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Abstract Developing multi-disciplinary products pre-

sents cross-disciplinary problems that are difficult to predict

and to solve. Unfortunately, those cross-disciplinary prob-

lems are often discovered only at a later stage of the design

through physical prototypes and can lead to modification of

the conceptual design of a product. This is extremely costly

and time consuming. This paper describes a new software

tool, a Design Interference Detector (DID), which based on

qualitative reasoning infers possible problematic physical

phenomena that may appear in a design. However, quali-

tative reasoning techniques often reveal a shortcoming of

generating too many negligible solutions. This is a burden

to the designer and makes qualitative reasoning practically

unusable. Therefore, we developed two filtering methods

that filter out such negligible solutions and highlight only

potential cross-disciplinary problems. DID with these fil-

tering methods aims particularly at supporting redesign of

complex multi-disciplinary products. The paper analyzes

advantages and limitations of the filtering methods through

a case study.

Keywords Multi-disciplinary design � Qualitative

physics � Complexity management � Conceptual design

1 Introduction

To deal with increasing complexity of modern products, we

need product development methodologies such as the

V-model by Stevens et al. 1998 (Fig. 1). In the V-model,

product design starts with requirements analysis, which

considers possible conflicting needs of various stakehold-

ers. Then the system design begins, which derives system

specifications from system requirements and chooses main

concepts of the product. The overall system concept is

quickly decomposed into subsystems, and eventually,

components are designed. Then, components and subsys-

tems are integrated and tested through prototypes. Sub-

systems should clearly be defined and understood because

they belong to one small module of a product. Although

each subsystem is supposed to behave as specified,

designers can still be surprised by unpredicted phenomena

that deteriorate the performance of the product during the

integrated system test. This is due to neglected or over-

looked interactions among subsystems.

This type of problems could be hard to solve or even hard

to detect. As a consequence, reaching a final satisfactory

product can be time consuming and cost inefficient because

of additional iterations between designing and prototyping

in the development process. In order to reduce these inter-

actions, we need to detect such unpredicted phenomena as

early as possible in the design process. In our previous paper

(D’Amelio and Tomiyama 2007), we proposed the concept

of the Design Interference Detector (DID) that performs an

early verification of the system design in order to reduce the

probability of having design failures caused by unpredicted

phenomena (Tomiyama et al. 2007). This paper reports the

software implementation of DID with a focus on inferring

algorithms of unpredicted phenomena.

DID is based on qualitative reasoning, which is

explained in Sect. 2.3. One advantage of qualitative rea-

soning is that it does not require precise information in

describing a physical system. Therefore, qualitative rea-

soning is appropriate for the early design phases (i.e. in
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conceptual design) where available knowledge is incom-

plete or primarily qualitative (Will 1991). Another advan-

tage is that it allows building a model of a fairly complex

system in a short time. However, qualitative reasoning

presents drawbacks as well. One of them is that it generates

a large number of feasible solutions that are difficult to

verify for a single designer. The majority of these solutions

can be neglected because their magnitude is very small or

because they are spurious. Spurious phenomena appear due

to the lack of information about the system.

This paper proposes two methods, the contrast and

interaction finding methods based on heuristics to filter out

negligible solutions generated during qualitative reasoning

about a physical system. Figure 2 depicts the computa-

tional process of these two methods and can be used as a

navigation guide throughout this paper.

The contrast method assumes that most of design activ-

ities in industry are modification-based design in which a

new product is not designed from a scratch but from an

existing design. It supports the redesign (modification

design) phase by comparing old and new designs of a

product in order to understand the consequences of design

changes. By referring to Fig. 2, the design starts with an old

design of a product (Process 1) built with the Function

Behavior State (FBS) model (Umeda et al. 1996) (Sect. 2.2).

Second, the designer makes a new product in a redesign

process by adding, removing, and changing structural and/

or behavioral knowledge (Process 2- Sect. 3.3). When the

new design is finished, DID automatically infers all the

possible physical phenomena that can appear in both new

and old designs (Process 3—Sect. 2.4) and classifies these

inferred physical phenomena into three classes PP?, PP-,

and PP= (Process 4). PP? class contains phenomena that

appeared in the new design due to new components or new

combination of components in the system. PP- class con-

tains physical phenomena that are negligible in the new

design. PP= represents phenomena that occur to both old

and new designs. This categorization helps the designer to

identify the occurrence of physical phenomena that can

potentially lead to unpredicted problems.

The interaction finding method supports the system

design (see Fig. 1) where known subsystems are integrated

in an unknown combination. This is described in Sect. 3.4.

Differently from the contrast method, in the interaction

finding method, the design starts with combining product

modules (Process 1 of Fig. 2), after which the verification

of the design based on the detection of unpredicted phe-

nomena is performed, and finally the classification of

physical phenomena into the classes PP?, PP-, and PP=

(Process 4). PP? class represents phenomena that derive

from the interaction of the different subsystems.

In the discussions, we argue the limitations of this

research and point out future work. The conclusions pro-

vide the reader with the main points of this paper and

describe the relevance of the filtering methods for the

conceptual design of a product.

2 Background

DID is implemented in a software tool called KIEF

(Knowledge Intensive Engineering Framework) (Yoshioka

et al. 2000, 2004, Yoshioka 2008) and uses the Function

Behavior State (FBS) modeler (Umeda et al. 1996) and

Physical Feature Reasoning System of KIEF (Yoshioka

et al. 2000, 2004). The Physical Feature Reasoning System

is based on Qualitative Process Theory (Forbus 1984; Barr

et al. 1989). All these tools and methods used by DID are

explained in the following subsections.

2.1 Knowledge intensive engineering framework

Knowledge Intensive Engineering Framework (KIEF) is a

knowledge intensive framework implemented in Smalltalk.

KIEF consists of several modelers, a central metamodel to

match information from those modelers, and a knowledge

base that contains physical concepts such as entities, rela-

tions, and physical phenomena. Definitions of these con-

cepts are based on the ontology described in (Yoshioka

et al. 2000, 2004).

