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ABSTRACT

Accurate tertiary structures are very important for the functional study
of non-coding RNA molecules. However, predicting RNA tertiary
structures is extremely challenging, because of a large conformation
space to be explored and lack of an accurate scoring function
differentiating the native structure from decoys. The fragment-based
conformation sampling method (e.g. FARNA) bears shortcomings
that the limited size of a fragment library makes it infeasible to
represent all possible conformations well. A recent dynamic Bayesian
network method, BARNACLE, overcomes the issue of fragment
assembly. In addition, neither of these methods makes use of
sequence information in sampling conformations. Here, we present a
new probabilistic graphical model, conditional random fields (CRFs),
to model RNA sequence–structure relationship, which enables us
to accurately estimate the probability of an RNA conformation from
sequence. Coupled with a novel tree-guided sampling scheme,
our CRF model is then applied to RNA conformation sampling.
Experimental results show that our CRF method can model RNA
sequence–structure relationship well and sequence information
is important for conformation sampling. Our method, named as
TreeFolder, generates a much higher percentage of native-like
decoys than FARNA and BARNACLE, although we use the same
simple energy function as BARNACLE.
Contact: zywang@ttic.edu; j3xu@ttic.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
RNA has become an important research subject in recent years,
and there is an increasing study of non-coding RNA in biology and
health. Its growing important role appears in various life domains
and processes, including regulating gene expression (Backofen
et al., 2007; Hiller et al., 2007; Ray et al., 2009; Solnick, 1985),
interaction with other ligands (Badorrek et al., 2006; Buck et al.,
2005) and stabilizing itself (Reymond et al., 2009). To elucidate
the function of an RNA molecule, it is essential to determine
its 3D structure. However, there are a great number of RNA
sequences without solved structures. Experimental methods for
RNA3D structure determination are time-consuming, expensive and
sometimes technically challenging. By far, there are ∼29 million
RNA molecules with (predicted) secondary structure in the Rfam
database (Gardner et al., 2009), but only 4816 of them have
tertiary structures in the nucleotide database (Berman et al., 1992).
Therefore, we have to fill this large gap by predicting the 3D structure
of an RNA using computational methods.

∗To whom correspondence should be addressed.

RNA tertiary structure prediction does not gain as much attention
as secondary structure prediction (Akutsu, 2000; Alkan et al., 2006;
Backofen et al., 2009; Bindewald and Shapiro, 2006; Eddy and
Durbin, 1994; Ferretti and Sankoff, 1989; Gardner and Giegerich,
2004; Hamada et al., 2009; Havgaard et al., 2007; Hofacker,
2003; Knudsen and Hein, 2003; Mathews, 2006; Mathews and
Turner, 2002; Mathews and Turner, 2006; Poolsap et al., 2009;
Will et al., 2007; Zhang et al., 2008; Zuker, 2003; Zuker and
Sankoff, 1984). Both molecular dynamic methods (Bindewald
and Shapiro, 2006; Hajdin et al., 2010; Sharma et al., 2008)
and knowledge-based statistical methods (Das and Baker, 2007;
Das et al., 2010; Frellsen et al., 2009) have been proposed to
fold RNA molecules. The knowledge-based statistical methods for
RNA tertiary structure prediction consist of two major components:
an algorithm for conformation sampling and an energy function
for differentiating the native structure from decoys. Fragment
assembly, a knowledge-based method widely used for protein
structure prediction (Haspel et al., 2003; Lee et al., 2004; Simons
et al., 1997), has been implemented in FARNA (Das and Baker,
2007) for RNA 3D structure prediction. However, this method has a
couple of limitations: (i) there is no guarantee that any region of an
RNA structure can be accurately covered by structure fragments in
the RNA solved structure database, which currently contains only
a limited number of non-redundant solved RNA structures; and (ii)
sequence information is not employed in FARNA for conformation
sampling. MC-Sym (Parisien and Major, 2008) is a motif assembly
method for RNA 3D structure prediction, which uses a library of
nucleotides cyclic motifs (NCM) to construct an RNA structure.
MC-Sym has a time complexity exponential with respect to RNA
length (i.e. the number of nucleotides), so MC-Sym may not be
used to predict the tertiary structure for a very large RNA. As
reported in Laing and Schlick (2010), MC-Sym also fails in the
case when the secondary structure of RNA lacks cyclic motifs.
Recently, Frellsen et al. (2009)have proposed a probabilistic model
(BARNACLE) of RNA conformation space. BARNACLE uses a
dynamic Bayesian network (DBN) to model RNA structures, but
this DBN method does not take into consideration any sequence
information. In addition, BARNACLE models the interdependency
between the local conformations of only two adjacent nucleotides,
but not of more nucleotides. Other RNA three dimensional structure
prediction methods can be found in Abraham et al. (2008); Das and
Baker (2007); Das et al. (2010); Ding et al. (2008); Flores et al.
(2010); Frellsen et al. (2009); Gillespie et al. (2009); Hajdin et al.
(2010); Jonikas et al. (2009); Laing and Schlick (2010); Parisien
and Major (2008); Sharma et al. (2008); Tang et al. (2005); Wexler
et al. (2006).

