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[1] Detecting and quantifying the presence of human-induced climate change in regional
hydrology is important for studying the impacts of such changes on the water resources
systems as well as for reliable future projections and policy making for adaptation. In this
article a formal fingerprint-based detection and attribution analysis has been attempted to
study the changes in the observed monsoon precipitation and streamflow in the rain-fed
Mahanadi River Basin in India, considering the variability across different climate models.
This is achieved through the use of observations, several climate model runs, a principal
component analysis and regression based statistical downscaling technique, and a Genetic
Programming based rainfall-runoff model. It is found that the decreases in observed
hydrological variables across the second half of the 20th century lie outside the range that is
expected from natural internal variability of climate alone at 95% statistical confidence
level, for most of the climate models considered. For several climate models, such changes
are consistent with those expected from anthropogenic emissions of greenhouse gases.
However, unequivocal attribution to human-induced climate change cannot be claimed
across all the climate models and uncertainties in our detection procedure, arising out of
various sources including the use of models, cannot be ruled out. Changes in solar
irradiance and volcanic activities are considered as other plausible natural external causes
of climate change. Time evolution of the anthropogenic climate change ‘‘signal’’ in the
hydrological observations, above the natural internal climate variability ‘‘noise’’ shows that
the detection of the signal is achieved earlier in streamflow as compared to precipitation for
most of the climate models, suggesting larger impacts of human-induced climate change on
streamflow than precipitation at the river basin scale.
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1. Introduction
[2] Over the last two decades, there is an increasing in-

terest in scientists, engineers and policy makers about how
the climatic variables and associated natural resources and
human systems are being affected by external forcings and
whether such effects have surpassed the influence of natural
internal variability of the climate. Detection and attribution
(D&A) of human-induced climate change provide a formal
tool to decipher the complex causes of climate change. The
Intergovernmental Panel on Climate Change’s (IPCC) good
practice guidance paper on detection and attribution of cli-
mate change [Intergovernmental Panel on Climate Change,
2010] defines ‘‘detection’’ of climate change as ‘‘the process

of demonstrating that climate or a system affected by climate
has changed in some defined statistical sense, without pro-
viding a reason for that change,’’ while ‘‘attribution’’ is
defined as ‘‘the process of evaluating the relative contribu-
tion of multiple causal factors to a change or event with an
assignment of statistical confidence.’’ Regional D&A studies
provide an insight to local changes in natural systems and
may help in planning and developing robust adaptation strat-
egies [Hawkins and Sutton, 2012].

[3] Formal detection and attribution have been previ-
ously used to investigate the nature of changes in various
climatological variables such as air temperature [Hegerl
et al., 1996, Allen and Stott, 2003], ocean heat content
[Barnett et al., 2001], ocean circulation indices [Santer
et al., 1995], surface specific humidity [Willett et al.,
2007], tropospheric moisture content [Santer et al., 2007],
sea level pressure [Gillett et al., 2003], continental river
runoff [Gedney et al., 2006], global land precipitation
[Zhang et al., 2007] and global precipitation extremes [Min
et al., 2011]. However, these studies deal with climatologi-
cal or meteorological variables at the global or continental
scale. Studies which have attempted to formally detect and
attribute regional hydrometeorological changes to anthropo-
genic effects are rare. Regional-scale D&A analysis is more
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difficult because the detection of anthropogenic ‘‘signal’’ in
natural internal climate variability ‘‘noise’’ is determined by
the signal-to-noise ratio which is proportional to the spatial
scale of analysis [Karoly and Wu, 2005; Stott et al., 2010;
Hegerl and Zwiers, 2011].

[4] Timbal et al. [2006] used the method of analogous
synoptic situations to study the decrease in late 20th cen-
tury rainfall in southwest Australia. Wang et al. [2009]
quantified the effects of climate variations and human
activities by a water balance model in the Chaobai River
Basin in China. However, these two studies do not apply
any formal D&A analysis to study the local hydrological
changes.

[5] Maurer et al. [2007], Bonfils et al. [2008], Pierce
et al. [2008], Barnett et al. [2008], Hidalgo et al. [2009]
and Pierce et al. [2009] conducted a series of linked studies
that performed formal regional D&A analysis on hydrolog-
ical or hydrologically relevant meteorological variables for
the Western United States. For largely snow-fed rivers in
that mountainous region, these studies analyzed causes of
larger spring runoff, rising winter and spring temperatures,
earlier snowmelt and earlier streamflow center timings,
which are direct implications of increasing greenhouse gases
in the atmosphere and increasing global temperature.