• Entity—an atomic physical object or physical component.

• Relation—a physical relation among entities, which

illustrates how entities are connected to each other.

• Attribute—a concept attached to an entity, which has a

value to indicate the state of that entity.

• Physical phenomenon—a concept that designates phys-

ical laws or rules that govern behaviors.

• Physical law—relationships among attributes.

• Physical feature—a product building block that consists

of a set of causally related physical phenomena and

mechanical elements (Kiriyama et al. 1992a) that are

described by entities and relations among entities.

Fig. 1 V-Model representing the product development process
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• Function—a representation of behavior through human

recognition, which is expressed in terms of what the

device aims to do. Function constitutes a bridge between

human intention and physical behavior of a system

(Umeda and Tomiyama 1995; Erden et al. 2008).

• State—a set of qualitative values of system parameters

(Kuipers 1994).

• Behavior (state transition)—a set of qualitative states

that the system visits over time (Kuipers 1994).

2.2 The function behavior state model

The Function Behavior State (FBS) model of a product can

be built by combining the low-level information of func-

tions with the behavioral information described in physical

features (Umeda et al. 1996). The FBS model is intuitive to

use while designing provides a systematic way of struc-

turing knowledge and its compatible with qualitative

reasoning that is used as reasoning engine for this work.

A screen display of an FBS model on KIEF is shown in

Fig. 3. While the details of the figure will be explained in

the following sections, it is now sufficient to notice how the

knowledge is divided among functions, which forms the

function layer, and physical phenomena, entities and rela-

tions, which belong to the behavior layer of the FBS model.

2.3 Qualitative reasoning and qualitative

process theory

Qualitative physics is a branch of Artificial Intelligence

that qualitatively deals with reasoning about the behavior

of physical systems (Barr et al. 1989). Qualitative physics

Fig. 2 High-level computational process to classify physical phenomena
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employs qualitative reasoning to infer knowledge about a

system. This is useful to describe roughly what will happen

to a system. Due to the nature of knowledge required to

perform qualitative reasoning, qualitative physics can

mostly be used in situations where only incomplete

knowledge is available including conceptual design.

Among qualitative physics techniques, DID uses QPT

developed by Ken Forbus (1984) to understand common-

sense reasoning about physical processes. QPT organizes

domain theories around the concept of physical phenomena

(processes) (Forbus 1984). Processes are the sole mecha-

nisms of change in a system (Forbus 1993) and are the

focus of our analysis. A physical situation is modeled as

collections of objects (entities), their relationships (rela-

tions), and processes (physical phenomena). There are four

operations that QPT can perform:

1. Given a physical situation, to decide which instances

of processes can exist in that situation.

2. To determine which process instances are active by

examining whether conditions are satisfied.

3. To determine which change can be caused by the

active processes.

4. To predict behavior over time.

2.4 Physical feature reasoning system

Physical Feature Reasoning System (PFRS) is a simplified

version of QPT and uses solely architectural knowledge to

derive physical phenomena that may occur to the design

object by matching patterns (prerequisites) against physical

features in the knowledge base (Yoshioka et al. 2004;

Fig. 3 FBS model in KIEF
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Kiriyama et al. 1992b). The pattern matching is performed

by a pattern-directed inference system (Forbus and De

Kleer 1993).

A simplified representation of the PFRS algorithm is

shown in Fig. 4. The input data of the algorithm consist of

the product description and the library of physical features.

Figure 5 shows examples of four physical features. In the

figure, thick borders indicate consequence, while the

thin ones indicate prerequisites. ‘Consequence consists of

physical phenomena that are invoked by the physical

feature’. ‘Prerequisites are conditions about entities and

relations, and physical phenomena that are used to check

their conditions. They are needed to see if a physical fea-

ture happens or not’ (Yoshioka et al. 2004). A prerequisite

can consist of entities, relations and physical phenomena,

while a consequence consists of physical phenomena only.

For example, the second physical feature Heat Generation

On Source in Fig. 5 indicates that every time electric

power (prerequisite) is applied to a conductive entity

(prerequisite), heat is generated (consequence). In this

example, a physical phenomenon (heat generation) needs

another physical phenomenon (electric power supply) to be

invoked. The electric power supply phenomenon represents

a causal link for heat generation.

The algorithm starts by selecting one physical feature

(PF) from the library (see Fig. 4). PFRS needs to scan all

the physical features to verify possible occurrence of a new

phenomenon. After that, the prerequisite of the PFi in

Fig. 5 is compared with the model (Compare). If no match

between the prerequisite and the model is found, then a

next PF is selected from the library. When there is a match,

one or more physical phenomena (consequences—thick

border) are added to a collection of physical phenomena.

These steps are repeated until all the PFs from the library

have been compared with the model. At the end of the

comparison, the collection of physical phenomena is added

to the model. A new comparison is made between the

updated model and the library. This process is repeated

until there are no more physical phenomena found (the

collection of physical phenomena is ‘empty’). At this point,

the model is completely updated.

Fig. 4 PFRS algorithm

Fig. 5 Four examples of physical features
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To reduce the number of iterations during the compar-

isons of the updated model with the library, the list of PFs

in the library is reduced only to the ones that contain at

least one causal link to physical phenomena. In this way,

the PFs without causal link do not influence subsequent

comparisons. Some physical phenomena depend only on

structural knowledge (physical feature 1 in Fig. 5), while

others depend on structural (entities and relations) and

behavioral knowledge (physical phenomena) (physical

feature 2, 3, 4 in Fig. 5). PFRS does not change the

structural knowledge but it does change behavioral

knowledge. Therefore, after the fist scan of all physical

features, only physical features that can be influenced by

the new behavioral knowledge are scanned again. These

are the ones with causal links. For instance, the physical

feature gravity of Fig. 5 after the first scan of PFRS,

where the physical phenomenon gravity can be added to

the model, does not have any other possibility to include

new knowledge into the system. The other physical fea-

tures indicated in Fig. 5 contain causal links between

physical phenomena. For instance, the occurrence of

ElectricPowerSupply in the physical feature Heat

Transmission By Contact generates in the first scan

HeatGeneration, in the second scan HeatFlow and

in the third scan, Deformation.