This article presents a novel probabilistic method conditional
random fields (CRFs) (Lafferty et al., 2001) to model RNA
sequence–structure relationship. Different from BARNACLE
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modeling only RNA structures, our CRF method models the
sophisticated relationship among primary sequence, secondary
structure and 3D structure, which enables us to more accurately
estimate the probability of RNA conformations from its primary
sequence and thus sample RNA conformations more efficiently.

We have already successfully applied CRF to model protein
sequence–structure relationship and conformation sampling (Zhao
et al., 2008, 2009, 2010). However, our CRF method for proteins
cannot be directly applied to RNA. In order to apply CRF to RNA
modeling, we have to employ a different method to represent an RNA
3D structure and model RNA bond torsion angles. We also have to
face the challenge that there are a lot fewer solved RNA structures
than the solved protein structures for CRF model training. By
exploiting the secondary structure information of an RNA molecule,
we have also developed a novel tree-based sampling scheme that can
simultaneously sample conformations for two segments far away
from each other along the RNA sequence. In contrast, our protein
conformation sampling method can sample conformations for only
one short segment at a given time. Finally, we also have to employ a
totally different energy function for RNA folding. To the best of our
knowledge, CRF has also been applied to RNA secondary structure
prediction (Do et al., 2006) and alignment (Sato and Sakakibara,
2005), but not modeling the relationship between RNA sequence
and 3D structure.

Our method TreeFolder is more effective in sampling native-
like decoys than FARNA and BARNACLE, although we use the
same simple energy function as BARNACLE, which contains only
base-pairing information. Tested on 11 RNA molecules, TreeFolder
obtains much better decoys for most of them. Our results imply
that TreeFolder models RNA sequence–structure relationship well,
which it is feasible to sample RNA conformations without using
fragments and that sequence information is important for RNA
conformation sampling. Experiments also show that TreeFolder
works well with predicted secondary structures generated by tools
such as CONTRAfold (Do et al., 2006).

2 METHODS

2.1 Representation of an RNA structure and
conformation state

We can represent an RNA 3D structure using a sequence of torsion angles,
as shown in Figure 1. Every nucleotide has in total seven bonds that rotate
freely. Six of them lie on the backbone: P–O5′, O5′–C5′, C5′–C4′, C4′–C3′,
C3′–O3′ and O3′–P. The seventh bond connects a base to atom C1′. As shown
in Figure 2 torsion χ around the seventh bond has a small variance, so we
assume that it is independent of the other angles and has a normal distribution.
The planar angles between two adjacent bonds on the backbone are almost
constants, so are the lengths of the bonds.

We use a simplified representation so that we can reduce the number of
torsion angles needed for the local conformation of a nucleotide (Cao and
Chen, 2005; Duarte and Pyle, 1998; Hershkovitz et al., 2006; Zhang et al.,
2008). In particular, we use the torsions τ1 and τ2 on pseudo-bonds P–C4′
and C4′–P (see pink lines in Figure 1). However, to determine coordinates
of the six backbone atoms of a nucleotide, we also need two planar angles
θ, ψ and another torsion α on bond P–O5′. Overall, we use a five tuple
(τ1,τ2,θ,ψ,α) to represent the local conformation of a nucleotide. The
torsion angles are separated in several groups in the whole angle space, as
shown in Figure 3. Although there are many different methods to represent
an RNA conformation, this simplified representation enables us to rapidly
rebuild backbone atoms from angles. Similar representations have also been

Fig. 1. Conformation of a nucleotide is represented by angles.

Fig. 2. Empirical distribution of the torsion angle χ collected from the all
representative RNA structures (see Section 2.4).

Fig. 3. (A) Empirical distribution density of the torsion (τ1) on the pseudo-
bond C4′–P and α. (B) Distribution density of the torsion (τ2) on the
pseudo-bond P-C4′ and α. The empirical distributions are built from all
representative RNA structures (see Section 2.4).
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Table 1. Accuracy of the structures rebuilt from the native torsion angles,
assuming the bond lengths are constants

PDB ID RMSD PDB ID RMSD

1esy 0.77 1xjr 0.55
1kka 0.35 1zih 0.22
1l2x 0.41 28sp 1.00
1q9a 0.28 2a43 0.34

extensively adopted by previous works (Cao and Chen, 2005; Duarte and
Pyle, 1998; Hershkovitz et al., 2006; Zhang et al., 2008).