[6] In the case of tropical river basins which are hugely
dependent on monsoon rainfalls rather than snowmelt, it is
necessary to study how monsoon precipitations or monsoon
streamflows are affected by anthropogenic climate change.
Monsoon precipitation and streamflow sustain a very large
fraction of the total annual water resource for these river
basins. Local hydrological impacts of climate change may
not imply any obvious increasing or decreasing trend in
tropical river basins, unlike in the case of snow-fed rivers.
This motivates the current study which attempts to perform
a formal D&A analysis to examine whether the observed
trends in these hydrological variables lie statistically signif-
icantly outside the range that is expected from natural inter-
nal variability of climate alone and whether a signal of
anthropogenic emissions is discernible in them.

[7] Pierce et al. [2009] applied multiple General Circula-
tion Model (GCM) runs from the World Climate Research
Programme’s Coupled Model Intercomparison Project
(WCRP/CMIP3) (see https://esg.llnl.gov:8443/about/ftp.do)
for a regional D&A analysis considering hydrologically rele-
vant temperature (January–February–March minimum near
surface air temperature) as the detection variable. Their em-
phasis was more on the construction and application of per-
formance metrics to assess GCM performances in simulating
regional climate with respect to the D&A analysis.

[8] In this study, we attempt to detect and attribute
anthropogenic climate change as well as study the time evo-
lution of the signal-to-noise ratio for both precipitation and
streamflow accounting for the variability across the differ-
ent climate models of the WCRP/CMIP3. For each of the
GCMs considered, we try to find answers to questions such
as when is a change in hydrology above natural internal cli-
mate variability observed, and how much of the observed
change is actually due to anthropogenic climate change.

[9] Thus, the objective of the study is to assess whether
or to what extent the trends in observed monsoon precipita-
tion or streamflow are likely to be resulting from the natural
internal variability of climate alone or can be explained by

external forcings. The effects of internal climate variability
and external anthropogenic or solar and/or volcanic activ-
ities are estimated from statistically downscaled river
basin–scale hydrological variables using corresponding large-
scale climate variables from long, preindustrial control runs,
or anthropogenically forced 20th century runs, or solar and/or
volcanically forced historical runs, respectively, from each
climate model.

[10] The standard ‘‘fingerprint’’ based D&A analysis has
been applied (section 2), and the tropical rain-fed Mahanadi
River flowing through the coastal region of Orissa in India
is chosen as the case study for application (section 3).
The results are discussed in section 4 and summarized in
section 5. The principal component analysis and linear regres-
sion based statistical downscaling technique is described in
details in Appendix A. For each of the climate model runs, a
Genetic Programming (GP) based monthly rainfall-runoff
model has been used to generate corresponding streamflows
from precipitation. This GP-based rainfall-runoff model is
explained in Appendix B.

2. Fingerprint-Based Detection and Attribution
Methodology for River Basin–Scale Hydrology

[11] In the recent past, pattern-based ‘‘fingerprint’’
method of detection and attribution of human-induced cli-
mate change has been increasingly used as the foremost
rigorous tool for assessing the complex causes of climate
change [Hasselmann, 1979; Hegerl et al., 1996; Allen and
Tett, 1999; Barnett et al., 2001]. The fingerprint defines the
direction in which the human-induced signal is expected to
lie [Santer et al., 1995]. Fingerprint approaches reduce the
detection problem to a univariate or low-dimensional prob-
lem in the detection variable [Hegerl et al., 1996]. In this
low-dimensional space, the human-induced climate change
‘‘signal’’ in the observations and the natural internal cli-
mate variability ‘‘noise’’ are statistically contrasted, and the
detected vector is further compared with the vector
obtained from the expected climate change pattern. Per
Barnett et al. [2001, 2008], in this study the signal strength
(S) is defined as the least squares linear trend of the hydro-
logical vector projected into the fingerprint for each of the
climate runs year by year. Thus, S is defined as

S ¼ trend ½FðxÞ:Dðx; tÞ�; (1)

where F(x) is the signal fingerprint, D(x,t) indicates the
monsoon precipitation or streamflow time (t) series at the
different locations (x), observed or downscaled from an en-
semble model run and ‘‘trend’’ denotes least squares linear
trend of the year by year dot product between F(x) and
D(x,t). D(x,t) series are standardized by removing time
means and dividing by the standard deviations. A single
spatial fingerprint, F(x), from a GCM is defined as the leading
Empirical Orthogonal Function (EOF) of the anthropogeni-
cally forced ensemble-averaged time series of monsoon pre-
cipitation or streamflow at the different locations for that
GCM. For detection, it is examined how similar the observed
changes in the monsoon precipitation or streamflow in the
river basin are to the fingerprint. Also, the likelihood that a
signal of the observed strength could have occurred by chance
in the preindustrial control runs is thereafter calculated.
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Estimation of internal climate variability ‘‘noise’’ from prein-
dustrial control runs is a standard procedure when sufficiently
long observational data sets uncontaminated by the searched-
for signal is not available [Jones and Hegerl, 1998; Barnett
et al., 2001, 2005]. For attribution of the detected changes, it
is needed to then test the hypothesis that the trends of the
anthropogenically forced runs are consistent with the trends
in the observations and that these signs are dissimilar to the
solar and/or volcanically forced runs.