To make pattern matching and search faster, PFRS uses

the assumption-based truth maintenance system (ATMS)

algorithm. ATMS is a problem solving facility to help

inference engines conveniently and efficiently manipulate

assumptions (De Kleer 1986).

2.4.1 An example of pattern matching in PFRS

The aim of this section is to explain how the matching

mechanism works. To do this, we use a simple example.

The case of an inkjet printer (see Fig. 6) has been chosen to

demonstrate the way PFRS algorithm works. A print head

is incorporated in a carriage, which moves forward and

backward along a path indicated by a pulley-belt mecha-

nism. The inkjet printer is driven by a DC motor, which

is powered by a battery. The FBS model of this inkjet

Fig. 6 Concise schematic representation of an inkjet printer

Fig. 7 Starting FBS model of

an inkjet printer
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printer is shown in Fig. 7 and consists of seven entities

(Motor&Plate, Battery, Pulley1, Belt,

Pulley2, Carriage and Printhead), seven rela-

tions (ElectricConnection, CoaxialConnec-

tion, Rolled, Rolled, On, Contact and On), and

seven physical phenomena (ElectricPowerSupply

TorqueGeneration, Rotation, RotationTo-

LinearMotionTranmission, Transmission and

Support). Three physical features related to three func-

tions (To Rotate(Pulley), To Transmit Motion

to (Carriage), To Print(Ink Drop)) of the

printer are used to build the model. This model can be

translated into the following assertions:

• (ElectricConnection Motor&Plate (obj-

ect1) Battery (object2)).

• (CoaxialConnection Motor&Plate (obj-

ect1) Pulley (object2)).

• (Rolled Pulley (disk) Belt (belt)).

• (Rolled Belt (belt) Pulley (disk)).

• (On Belt (base) Carriage (upper)).

• (On Carriage (base) PrintHead (upper)).

• (Contact Carriage (obj1) PrintHead

(obj2)).

• (ElectricPowerSupply Motor&Plate

(object), Battery (source)).

• (TorqueGeneration Motor&Plate (genera-

tor), Pulley (object)).

• (Rotation Pulley (object)).

• (RotationToLinearMotionTrasmission

Pulley1 (RotatingEntity), Belt (lin-

earMotiveEntity)).

• (RotationToLinearMotionTrasmission

Belt (linearMotiveEntity), Pulley2

(RotatingEntity)).

• (Transmission Belt (transmitter), Car-

riage (source)).

• (Support Carriage (supporter) Print-

Head (object)).

For example, the first assertion means that there is an

electric connection between a motor and plate and a bat-

tery. Then, the physical features in Fig. 5 are considered.

They can be transformed in the following set of rules:

• (rule (On Earth (?base) EntityWithMass

(?upper)). Assert! (Gravity (Entity-

WithMass (object)))).

• (rule (ElectricPowerSupply Motor

(?object) ConductiveEntity(?source).

Assert! (HeatGeneration (Motor

(heatSource)))).

• (rule (Near Entity (?obj1) Entity

(?obj2)) (HeatGeneration (Entity

(?heatSource)). Assert! (HeatFlow

Entity (heatSource) Entity (object))).

• (rule ((HeatFlow (Entity (? heat-

Source)) (Entity (?object))). Assert!

(Deformation (Entity (entity)))).

For example, the first rule means that when an entity

with mass on the Earth, gravity force applies to this entity.

Assertions and rules in PFRS are made based on class

indexing. This means that assertions and rules are indexed

with their classes, corresponding to sets whose elements

can match. Therefore, a new assertion needs to be tested

only against rules indexed under its class and the other way

around a new rule needs to be tested against assertions in

its own class.

For instance, the prerequisites of the second

rule ((ElectricPowerSupply Motor(?object)

ConductiveEntity(?source)) match the eighth

assertion (ElectricPowerSupply Motor&Plate

(object), Battery (source)).

Motor is included in Motor&Plate, and Conduc-

tiveEntity is a superclass of the entity Battery.

Therefore, the variable Motor(?object) is bound to

Motor&Plate (object) and ConductiveEntity

(?source) is bound to Battery (source) and the

consequence of the rule is executed. This means that

HeatGeneration becomes also part of the assertions

and Motor(heatSource) is translated into Motor&-

Plate (heatSource).

The inkjet printer model is one input to the PFRS

algorithm. The other input is the library, which includes the

physical features presented in Fig. 5. The result of the

pattern matching between rules and assertions performed

by the PFRS algorithm is shown in Fig. 8. The figure does

not include the functional description of the model since

functions do not contribute in inferring new physical phe-

nomena. The new physical phenomena are indicated by

oval shapes with gray background. Figure 8 shows that the

motor of the printer can generate heat, which might result

in deformation of the belt. By extending the database to

more than the four physical features of Fig. 5, it is possible

to infer other phenomena that are not mentioned in this

example. The database must include general physics

knowledge as well as a collection of knowledge obtained

through previous design failures. By using this collection

of knowledge about design failures, the designer can avoid

to make the same mistakes again.

Figure 9 illustrates examples of failure knowledge

expressed as physical features. The first physical feature

represents a situation when wear of a bearing generates

noise in the system. The second and third physical features

express that friction and electrostatic charges are generated

between these two entities whether a carriage moves on the
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guidance. Electrostatic charge causes electromagnetic

interference that can affect the electronics in the system.

Therefore, as soon as a new problem is encountered, the

designer must document the new knowledge by including

that in the physical features knowledge base.