Our simplified representation does not lose much accuracy: given the
torsion angles, we can rebuild the atom coordinates of an RNA molecule
with very good accuracy. As shown in Table 1, the structures rebuilt from the
native angle values (assuming the bond lengths are constants) have RMSD
<1 Å from their natives.

Conformation state: we use a Gaussian distribution to describe the local
conformation preference of one nucleotide. First, we cluster all the angles
collected from the experimental structures into dozens of groups (20∼100).
Then, we calculate the mean and variance in each group and model the
angle distribution, using Gaussian distribution. Each group (or cluster) and
its Gaussian distribution are identified by an index, which is also denoted
as a conformation state. Given the conformation state of a nucleotide, we
can sample its real-valued angles from the corresponding distribution. Note
that to make angle sampling easy and fast, we assume the torsion angles are
independent of one another in Gaussian distribution. Later we will show how
to empirically determine the best number of conformation states to achieve
the best sampling performance.

2.2 CRF model for RNA sequence–structure
relationship

Our CRF method can estimate the probability of an RNA conformation from
the primary sequence and secondary structure. A CRF model consists of
two major components: input features and output labels. The input features
at each nucleotide include its nucleotide types, base pairing states and
its neighbor nucleotide types. The input features are encoded as a vector
of binary variables. The base pairing states can be predicted using some
secondary structure prediction programs (Akutsu, 2000; Do et al., 2006;
Eddy and Durbin, 1994; Gardner and Giegerich, 2004; Knudsen and Hein,
2003; Mathews and Turner, 2006; Poolsap et al., 2009; Zuker, 2003) with
reasonable accuracy. The base pairing information can also be obtained using
some experimental methods (Gewirth et al., 1987; Wohnert et al., 1999;
Zwahlen et al., 1997), which are much less expensive than those methods
determining RNA tertiary structures. The output label at each nucleotide is
a conformation state (also called label in CRF). It is also the index of the
cluster which the angles at this nucleotide belongs to.

In contrast to BARNACLE (Frellsen et al., 2009) estimating the
generative probability of an RNA structure, our CRF model estimates the
conditional probability of an RNA structure, represented as a conformation
state vector y, from the input feature vector x as follows.

P(Y =�y|X =�x)= 1

Z(�x)
exp

[
L∑

i=1

ψ(yi,�x)+
L−1∑
i=1

�(yi,yi+1)

]

Z(�x)=
∑

�y
exp

[
L∑

i=1

ψ(yi,�x)+
L−1∑
i=1

�(yi,yi+1)

]

�y=(y1 ···yL),ψ(yi,�x)=VT
yi

�x,�(yi,yi+1)=Wyi,yi+1

(1)

Meanwhile, Z(x) is the partition function; xi is the feature vector at position
i; yi is the label at position i; Wi,j is the weight for transition from state i–j;
Vi is the weight factor for predicting state i from an input feature x; L is

Fig. 4. A linear-chain CRF model describes the RNA sequence–structure
relationship. The input feature vector X contains sequence information and
the label (state) vector Y contains local conformation states.

the length of RNA, i.e. the number of nucleotides. The function ψ describes
dependency between a conformation state and the input features and thus,
called a label feature function. The function� describes dependency between
two adjacent states and thus called an edge feature function.

Figure 4 shows a linear-chain CRF model for the sequence–structure
relationship of an artificial RNA with five nucleotides. We also extend ψ
to a linear combination of features of the adjacent nucleotides in a sliding
window. That is, ψ is a linear function of x̃i =[xi−WL/2 ···xi+WL/2], WL is the
window size to be determined later.

Once the CRF model is trained, we can calculate the (marginal) probability
of a conformation state at a given position, using the forward–backward
algorithm as follows.

