follows:

S (i, j) =
∑

θ=0,45,90,135◦

P (i, j|θ, d) + P (i, j|θ, d)t

8
(2)

The second order statistics are extracted from the matrix shown in equa-
tion 2. Based on this matrix the following texture measures are computed: auto-
correlation (A), cluster proeminence (CP ), cluster shade (CS), contrast (C),
correlation (Corr), covariance (Cov), energy (E), entropy (Ent), local homo-
geneity (H) and maximum probability (MAX). More detailed definitions of
these features can be found in [13].

Another set of features used to describe a dark spot is extracted after the
segmentation step. These measures are the physical-geometrical characteristics.
Del Frate et al [7] state that some of these characteristics take into account
the geometry and the shape of the dark spot, other part contains information
about the backscattering intensity (calculated in dB) gradient along the border
of the analyzed dark spot and others focus on the backscattering in the dark
spot and/or in the background. The following measures, corresponding to the
physical-geometrical set, are computed: area (Ar), average backscattering in-
side the area (ABIA), standard deviation of the backscattering inside the area
(SDBIA), average backscattering outside the area (ABOA) and standard devi-
ation of the backscattering outside the area (SDBOA). From the previous ones
the following parameters are calculated: ratio between area and perimeter (AP ),
ratio between average backscattering inside and outside the area (RBIO), ra-
tio between average backscattering and its standard deviation inside the area
(RBSDI), ratio between average backscattering and its standard deviation out-
side the area (RBSDO), ratio between backscattering standard deviation in-
side and outside the area (RSDIO) and ratio between SBSDI and RBSDO
(RBSDIO).

2.2 Principal Component Analysis

The use of more features extracted from patterns may lead to a better charac-
terization and thus a better classification with a lower error rate, but in practice,
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the opposite is observed. For a given problem the error rate initially drops with
an increasing number of features, but at a certain point the error rate saturates
or rises if additional features are included. This phenomenon is called curse of
dimensionality. The origin of this phenomenon is the fact that classifier design re-
lies on the inference of statistical properties from the data such as the estimation
of the likelihoods or the estimation of the parameters of a distribution [14].

The problem of feature selection is defined as follows: given a set of candi-
date features, select a subset that performs the best under some classification
system. This procedure can reduce not only the cost of recognition by reducing
the number of features that need to be collected, but in some cases it can also
provide a better classification accuracy due to finite sample size effects [5]. The
term feature selection is taken to refer to algorithms that output a subset of
the input feature set [6]. Principal components analysis (PCA) is a multivariate
procedure which rotates the data such that maximum variabilities are projected
onto the axes, mapping the image data into a new, uncorrelated co-ordinated
system or vector space [15]. It produces a space in which the data has the most
variance along its first axis, the next largest variance along a second mutually
orthogonal axis, and so on. The later principal components would be expected,
in general, to show little variance. These could be considered therefore to con-
tribute little to separability and could be ignored, thereby reducing the essential
dimensionality of the classification space and thus improving the classification
speed. It is useful to know that due the nonlinearity of some data sets, the PCA
space transformation not always leads to an optimal feature subspace. In this
case further analysis using another space transformation methods are necessary
to achieve better results.

3 Simulation Results

The experiments were obtained by using a set of 20 real dark spot images, where
half of them are oil spill images and the other half consist of look-alike images.
Figure 2a and Figure 2b are SAR image examples of a typical oil slick and a
natural film, respectively. The first two sets are physical-geometrical features
(S1) and texture features (S2). The third one is formed by the union (S3 =
S1

⋃
S2) of the both cited. The sets S1, S2 and S3 are respectively 8, 15 and

23-dimensional.
The classifiers performance assessment is shown in Figures 3 and 4. The results

were obtained by running the classifier algorithm 100 times using a hold-out
method varying the training size from 10% to 90% of the whole sample set. As
the performance for the compound set degrades due to its higher dimensionality,
we also tested different MLP architectures. Using the same N inputs and M
outputs, where N is the size of the input vector and M is the number of different
classes, we changed the number of neurons in the hidden layer from 2 until 20.
Indeed, we experimented individual higher classification rates as the classifier
fitted more the data and noise. This can be observed in Fig. 3(a) for the feature
set S3. We decided to use the 5 hidden neurons MLP architecture, beside its
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(a) (b)

Fig. 2. SAR image examples of (a) an oil slick and (b) a natural film
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Fig. 3. MLP performance comparison (a) using different number of hidden neurons
over the S3 feature space and (b) with a reference model MLE over all three feature
sets

higher computational training cost, because of the generalization loss caused by
overfitting when using the MLPs with more hidden neurons.