2.5 Similar past research

The goal of this study is to develop methods into a software

tool to detect and to classify physical phenomena while

preserving all the relevant information necessary for

redesign tasks. Before going to the filtering methods, this

section shows similar past research that deals with con-

ceptual design and redesign issues.

Case-based reasoning is a general paradigm of problem

solving that recalls and reuses previous design experiences

that can help with new situations (Maher and Gómez de

Silva Garza 1997). DID makes use of heuristics obtained

through past design experiences to support designers in

problem solving. In this sense, DID developed aspects of

case-based design in order to generally support the repre-

sentation of design cases. For instance, DID is based on the

FBS model (Umeda et al. 1996) (see Sect. 2.2) that rep-

resents design cases based on function decomposition.

Fig. 8 Inferred model of the

inkjet printer

Fig. 9 Example of failures knowledge expressed by physical features
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Function decomposition allows the designer to reuse

knowledge to combine subfunctions in order to create a

design case. The same knowledge used to create a design

case is used by PFRS to predict unpredicted phenomena

and to find possible failures of the design (unpredicted

problems) (see Sect. 2.4). This means that the same data-

base is used both to create a design case and to verify the

design. The filtering methods use expert knowledge to

discard phenomena that can theoretically appear in a design

case but practically do not appear (known by experience)

(see Sect. 3). The filtering methods also use expert

knowledge at the system level to integrate known hierar-

chical parts or subcases of a design. Therefore, case-based

reasoning is relevant to this research, and it is used both for

design, redesign, and verification of the design.

Goel analyzed the task of design adaptation and redesign.

Adaptive design is described as a method where a design is

adapted to another to develop new functionalities (Goel and

Stroulia 1996). Redesign is an essential task to recover a

system from design failures (undesired phenomena) (Goel

and Chandrasekaran 1989). Failures are detected by diag-

nosis in design adaptation and in redesign (Goel and

Stroulia 1996). For instance, this is done by detecting in the

existing device components that affect the desired new

functionality. Failures can also be detected in a realistic

environment where undesired behavior (unpredicted phe-

nomena) is discovered. Also in this situation, the goal is to

detect the structural elements in the structure, which, if

adapted, could generate the desired behavior. Once causes

of failures are detected, the designer changes the adapted

design. When this design fails again. new adaptations

(redesign) are made until the design accomplishes the

desired functionalities. Therefore, Goel analyzed device

behavior and finds unpredicted and undesirable behaviors,

and repairs the device from the failures. The repair subtask

of redesign takes as input the desired functions, the pro-

posed structure, the undesirable behaviors and their struc-

tural causes; it produces as output a modified structure that

accomplish the desired functions without the undesirable

behaviors. However, the verification of the design in Goel’s

case is performed on physical prototypes, and redesign is

not intended for innovation purpose but for failure recovery.

Furthermore, diagnosis can be costly to compute, and a

better organization of the device model is needed so that

only the relevant information is examined. Therefore, it is

still necessary to have other verification techniques to detect

undesired behaviors early in the design and a filter to con-

strain information to the relevant ones. However, once those

possible design failures are detected, Goel’s methods can be

used to redesign with corrective or compensatory solutions

(Goel and Chandrasekaran 1989).

Change management (revision control) manages chan-

ges in information. For example, Clarkson (Clarkson et al.

2004) discusses mathematical models to predict the risk of

change propagation in terms of likelihood and impact of

change. At an abstract level, the filtering methods are also

methods for change management in design engineering due

to the fact that they can track changes from an original

source. However, differently on DID, change management

does not use change information to detect design failures

cased by those changes.

Kitamura tries to capture intentions of the designer by

building a functional ontology. He intended to make the

search in the functional hierarchies traceable for functional

understanding task (Kitamura et al. 2002). For instance, he

provides an operational method for bringing a gap between

the behavioral and structural levels and the functional

level, which is useful for redesign. However, redesign

consists of removing and adding new functional structure

in the system, and this task can lead on one hand to new

unpredicted phenomena that are not present in previous

designs and on the other hand to disabling intended func-

tionalities in the new design. His method does not use

qualitative physics-based reasoning that detects such

behavioral changes.

Davis makes a system diagnosis reasoning based on

structure and behavior (Davis 1984). The purpose of his

analysis is to troubleshoot and diagnose complex systems

when a symptom of malfunction is given. To do so, all the

different kinds of paths of interactions among components

need to be identified and handled. However, including all

the possible paths, candidate generation again becomes

indiscriminate since every component could somehow be

responsible for the observed symptom. On the other hand,

neglecting some paths can make the troubleshooting

unreliable. The technique that Davis used for solving this

dilemma is based on categorization of failures, which are

organized from the most likely to less likely categories and

it is based on experienced knowledge about failures.

However, this strategy is applied to a static system where

any phenomenon is known, controlled, and established; it

does not consider the occurrence of unpredicted phenom-

ena that enter into the system to change and to increase

paths of interactions. Moreover, Davis works with diag-

nosis from symptom-fault rules rather than model-based

diagnosis from design description.

Falkenhainer and Forbus proposed compositional mod-

eling techniques for organizing domain models in order to

determine which subset of knowledge to apply for a given

task and, therefore, to filter behaviors relevant to a task

(Falkenhainer 1991). However, using the compositional

modeling techniques brings the risk of excluding useful

knowledge to predict side effects.

Liem discussed in (Liem et al. 2008) an approach

toward an automated model algorithm that uses causality to

explain the system’s behavior. In their algorithm, they use
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clusters and causal information to reduce the space of

possible behaviors. This approach is useful to eliminate

redundancies in the system but cannot eliminate negligible

behaviors that are the focus of this paper.

3 Methods to classify and filter unpredicted physical

phenomena

3.1 Classification of physical phenomena

The core of filtering methods introduced in this study (see

Sect. 3.2) is based on the selection and classification of

physical phenomena. The following classification of

physical phenomena will be used in the rest of the paper

(D’Amelio and Tomiyama 2007):

• Desired phenomena—intended phenomena that the

designer wants to realize with the design (see Sect. 3.2).