P(Yt =yt |X =x)= 1

Z(x)
F(t,yt,x)B(t+1,yt,x)

F(t,y,x)=

⎧⎪⎨
⎪⎩

N∑
u=0

F(t−1,u,x)e�(u,y)+�(y,xt ), t>1

e�(y,xt ), t =1

B(t,y,x)=

⎧⎪⎪⎨
⎪⎪⎩

N∑
u=0

B(t+1,u,x)e�(y,u)+�(u,xt+1), t<L

N∑
u=0

e�(y,u), t =L

Z(x)=
N∑

u=0

F(L,u,x)

We train our CRF model by maximizing the occurring probability of a set of
training RNAs with solved structures. In order to avoid overfitting, we also
enforce regularization on the model parameters. As such, we train the model
parameters by maximizing the following regularized log-likelihood.

log

(∏
k

P(Y =yk |X =xk)

)
+λ‖W‖2 +µ‖V‖2

Meanwhile, yk and xk are the conformation state vector and input feature
vector of the k-th training RNA, W and V are model parameters defined in
Equation (1) and λ and µ are the regularization factors. This maximization
problem can be solved to optimal using the L-BFGS algorithm (Liu and
Nocedal, 1989).

We also extend the first-order CRF model to the second-order model so
that we can capture dependency among three adjacent nucleotides. As in
Figure 5, two adjacent positions are combined to a single super node. All
the algorithms for the first-order CRF model can be easily extended to the
second-order model.
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Fig. 5. The second-order CRF model describes RNA sequence–structure
relationship. A super node in this model contains the conformation states in
two adjacent positions.

2.3 A tree-guided conformation sampling algorithm
Once the CRF model is trained, we can use it to sample conformations for a
segment in an RNA molecule. By combining this segment conformation
sampling algorithm with a tree representation of the RNA base pairing
information, we can have a tree-guided conformation sampling scheme,
which enables us to sample conformations for two segments far away from
each other along the sequence.

Building a guide tree for conformation sampling: the guide tree represents
the base pairing information in an RNA, which can be predicted using
a secondary structure prediction method or determined by experimental
methods. In the case of pseudo-knots, we remove the minimal number of
base pairings so that a tree can be built. Since the pseudo-knots do not occur
frequently, removal of a small number of base pairings does not impact
our method. Note that all the base pairings are taken into consideration in
calculating the energy of a sampled conformation. Therefore, removal of
some base pairs in tree construction will not impact the formation of pseudo-
knots, since we also use energy function to guide the folding simulation.
Given the base pairing information, we build a guide tree as follows. The
root node in the tree corresponds to the whole RNA. Given a base pair
(i, j), we have one node in the tree corresponding to the segment between
i and j. One node A is the child of the other node B if and only if the
segment corresponding to B is the minimal segment containing the segment
corresponding to A. In case that one node has more than two child nodes, we
can always add some intermediate nodes so that any node has at most two
child nodes. For example, supposing node B, corresponding to segment (i,
j), has three child nodes A1, A2 and A3, where Ak corresponds to segment
(ik , jk) and i< i1< j1< i2< j2< i3< j3< j. We can add an intermediate node
C for segment (i1, j2) so that C becomes the parent node of A1 and A2 and
B has only two child nodes A3 and C.

Segment conformation sampling algorithm: This sampling algorithm
consists of two steps: sampling a label for each nucleotide, in the segment,
by the probability calculated from the CRF model and sampling real-
valued angles from Gaussian distribution corresponding to a label. We use
a forward–backward algorithm to sample the label sequence of a segment
from position i to j. The algorithm iteratively draws a conformation label of
the last position from the conditional probability as follows.

P(Yj =yj|X =x)=
{

1
Z(x) F(t,yj,x)e�(yj ,yj+1), j<L

1
Z(x) F(t,yj,x), j=L

F(t,y,x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N∑
u=0

F(t−1,u,x)e�(u,y)+�(y,xt ), t> i

e�(yt−1,y)+�(y,xt ), t = i, i>1

e�(y,xt ), t = i, i=1

Meanwhile, Z(x) is the partition function and can be calculated using the
forward–backward algorithm. After the conformation state at position j is
sampled, the algorithm replaces j by j−1 and repeats the sampling process
until position i is sampled. Once the labels of the segment are sampled, we

can sample the real-valued angles from the Gaussian distribution associated
with a label.

Folding simulation: the folding simulation begins with a heating up
process, in which we repeatedly sample conformations for the whole RNA
using the above-mentioned segment conformation sampling algorithm. This
heating up procedure terminates if one conformation without steric clashes
is generated. In our experiments, we usually can obtain a conformation
without clashes very quickly, which is used as the initial conformation of the
simulated annealing optimization (Andrieu et al., 2003; Zhao et al., 2010).

To resample conformations of an RNA, we build a conformation sampling
guide tree based upon the base pairing information in the RNA and all the
nodes in the tree are marked as ‘undone’. The torsion angles of the RNA are
resampled using a bottom-up method along the tree as follows. We randomly
pick up an ‘undone’ node A in the tree, which is either a leaf node or a node
with all the child nodes being marked as ‘done’.