In Fig. 3(b) we provide a comparison between a three layer MLP with 5 hidden
neurons and a maximum-likelihood estimator (MLE) [16] used as a reference
model. The maximum-likelihood estimator tries to fit one gaussian probability
function to each class centered on their means using unitary covariances and
based on assumption of data independence. The maximum class probability is
taken to assign a class label to the sample. The error probability is computed
according the bayesian decision rule: Pe = p1P (e|C1)+p2P (e|C2), where P (e|Cn)
is the conditional error probability for the input vector classified as belonging to
class Cn and pn is the a priori probability for the classes.

The use of PCA to reduce the dimensionality has achieved a better classifica-
tion performance. Fig. 4 shows the PCA transformed data set presents a slightly
better separability. Unfortunately this varies as the linearity changes from one
data set to another. Thus, for S3 it is a good solution, but to the rest of the
data sets the classifier performance is worse than working on the original space
or quite the same.

Table 1 shows a rounded average confusion matrix computed from 100 clas-
sification rounds. The feature set S3 was applied to a MLP classifier with 5
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Fig. 4. MLP x Näıve Bayes performance and error probability comparison between the
original space and the PCA transformed space

Table 1. Confusion matrix for S3 feature set applied to MLP classifier with 5 hidden
neurons

Predicted True Class
Class C1 C2

C1 9 2
C2 1 8

Table 2. Variance comparison between original and PCA transformed feature spaces

Original space PCA space
Classifier S1 S2 S3 S1 S2 S3

MLP 0.0201 0.0255 0.0135 0.0215 0.0208 0.0172
BAYES 0.1010 0.0570 0.0712 0.0928 0.0339 0.0681

hidden neurons using 70% training size. Oil Spill samples are represented by
class C1 and the look-alike ones by the class C2. It is worthy of notice that this
low false-alarm rate was achieved using only 20 image samples.

The classifier variances obtained in the experiments are shown in Table 2. The
variances for the original feature space and for the PCA transformed ones are
very similar. The result obtained by adding the texture features (feature set S3)
has shown that a better classification performance can be reached without loss
of generality. Although the Näıve Bayes classifier has achieved higher correct
classification rates, as expected, the MLP has provided better generalization.

4 Conclusions

This paper presented a methodology to improve oil spill classification in SAR
images. In this approach, a small set of images is described by a large number of
features. Thus, for this purpose a non-parametrical classifier like MLP is more
suitable than the statistical parameters based ones, like Fisher Discriminant
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Analysis (FLDA) for example. This occurs because the higher-order moments,
necessary to establish the discriminant, are poorly estimated which leads to
errors. The maximum-likelihood estimator, used in this paper, can give only a
good point of observation, which we use to compare the performances of the
classifiers. The overall misclassification achieved with a MLP classifier is low
enough but we have a lot of work to do in order to reduce false alarms to permit
the use of this methodology in reliable marine surveillance applications. Further
investigation is required to choose a more robust classifier in order to achieve a
higher rate of correct classification and improve its reliability for environment
surveillance applications.

The error probability is smaller as the number of training samples grows up.
We believe that with a larger data set it is possible to develop a MLP archi-
tecture that can reach even higher performances. Finally, the feature sets tested
on these experiments have shown that textural features provide important effect
in the performance improvement for oil spill detection application. The results
reported in this paper point out that the use of texture features can add sig-
nificantly discrimination power for oil spill detection applications without loss
of generality. This improvement is reached when using that set combined with
physical-geometrical features. As the use of PCA transformation also accom-
plished a less complex classifier, the overall computational cost was maintained
low. It is noteworthy that a very small data set was used, furthermore we con-
cluded that any performance improvement can be a very hard task to perform
with this set. Although we consider these results an advance for automatic oil
spill detection systems, the misclassification rate is not lower enough. In future
works, we will investigate improvements on this approach by using methods for
automatic feature selection using classifier combination.
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