• Undesired Phenomena—phenomena that disturb the

product behavior, in other words, side effects.

• Predicted phenomena—desired phenomena, which are

predicted by the designer. Predicted phenomena are

known effects (i.e. known from previous designs). In

the redesign case, where a product changes from an old

to a new version, predicted phenomena can be part of

PP= or PP? classes depending on whether they belong

to both product versions or only to the new design (see

Sects. 3.2 and 3.3).

• Unpredicted phenomena—These are unexpected phe-

nomena, which can be either desired or undesired,

depending on whether they include additional desired

functionalities to the design or whether they disturb the

behavior of the system (see Sect. 3.2). Unpredicted

phenomena are part of PP?.

• Negligible phenomena—Physical phenomena that are

insignificant in a product. These phenomena belong to

the PP—class.

The combination of those four types of phenomena is

aggregated in the following manner:

• Predicted problems—undesired and predicted behav-

iors that can appear in a product. The designer is aware

of these problems, and (s)he must control their intensity

during embodiment and detailed design.

• Unpredicted problems (destructive phenomena)—unde-

sired and unpredictable interactions that result in

undesired and unpredictable behaviors. The designer

is not aware of these problems during design but they

can appear at the prototype phase. They are added to

the design model by using the PFRS.

• Constructive phenomena—desired and predictable phe-

nomena that result in desired and predictable behaviors.

These are the result of design decisions.

• Forgotten phenomena—desired and unpredicted phe-

nomena. For instance, the designer may overlook to

include a phenomenon in the product model. They are

added automatically to the design model by using PFRS.

The above definitions are summarized in Table 1.

KIEF is able to infer unpredicted phenomena starting

from predicted phenomena. However, it is not possible for

KIEF to distinguish between desired and undesired phe-

nomena because this distinction depends on the design

context and on the intention of the designer. Moreover, the

distinction between desired and undesired phenomena goes

against the ‘No function in structure’ principle, which asserts

that ‘the laws of the parts of the device may not presume the

functioning of the whole’ (De Kleer and Brown 1984).

3.2 Filtering physical phenomena

The goal of the filtering methods is to identify changes in

the system behavior due to changes in system architecture.

Thus, it is necessary to make another classification of

physical phenomena, viz. PP-, PP?, and PP=.

PP- class comprises the list of negligible physical

phenomena. PP-design are PP– instances that are removed

from the model by the designer during the phase of rede-

sign (see Process 1 in Fig. 2). PP-design instances appear

when the designer removes an entity from an old design

dragging out also its interconnected physical phenomena.

PP-causal are PP- instances that are automatically filtered

out by PFRS (see Process 2 in Fig. 2).

PP� � PP�design [ PP�causal

Furthermore, PP-design belongs to the old model and not

to the final model. PP-causal belongs neither to the old

model nor to the final model. PP-causal are potential

unpredicted phenomena because patterns of their physical

features match the new design but the filtering method

discards them by using heuristics information of the old

design. The next sections show examples of PP-design and

PP-causal.

Table 1 Physical phenomena classification

Phenomena classification Predicted phenomena PP= or PP?design Unpredicted phenomena PP?causal Negligible phenomena PP-

Desired phenomena Constructive phenomena Forgotten phenomena PP-design (See Sect. 3.2)

Undesired phenomena Predicted problems Unpredicted problems PP-causal (See Sect. 3.2)
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PP? is a list of physical phenomena added by the

designer during the redesign phase (PP? design) (see Pro-

cess 1in Fig. 2) or automatically by the PFRS (PP? causal)

during the phase of verification (see Process 2 in Fig. 2).

Therefore:

PPþ � PPþdesign [ PPþcausal

PP? can represent both unpredicted and predicted

phenomena that are not included in the old design.

Therefore, the designer knows a number of phenomena

associated with new components but he/she can still be

surprised by unpredicted phenomena associated with these

new components. Thus, PP? can belong only to the new

design, and it is used to keep track of changes, to understand

consequences of design changes and interactions among

machine building blocks (physical features).

The PP= class is used as a checklist to determine whe-

ther all desired physical phenomena are present in the final

design.

The difference between old and new design in terms of

PP-, PP?, and PP= is shown in Fig. 10. Both PP?causal

and PP-design can cause anomalous system behaviors. The

first because unpredicted phenomena can generate unpre-

dicted problems, and the second because the designer could

have erroneously removed some intended phenomena

while redesigning without caring to put them back in the

new model.

Therefore, due to the potential problems that PP?causal

and PP-design may cause, the designer should further

investigate their effects. For instance, additional quantita-

tive tests should be performed at the later design phases in

order to understand when these effects are negligible or not

(i.e. embodiment and detailed design). The advantage is

that when the designer knows potential problems, he/she

can keep them under control in more detailed phases.

For the purpose of distinguishing between PP-, PP?,

and PP=, two filtering methods have been developed and

implemented in KIEF by introducing a FILTER block in

the PFRS algorithm (see Fig. 11). The two filtering meth-

ods are the contrast and the interaction finding methods.

These two methods can be used separately or together

during design tasks from an old product (with known

behavior) to a new product (with uncertain behavior), and

during the system phase of the design.

3.3 The contrast method

The contrast method is used in redesign, when concepts

(entities, relations, or physical phenomena) are removed

Fig. 10 Comparison scheme between old and new product

Fig. 11 Filtering module in PFRS Algorithm. Trapezoidal shape—

input and output; rectangular shape—process; diamond shape—

decision
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from or added to an old model. The goal of this method is

to identify all the PP? and PP- instances resulting from

those changes. The contrast method assigns to the PP?

class new phenomena that are added to the system by the

designer and the unpredicted physical phenomena, in

which at least one prerequisite belongs to new components.