(i) If A is a leaf node, we resample the angles for the segment
corresponding to A using the segment conformation sampling
algorithm.

(ii) If A has one or two child nodes, by cutting out the segments
corresponding to the child nodes, we have at most three separate
segments left in A, for which we use the segment conformation
sampling algorithm to generate angles separately.

The new conformation is accepted if its energy is lower. Otherwise it is
accepted by a probability exp(	E/T ), where 	E is the energy difference
between current and the new conformations and T is the annealing
temperature. This sampling procedure is repeated 3000 times and then node
A is marked as ‘done’. The folding simulation process ends when the root
node is marked as ‘done’.

Energy function: different from the complex energy function in FARNA,
we adopt a simple energy function used by BARNACLE (Frellsen et al.,
2009) as follows.

E =
√√√√ 1

|H|
|H|∑
k=1

(d̂k −dk)2

where H is the number of hydrogen bonds formed in the secondary structure
(every A–U and G–U pair contributes two distances, and every C–G pair
contributes three distances), d̂k is the distance between the donor and the
acceptor of the k-th hydrogen bond and dk is the average length of hydrogen
bonds of the same type. The smaller this value is, the more the decoy is
consistent with its secondary structure. The energy is measured in Å, and the
ideal base pair energy of 0 Å is only obtained for conformations with perfect
base paring.

We employ such a simple energy function (without any tuned parameters)
so that we can carefully examine the performance of our sampling algorithm
and perform a well-controlled comparison with other sampling methods
such as BARNACLE. More sophisticated energy items, such as Mg2+ ion
interaction and stacking effect of base pairs, can be taken into account in
future study.

2.4 CRF model training
Training data: we build our training dataset from the RNA structure
classification database DARTS (Abraham et al., 2008), which collects 244
structures representing 1333 solved RNA structures and groups them into 94
clusters. Our training set comes from the 94 cluster representative structures,
which have ∼6000 nucleotides in total. We use all 94 cluster representative
structures to build empirical distributions of bond torsion angles. To make
sure our training dataset does not overlap with the 11 benchmark RNA
molecules, we exclude the representative structures in the same cluster as
the 11 benchmark RNA. With the remaining 83 structures, we use 3-fold
cross-validation to determine the CRF model regularization factors λ and µ
and the proper window size. In each fold validation, two thirds of structures
are used for training and the remaining for test.
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°

Fig. 6. The 5% quantiles of the RMSD distributions for decoys sampled
from the CRF models with different number of conformation states. Y -axis
is the RMSD value.

°

Fig. 7. The 5% quantiles of the RMSD distributions for decoys sampled
from models with different distributions of torsion χ. Model 1 uses a fixed
value of χ. Model 2 uses log normal distribution. Model 3 is the normal
distribution. Model 4 is the empirical distribution of all values in training
data. Models 2 and 3 are fit from all training data.

Model selection: the (training/test) accuracy of a second-order CRF model
is defined as the number of correctly predicted states divided by the total
number of positions. Fixing the number of conformation states in a CRF
model, we search for the appropriate regularization factors and window size
using a grid search strategy. As shown in the Supplement Figure 1, the
CRF model with 50 conformation states has the best performance when
λ=5, µ=10 and window size = 5. We choose these parameters to maximize
accuracy and avoid overfitting. Supplement Figure 1 shows that a larger
window size does not improve the test accuracy significantly, but increase
the accuracy gap between the training and test data, which might indicate
overfitting.

We also investigate the sampling performance of the CRF model with
respect to the number of conformation states. We tested our CRF models
with 20, 30, 50, 80 and 100 conformation states. For each CRF model, we
generate 3000 decoys for each of the five RNAs: 2a43, 28sp, 2f88, 1zih and
1xjr. Figure 6 shows the 5% quantiles of the RMSD distributions for decoys
generated by four different CRF models. As shown in Figure 6, the model
with 50 states generates better decoys than others.

Using different methods to model the distribution of torsion, χ, makes
a slight difference on the quality of sampled decoys. Figure 7 shows the
5% quantiles of RMSD values for 300 decoys sampled using four different
χ distributions with a well-trained CRF model. In Model 1, we fix χ as the
mean of the training data. Model 2 samples χ from a log normal distribution.
Model 3 samples χ from a normal distribution. Model 4 uses sample χ
directly from the training data without using any mathematical modeling.
Finally, we decide to use the normal distribution for χ, to yield a bit of
variance.

Table 2. Comparison between FARNA and our method TreeFolder

FARNA TreeFolder

PDB
ID

Method Len Best
cluster
centroid

Lowest
RMSD
decoy

No. of
decoys

Best
cluster
centroid

Lowest
RMSD
decoy

#Decoys

1a4d NMR 41 6.48 3.43 28 949 3.65 2.69 7168
1esy NMR 19 3.98 1.44 69 103 2.00 1.52 22 529
1kka NMR 17 4.14 2.08 81 492 3.71 2.4 24 934
1l2x X-ray 27 3.88 3.11 47 958 8.07 3.97 15 360
1q9a X-ray 27 6.11 2.65 48 817 4.76 3.5 15 415
1qwa NMR 21 3.71 2.01 65 977 3.77 2.49 18 838
1xjr X-ray 46 9.82 6.25 24 646 9.26 7.05 7168
1zih NMR 12 1.71 1.03 117 104 1.19 0.73 40 960
28sp NMR 28 3.2 2.31 46 034 2.96 1.91 17 117
2a43 X-ray 26 4.93 2.79 49 972 4.52 3.47 18 432
2f88 NMR 34 3.63 2.41 36 664 3.33 2.7 12 230

The results of FARNA are taken from Table 1 in Das and Baker (2007). Column ‘Best
cluster centroid’ lists the RMSD of the best cluster centroid of the top 1% decoys with
the lowest energy. Column ‘No. of decoys’ is the number of decoys generated by the
methods. Bold fonts indicate better results.

3 RESULTS
We use 11 RNAs tested by both BARNACLE and FARNA to
benchmark our method TreeFolder. These RNAs contain 12∼
46 nucleotides and are not homologous to any structures in our
training dataset. In case an RNA has multiple NMR structures, we
use the first structure in the PDB file as its native structure.

It is not very reliable to compare two methods simply using the
decoys with the lowest RMSD, since they may be generated by
chance and also depend on the number of decoys to be generated.
The more decoys are generated, the more likely the lowest-RMSD
decoy has lower RMSD from the native. Therefore, a better strategy
is to compare the RMSD distributions of decoys.

Our TreeFolder generates better decoys than FARNA: we compare
FARNA and TreeFolder in terms of the quality of the decoy
clustering centroids. Similar to FARNA clustering only on the top
1% decoys with the lowest energy, we run MaxCluster to cluster
the top 1% of our decoys with the lowest energy into five clusters.
As shown in Table 2, TreeFolder can generate decoys with better
cluster centroids for nine RNAs: 1a4d, 1esy, 1kka, 1q9a, 1xjr, 1zih,
28sp, 2a43 and 2f88. By the way, even if a significantly smaller
number of decoys is generated by us, the lowest RMSD decoys by
our TreeFolder for 1a4d, 1zih and 28sp still have smaller RMSD
than those by FARNA.

Our TreeFolder generates better decoys than BARNACLE: Table 3
displays the 5% and 25% quantiles of the RMSD distributions for
decoys generated by BARNACLE and TreeFolder. The quantiles by
BARNACLE are taken from Supplementary Table S4 in Frellsen
et al. (2009). BARNACLE considers only decoys with energy <1,
since this kind of decoys are likely to have more correct base
pairings. We use exactly the same energy function as BARNACLE,
so we also consider only decoys with energy <1 to ensure a fair
comparison. We did not generate as many decoys as BARNACLE
and thus for some test RNAs we do not have many decoys with
energy <1. In this case, we use decoys with energy <2. On
the 10 RNAs shown in Table 3, TreeFolder yields better RMSD
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Table 3. The 5 and 25% quantiles of the RMSD distributions for decoys
generated by our method TreeFolder and BARNACLE

BARNACLE TreeFolder

PDB
ID

Len Bps 5% 25% 5% 25% # Energy
<1

5% 25% # Energy
<2

1esy 19 6 2.99 3.28 2.19 2.60 577 2.25 2.78 1102
1kka 17 6 4.40 5.02 3.75 4.30 349 3.8 4.39 776
1l2x 27 8 5.43 6.88 – – 0 5.44 8.08 5
1q9a 27 6 4.80 5.42 4.55 5.05 486 4.61 5.07 1025
1qwa 21 8 4.06 4.64 3.65 4.26 407 3.9 4.51 884
1xjr 46 15 10.41 11.01 8.50 9.43 22 8.84 9.79 540
1zih 12 4 1.72 2.16 1.32 1.84 1721 1.36 1.88 1931
28sp 28 8 3.23 3.76 2.88 3.43 152 2.93 3.58 563
2a43 26 7 4.72 6.08 – – 0 4.64 5.48 26
2f88 34 13 3.82 4.41 3.73 3.73 1 3.85 4.57 130

Bold numbers indicate better distributions. Columns ‘#energy < 1’ and ‘#energy < 2’
list the number of decoys with energy <1 and <2, respectively. ‘Bps’ is the number of
base pairings.