The unpredicted physical phenomena, in which all the

prerequisites are old concepts, are assigned to PP-. The

PP= class contains physical phenomena that are predicted

in the model.

Fig. 12 Process 1: Old model

of a product. Process 2: new

model of a product. Process 3:

new model of a product after

using PFRS with the contrast

filtering method
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An example of all the processes of Fig. 2 is shown in

Fig. 12. Table 2 shows the result of the contrast filtering

method for this example. The old model of an abstract

product is shown in Process 1 in Fig. 12, and this model

was known. For the sake of simplicity, the functional layer

of the FBS model is not shown.

A new product (Process 2 in Fig. 12) is the result of the

redesign task based on the old model. The new model is

obtained by removing an entity (Motor A) from the old

model and adding another entity (Motor B) together

with two relations (ElectricalConnection 2 and

CoaxialConnection 3). In this example, MotorA

and MotorB refer to two motors with different charac-

teristics. MotorA supports the phenomenon Normal-

StartingTorque and a HighStartingCurrent,

and MotorB supports the phenomenon HighStart-

ingTorque and LowStartingCurrent. Motors

with different characteristics generate different behaviors.

Removal of Motor A results automatically in the

removal of a series of elements: Electrical con-

nection1 between MotorA and Battery, the

CoaxialConnection2 between Shaft and MotorA,

and the NormalStartingTorque that applies to

Shaft and MotorA , Electric Power Supply, and

HighStartingCurrent (see Fig. 12). As a conse-

quence, the phenomena NormalStartingTorque,

SupplyingElectricPower, and HighStarting-

Current become negligible and are added to the

PP- class. These phenomena are labeled PP-design.

Additional physical phenomena are added to the model

by the designer: HighStartingTorque, Supply-

ingElectricPower, and LowStartingCurrent

(see Fig. 12). These phenomena belong to PP?.

Some phenomena exist both in the old model (Process 1,

Fig. 12) and the modified model (Process 2, Fig. 12):

Rotation(Wheel), Rotation(Shaft)1 and Rota-

tionalTransmission(Wheel; Shaft) (Table 2).

These phenomena are automatically labeled class PP=.

In Fig. 12, Process 3 shows the result of applying PFRS

together with the contrast filtering method on the new

product. Three new physical phenomena (indicated with

the white background) are inferred by PFRS and included

in the PP? list. The new phenomena result from the

matching of the model in Process 2 of Fig. 12 with the

physical features described in Fig. 13.

The complete classification of the components and

physical phenomena is listed in Table 2. By definition, the

behavior of an old design or of its components is entirely

predicted (known). If this old design or some of its com-

ponents are included in a new model, the parts are still

entirely known. Unpredicted physical phenomena cannot

be attach to the known components of the new design and

are automatically discarded and recognized as negligible

by the filter.

In the example, since the prerequisites of Vibration

(Wheel) (prerequisite: RotatingEntity (Wheel))

and Friction (Wheel; Shaft) (prerequisites:

RotatingEntity(Wheel) and RotatingEnti-

ty(Shaft)) also belong to the old model, they are

automatically discarded by the filter of PFRS.

The prerequisite of Vibration(MotorB) is

MotorB, which is a new node of the model. Therefore,

Table 2 Classification of system concepts

Component- Component= Component? PP- PP= PP?

Motor A Wheel Motor B Normal starting torque

(Shaft; MotorA)

PP-design

Rotation

(Wheel)

High starting torque

(Shaft; MotorB) PP?design

Coaxial connection2

(Shaft; MotorA)

Shaft Coaxial connection3

(Shaft; MotorB)

SupplyingElectricPower

(MotorA; Battery)

PP-design

Rotation

transmission

(Wheel; Shaft)

SupplyingElectricPower

(MotorB; Battery) PP?design

Electrical connection1

(MotorA; Battery)

Battery Electrical connection2

(MotorB; Battery)

High starting current

(MotorA; Battery)

PP-design

Rotation

(Shaft)

Low starting current

(MotorB; Battery) PP?design

Coaxial

connection1

(Wheel; Shaft)

Friction (Wheel; Shaft)

PP-causal
Overheating (MotorB; Battery)

PP?causal

Vibration (Wheel)

PP-causal
Vibration (MotorB) PP?causal

Vibration (Shaft) PP?causal

1 Rotation (Wheel), and Rotation (Shaft) represent the same phe-

nomenon applied to different entities (respectively to Wheel and

Shaft).

Res Eng Design (2011) 22:223–243 235

123



Vibration(MotorB) is an unpredicted phenomenon

(PP?causal). The prerequisites of Vibration(Shaft)

are Shaft and Vibration(MotorB), where

Vibration(MotorB) is a new node of the model as

well. Therefore, also Vibration(Shaft) is an unpre-

dicted phenomenon that belongs to the class PP?causal.

Vibration(Wheel), Vibration(MotorB) and

Vibration(Shaft) represent the same phenomenon

applied to different entities. Vibration(MotorB) and

Vibration(Shaft) are causally connected.

3.4 The interaction finding method

The interaction finding method is used when the designer

builds a new model by combining known subsystems in an

innovative way, and this method can also be used together

with the contrast method in the hybrid case of a design

made of known subsystems and new components. Known

subsystems refer to well-known pieces of technology (e.g.

pulley mechanism, cooling systems, and generator). The

goal of this method is to identify all the PP? and PP-

instances that emerge from the interactions of subsystems

that we represent as physical features. In other words, the

question here boils down to: Even though we combine

known subsystems, can there something strange happen?

The unpredicted physical phenomena that have prerequi-

sites belonging to more than one building block are

assigned by PFRS to PP?. The unpredicted physical phe-

nomena that have all the prerequisites belonging to one

building block are assigned by PFRS to PP-. The PP=

instances are the desired physical phenomena, in which the

prerequisites belong to one building block.