Table 4. Comparison between the CRF models using or without using
sequence information

Median RMSD value Median RMSD value

PDB
ID

With seq.
feature

Without
seq. feature

PDB
ID

With seq.
feature

Without
seq. feature

1zih 2.68 4.56 28sp 6.02 10.27
1esy 3.73 6.17 1a4d 7.79 11.60
1kka 5.49 6.67 2a43 10.62 12.25
1qwa 5.58 5.99 1l2x 11.01 10.74
1q9a 5.91 6.84 1xjr 10.92 12.70
2f88 6.36 9.55

For 10 of the 11 tested RNAs, the model using sequence information yields decoys with
much smaller median RMSD. Bold numbers indicate smaller RMSD values.

distributions for eight of them: 1esy, 1kka, 1q9a, 1qwa, 1xjr, 1zih,
28sp, 2a43 and 2f88.

Sequence information is important for RNA conformation
sampling: different from other two state-of-art methods, FARNAand
BARNACLE, our TreeFolder makes use of sequence information to
significantly improve conformation sampling, as measured by the
median RMSD values of decoys. The result is shown in Table 4,
in which we compare two CRF models: one using sequence to
sample conformations and the other not. Without using sequence
information, our CRF method is similar to BARNACLE. That is,
it models only angle state transitions in a RNA structure. Both
CRF models use 50 conformation states. For the CRF model
without sequence features, the regularization factor is set to 5 (i.e.
λ=5). While for the CRF model utilizing sequence information,
the regularization factor are set to 5 and 10 (i.e. λ=5, µ=10).
To calculate the median RMSD, for each RNA we generate 300
decoys using the two CRF models.

Sampling real-valued angles generates better decoys: in order to
show the detailed difference between our TreeFolder and FARNA,
we look into the decoys of 1esy. We choose it because that FARNA

Fig. 8. The RMSD histograms of the 3000 decoys generated by our method
TreeFolder (A) and FARNA (B) for 1esy.

Fig. 9. Correlation between the local RMSD at each position and the global
RMSD. The X-axis is the start position of a segment.

and TreeFolder yield the largest difference on this RNA among all
the 11 tested RNA molecules. As shown in Figure 8. TreeFolder
can generate a much larger percentage of decoys with RMSD <4 Å
than FARNA. We also compute local RMSD of each position in
the decoys, which is defined as the RMSD of the segment of four
consecutive nucleotides starting with this position, as compared to
the native structure. We calculate the correlation between the local
RMSD of each position with the global RMSD, as shown in Figure 9.
Among the decoys generated by both FARNA and TreeFolder, the
local RMSD at position 13 has the highest correlation with the global
RMSD. We also calculate the angle error at each position by Error=
‖v−v0‖2, where v is the angle vector of a decoy at one position and
v0 is the native angle vector at the same position.

Figure 10 shows the angle error histograms in three positions 13,
14 and 15. The angles at these three positions determine the
conformation of the segment starting at position 13. At positions 13
and 15, the angle errors by our method TreeFolder are significantly
smaller than those by FARNA. As Figure 10 shows, the angle errors
by FARNA are distributed around several separated peaks, which
may be caused by the limited number of fragments used in FARNA.
In contrast, the angle errors by TreeFolder are distributed more
smoothly, possibly because we can sample real-valued angles.

Folding RNA using predicted secondary structures: we use the
secondary structures predicted by CONTRAfold (Do et al., 2006)
and sample 1000 decoys for each RNA. The quantiles of their RMSD
values are shown in Table 5. On 6 of the 10 tested RNA, decoys
generated from native secondary structures are better than those
from predicted secondary structures. On the other four RNAs, the
difference between the two types of decoys is small, because of
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Fig. 10. The angle error histograms at positions 13, 14 and 15. At positions
13 and 15, the decoys by our TreeFolder have much smaller angle errors
than those by FARNA.