An example of the interaction finding method is shown

in Fig. 14. Three different subsystems represented in dif-

ferent engineering domains (software, electronics and

mechanics) are shown in the figures. The case shows how

in the top engine of an inkjet printer, interactions among

software, electronics, and mechanics occur. In Fig. 14,

CarriageElectronics decodes all information to

pass to the PrintHead (colors and dots); FlexCables

provides the power acquired by the engine electronics to

the carriage; Carriage supports and sets up the position

of the print head on the paper. SettingAcceler-

ationPoints, Overpressure, Overheat, Heat

Flow, Heat Generation, and IllDotsPosi-

tioning represent the unpredicted interactions of various

subsystems. PFRS infers phenomena by matching the

present library of physical features with the current model

and selecting the interactions of the software, electronics,

and mechanics domains. By following the causal relations

represented in Fig. 14, Overheat can be easily identified

as the cause of IllDotsPositioning on the paper.

Moreover, interactions of different blocks can be related to

engineering domains that were absent in the original design

(i.e. the thermal domain).

The interaction finding method is helpful to take deci-

sion at the system design level since all the knowledge

coming from several subsystems has to be considered and

integrated. This is done by inferring consequences of

integrating knowledge from different engineering domains

and/or different subsystems.

The complete classification of components and physical

phenomena for the case of Fig. 14 is listed in Table 3. In

the interaction finding method, the PP- are physical

phenomena that are discarded by the filter in PFRS (i.e.

DataLoss, PowerLoss, and Deflecting). Therefore,

these are unpredicted physical phenomena, in which all the

prerequisites belong to a single subsystem.

3.5 Case study

To show practical outcomes of PFRS combined with the

two filtering methods, the inkjet printer of Fig. 7 is con-

sidered again. With the following cases, we highlight the

advantages in using the two filtering methods together with

PFRS in comparison with the use of PFRS alone.

Case 1 The model of Fig. 7 is considered new, and no

filtering method is applied. In this case, physical phe-

nomena are classified as in Fig. 15. None of the inferred

physical phenomena is filtered out by the system. As a

result, the designer must inspect a list of 39 PP? instances

to detect possible unpredicted problems.

Case 2 The model of Fig. 7 is considered as a combi-

nation of old modules, and hence, the interaction finding

method is applied. This means that the physical features

Fig. 13 Features used to derive the physical phenomena of Fig. 12
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Fig. 14 Example of use of the

interaction finding method in

multi-disciplinary domains

Table 3 Classification of system concepts with the interaction finding method

Component- Component= Component? PP- PP= PP?

Carriage electronics DataLoss Decoding information SettingAcceleration points

PrintHead PowerLoss Transfer information Overheat

FlexCables Deflecting Power distribution HeatFlow

Carriage Motion HeatGeneration

On Supporting IllDots positioning

Connected Overpressure
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that constitute the model are considered as independent

modules with unknown interactions. Four PP? instances

are shown in Fig. 16 and represent interactions of different

modules.

Case 3 Starting from the inkjet printer model in Fig. 17,

the contrast methods are applied. This model refers to an

inkjet printer plugged to an electric source, and the

designer knows this design (old model). Imagine that the

designer wants now to adjust the design to make the printer

portable. To do so, the designer substitutes the wall-plug-

ged motor with one connected to a battery. This transfor-

mation is made by removing module A from the model

represented in Fig. 17 and by including module A’ repre-

sented in Fig. 18. From these transformations, we derive

the model of Fig. 18, whose component A’ is totally new,

and whose components B and C belong to the old model

(Fig. 17) as well. In this last case, the classification of

phenomena in PP-, PP=, and PP? classes after running

PFRS is presented in Fig. 19. The PP? class consists of

new phenomena. However, this case does not show

unpredicted problems among the unpredicted phenomena.

These unpredicted phenomena are forgotten phenomena

that do not affect the functionalities of the design. There-

fore, the designer has verified the robustness of the design

Fig. 15 Classification of

phenomena without the use of

any filter: new product
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by inspecting unpredicted phenomena and can continue to

the embodiment phase. Practically speaking, PFRS has

inferred that the replacement of a plugged motor with a

battery does not affect the functionalities of the inkjet

printer.

PP-design instances (recognizable because starting with

a number in PP- list) require special attention from the

designer, since these phenomena were desired phenomena

in the old product, but do not appear in the new product. It

is necessary to check whether the change was intended by

the designer or not.

It is also possible to apply both the methods simulta-

neously. This is the case of a design made by both known

and unknown subsystems. The system can infer physical

Fig. 16 Classification of

phenomena with the use

interaction finding method: old

product

Fig. 17 Old model of a plugged inkjet printer
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Fig. 18 New model of an inkjet printer

Fig. 19 Classification of

phenomena with the use of

contrast method
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phenomena belonging to the singular unknown subsystems

but also interactions between known subsystems.

4 Discussions

PFRS together with the filtering methods is helpful to

verify the design against unpredicted phenomena and to

organize the inferred information in classes. Furthermore,

the filtering methods of DID can reduce the number of

unpredicted physical phenomena in the qualitative inferred

results. The case studies showed that unpredicted phe-

nomena can decrease from 39 to 4 or 10 depending on the

adopted filtering method. Among the inferred physical

phenomena, there are some that can generate unpredicted

problems in the design, for example, unexpected heat

generation, friction of rotation, and oscillations when not

controlled can deteriorate the system performances.

More work is needed to generate an adaptation plan to

recover from unpredicted problems. As we mentioned in

Sect. 2.5, the designer can use corrective or compensatory

solutions to recover a system from failures (Goel and

Chandrasekaran 1989). The FBS modeler of KIEF can

support the use of corrective and compensatory solutions

based on the functional description. For instance, a func-

tion can be associated with more than one working prin-

ciple (for corrective tasks), and the designer can choose a

particular change to perform from these alternatives.

Therefore, it is possible to change working principles in

redesign tasks. Furthermore, additional functions can be

plugged into FBS to support compensatory solutions.

However, these alternative solutions need to be analyzed

again to verify their compensations and/or drawbacks. This

analysis, to detect the best solution, can be difficult due to

the amount of redesign possibilities. In order to avoid this

time-consuming analysis, two solutions can be possible.

One is the implementation of a synthesis algorithm to

automatically find the best corrective or compensatory

solutions. The other solution could be to equip DID with

standard corrective and compensatory solutions to auto-

matically recall and reuse previous design experiences to

recover from failures. Although DID is not equipped with

such tools to recover from failures, we suggest that to

recover from erroneously discarded phenomena (PP-design,

due to the removal of entities), it is easier to use com-

pensatory solutions because it can be necessary to integrate

additional structure to the system in order to have more

behaviors. However, compensatory solutions increase the

system complexity due to the larger amount of compo-

nents. Therefore, to recover from destructive phenomena,

we recommend the use of corrective solutions.

A limitation of this work is in the knowledge base.

Expert knowledge (e.g., design history, previous failures,

and results of tests performed on products) and physical

principles (physical laws and effects) are presented as

physical features. Since human knowledge is huge, the

number of physical features in the library is also huge.

According to Lenat 1995, human knowledge is close to

108. This number refers to the number of axioms that are

derivable by spanning human commonsense knowledge.

Knowledge is represented by physical features that

encompass both structural and behavioral knowledge. One

problem in having a large amount of knowledge is that the

higher the number of physical features is, the more com-

putational effort has to be made by PFRS to match the

library of physical features to the model. Moreover, a huge

library can lead to the interference of phenomena of the

relevant scope (i.e. anything can happen).

Knowledge on single entities (i.e. shaft, pulley, and

motor) as well as knowledge about relations (i.e. coaxial

connection, electrical connection) is universal knowledge

that can be used and reused to build any physical system

from scratch. This knowledge does not vary from library to

library. Physical features consist of integration of knowl-

edge that can be unique for specific applications. Inte-

grating different entities in different manners makes a

device behave differently. This knowledge is ‘specific to a

range of applications’. It can still happen that knowledge of

various physical features is used for different devices

because of similarity in functions. However, at least one

function must differ between the devices to make them

unique. The library of physical features also contains

knowledge related about physical principles. Since physi-

cal principles are universal and their amount is computa-

tionally manageable (around 300 in physics domains (Hix

and Alley 1958)), the part of the library that consists of

physical principles provides a reusable and complete

knowledge for any application.

In general, it is difficult to define a perfect size of the

library because it depends very much on the application

and on the physical system model to analyze. The library of

KIEF in its current version includes around 300 physical

features that represent physical effects and 320 physical

principles. The library encompasses physical principles as

well as specific knowledge about printer mechanisms and a

collection of knowledge about failures that were exhibited

by previous versions of the same type of inkjet printer. By

using this collection of knowledge about failures, the

designer can avoid to make same mistakes again. Examples

of this knowledge have been illustrated in Sect. 2.4.

5 Conclusions

This paper discussed difficulties that are associated with

mechatronic products from the viewpoint of design. To
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solve these difficulties, the contrast filtering method and the

interaction finding filtering method were introduced. Those

methods are implemented in the PFRS of KIEF.

Filtering methods are based on the definition of pre-

dicted and unpredicted, desired and undesired as well as

negligible physical phenomena. Starting from these defi-

nitions, physical phenomena were divided into three main

classes: PP-, PP= and PP?. PP- instances represent dis-

carded phenomena, PP= instances are predicted phenom-

ena that appear both in the new and old design, PP? are

phenomena belonging only to a new design and they

encompass unpredicted phenomena. The filtering methods

are able to keep track of changes during the process of

designing and/or redesigning, to understand the conse-

quences of product evolution and product module inte-

gration. Then, in the PP? class, the designer can detect

design failures that warn of possible unwanted behaviors of

the product. At this point, the design can still be recon-

sidered without constructing prototypes.

Two filtering methods were described, the contrast and

the interaction finding methods. The designer can use them

separately or together, in design tasks that assume the evo-

lution of a product from configuration A to configuration B or

the analysis of interactions among different design modules.

The contrast method categorizes physical phenomena based

on design modifications that constitute differences between

the old and the new design. By assuming a product made by

clearly defined and understood modules, the interaction

finding method is capable to detect interactions of design

modules. A case study (Sect. 3.5) has shown the profitable

use of the Design Interference Detector (DID) for different

design tasks: design from the scratch, redesign from an old to

a new model, and interaction finding. In Case 1, filtering

methods were not used that correspond to a situation where

the designer does not have any expert knowledge to filter out

phenomena (design from scratch). In Cases 2 and 3, the filters

were relevant to reduce the list of attention points for the

designer. The efficiency of the filters depends on the avail-

able knowledge about the system; the more knowledge, the

less unpredicted phenomena. Consequently, the filtering

methods reduce the large number of possible solutions

generated by qualitative reasoning to a smaller number,

which is easier to verify for a single designer.

In conclusion, filtering methods using heuristics exploit

all the advantages of qualitative reasoning and reduce the

difficulty related to the generation of too many negligible

qualitative solutions. This result is relevant for the con-

ceptual design because it allows qualitative reasoning,

which is fast, does not require complete product knowl-

edge, and can be used for early design verification.

Therefore, PFRS with filtering methods constitutes a

qualitative tool that is ready to be tested in industry to help

in conceptual design tasks.

Acknowledgments The authors gratefully acknowledge the support

of: the Dutch Innovation Oriented Research Program ‘Integrated

Product Creation and Realization (IOP-IPCR)’ and the BSIK program

of the Dutch Ministry of Economic Affairs, Agriculture and Inno-

vation, to the project ‘‘Smart Synthesis Tools’’; the Embedded Sys-

tems Institute (Eindhoven, The Netherlands) to the projects ‘‘Smart

Synthesis Tools’’ and ‘‘OCTOPUS’’; and to Océ-Technologies B.V.
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