Table 5. Comparison between folding with native and predicted secondary
structure

PDB ID Distribution of RMSD values

Native SS Predicted SS

5% 25% 5% 25%

1esy 2.25 2.78 3.90 4.35
1kka 3.80 4.39 4.57 5.46
1l2x 5.44 8.08 15.23 (3.53) 17.32 (3.88)
1q9a 4.61 5.07 4.65 5.01
1qwa 3.90 4.51 3.45 4.31
1xjr 8.84 9.79 9.17 9.79
1zih 1.36 1.88 3.56 4.02
28sp 2.93 3.58 2.71 3.63
2a43 4.64 5.48 21.22 (3.89) 21.99 (4.35)
2f88 3.85 4.57 3.58 4.21

The four numerical columns list the RMSD values of the 5 and 25% quantiles of the
decoys with energy values <2. Bold numbers indicate better results.

accurate secondary structure prediction. The results for 1l2x and
2a43 from predicted secondary structures are quite bad, since all
of their base pairs are contained in a H-type pseudoknot and only
half of their base pairs are recovered by CONTRAfold. However,
our TreeFolder generates decent conformations for half of the
pseudoknot with predicted base pairs, as shown in brackets. In
particular, TreeFolder generates decent structures for 2a43 from
nucleotides 1 to 14 and for 1l2x from nucleotides 1 to 18,
respectively. In order to improve sampling performance on the whole
structures of 1l2x and 2a43, we need an energy function like what
is used in FARNA to guide the folding simulation.

Comparison with MC-Sym on the large RNA molecules: our
TreeFolder is much faster than the MC-Fold and MC-Sym pipeline
(Parisien and Major, 2008) for folding large RNA molecules, as

Table 6. Running time comparison between MC-Sym and our TreeFolder
on large RNA molecules

PDB ID Length MC-Sym (h) TreeFolder (s)

1l8v 152 48 1919
2gis 94 32 564
1vc7 74 46 400

Fig. 11. Overlay representation of the best centroids (red) of 1q9a, 2a43 and
1xjr (from left to right) with their native structures (blue). These three RNA
molecules have lengths of 27 nt, 26 nt and 49 nt.

shown in Table 6. The running times in this table were obtained on
a workstation with 96 GB RAM and 24 computing cores [2.67 GHz
Intel(R) Xeon(R)].

Overlay examples: Figure 11 shows three overlay examples of
1q9a, 2a43 and 1xjr with length of 27 nt, 26 nt and 49 nt, respectively.
Pictures in blue display native, while in red the best centroids
produced by our algorithm. As shown in this figure, our algorithm
recovered a pseudoknot for 2a43.

4 CONCLUSIONS
We have presented a new method TreeFolder for modeling RNA
sequence–structure relationship and conformation sampling using
CRFs and a tree-guided sampling scheme. Our CRF method not
only captures the relationship between sequence and angles, but
also models the interdependency among the angles of three adjacent
nucleotides. Our conformation sampling method distinguishes
from FARNA in that we do not use fragments to build RNA
conformations, so that we do not need to worry about if there are
a sufficient number of structure fragments to cover all the possible
local conformations. Our TreeFolder also differs from both FARNA
and BARNACLE, in that we use primary sequence to estimate
the probability of backbone angles, while the latter two do not.
In addition, we also use a tree, built from (predicted) secondary
structure, to guide conformation sampling so that at one moment
we can simultaneously sample conformations for two segments
far away from each other along the RNA sequence. In contrast,
both FARNA and BARNACLE can only sample conformations for
a single short segment at any time. The results indicate that our
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TreeFolder indeed models sequence–structure relationship well and
compares favorably to both FARNA and BARNACLE, even if we
use only the same simple energy function as BARNACLE.

We will extend our TreeFolder further. For example, we can
incorporate information in sequence homologs into our CRF model
so that we can estimate the conformation probability more accurately
and thus improve the sampling accuracy. Information in homologs
has been successfully used in RNA secondary structure and should
be useful for 3D structure prediction. Information in homologs has
also been used for protein conformation sampling (Zhao et al.,
2010). Currently TreeFolder works well when the native base
pairing information is used to calculate the energy function (same as
BARNACLE) and to build the sampling guide tree. Not all the RNAs
without 3D structures have the native base pairing information. Our
next step is to further improve TreeFolder with the predicted base
pairings. In particular, we need to design an energy function similar
to what is used in FARNA to guide the folding simulation so that
TreeFolder works well even if the predicted secondary structure is
not very accurate. To tolerate errors in the predicted base pairing
information, we will use the predicted confidence as the weight of
each item in the energy function and only use those base pairings
with high confidence to build the conformation sampling guide tree.
We can also take another strategy to circumvent possible impact of
errors in the predicted base pairings. In particular, we will extend
our CRF method so that we can simultaneously sample base pairings
and 3D conformations so that errors in the predicted base pairings
will be corrected in the folding simulation process.

Currently, we use a very simple energy function to guide the
folding simulation. We will develop a more sophisticated energy
function to guide the formation of hydrogen bonds in a better way,
just like what FARNA does. Thus, we can not only generate decoys
with better RMSD, but also with better hydrogen bonds.
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