[12] The detectability over time for both monsoon precip-
itation and streamflow are assessed by the method of deter-
mining the earliest year in which human-induced climate
change is detected over the natural variability, following
Santer et al. [1995, 2007]. Starting from the commencing
year of the observations of precipitation and streamflow,
trends for increasingly longer intervals of time are calcu-
lated both for observed series and that from control runs.
For each GCM, the year by year projections of the observa-
tional and the control runs standardized anomaly data onto
the fingerprint yield the signal and noise time series Z(t) and
N(t), respectively. Thus, for a hydrologic variable (i.e.,
monsoon precipitation or streamflow) for a GCM,

ZðtÞ ¼ FðxÞ:Dobsðx; tÞ; (2)

NðtÞ ¼ FðxÞ:Dcontrolðx; tÞ; (3)

where Dobs(x,t) and Dcontrol(x,t) are the D(x,t) time series of
equation (1) corresponding to observations and the control
run, respectively. It may be noted that N(t) is typically of
much longer length compared to Z(t). Least squares linear
trends of increasing length L (L ¼ 10, 11, 12, . . ., to no. of
years of observation) are fitted to Z(t) and nonoverlapping
L-length segments of the N(t) time series. Thus, following
Santer et al. [1995], if there are m nonoverlapping L-length
segments in N(t), with slopes �(c), c ¼ 1, 2, . . ., m, the
standard error of the linear trend, that is, the noise ", is
given by

" ¼ 1

m� 1

Xm

c¼1

�ðcÞ
2

" #1
2

; (4)

where the mean of �(c) in the noise distribution is assumed
to be zero.

[13] Detection is said to be achieved when the ratio of
the linear observed signal trend (Sobs) to the noise " (that is,
the signal-to-noise ratio) stays at or above a stipulated sig-
nificance threshold of 5% or 10%.

[14] It is to be noted that the optimization of the detec-
tion process to increase the signal-to-noise ratio is not per-
formed here, since it requires a part of the control runs data
to be used for optimization, which is not allowed to be used
again for detection. This study focuses on river basin–scale
detection and attribution of human-induced changes in
hydrological variables for different climate models of the
WCRP/CMIP3. While analyzing the evolution of the
anthropogenic climate change signal using noise from indi-
vidual model runs, losing a part of the control runs data for
optimization might leave us with too few data to convinc-
ingly conclude about detection. Moreover, the exclusion of

the optimization process makes our results rather conserva-
tive since the accentuation of the signal-to-noise ratio is
likely to make detection all the more distinct and achieved
earlier in time [Santer et al., 1995, 2007].

3. Case Study Application
[15] The detection and attribution analysis of anthropo-

genic climate change in river basin–scale monsoon precipi-
tation and streamflow is applied to the Mahanadi river
basin in Orissa, India. Monsoon (total rainfall from June to
September in a calendar year) precipitation at the eight
locations in the basin (shown in Figure 1) and the corre-
sponding streamflow of the river at the Hirakud Reservoir
(shown in Figure 1) are the variables for which the analysis
is performed. Studies have already been reported on assess-
ment of impacts of climate change in the precipitation and
streamflow in this region [e.g., Ghosh and Mujumdar,
2007, 2008; Raje and Mujumdar, 2009, 2010]. However,
whether a human-induced climate change signal is indeed
discernible in the hydrological observations of this river ba-
sin for the recent past needs to be assessed.

[16] The Mahanadi river basin is situated in eastern India
between 19�200 N and 23�350 N latitude 80�300 E and
86�500 E longitude, and it flows eastward through most of
the state of Chhattisgarh, much of Orissa, and portions of
Jharkhand and drains into the Bay of Bengal. The river
drains an area of 141,600 km2 and is of utmost importance
in the eastern part of India, both in terms of agriculture and
the population base it supports. Being situated in a coastal
region, climate change is quite likely to affect the hydrology
of this river basin [Raje and Mujumdar, 2009]. Moreover,
there have been reported increase of hydrologic extremes in
the recent past and the increase in temperature in this region
is 1.1�C/century, whereas the average increase for the whole
country is about 0.4�C/century [Rao and Kumar, 1992;
Rao, 1995].

[17] In most parts of India a significant portion of the
total annual rainfall is received during the short span of
summer monsoon. The summer monsoon rainfall over the
Mahanadi basin occurs mostly due to low-pressure systems
(LPSs) developing over the Bay of Bengal. Mohapatra and
Mohanty [2006] have studied the role of LPSs on spatial
and temporal variability of summer monsoon rainfall over
Orissa. Orissa state, a meteorological subdivision of India,
receives about 116.7 cm of rainfall during the southwest
monsoon season (June–September). This is about 80% of
the annual rainfall over Orissa [Parthasarathy et al., 1995].
Therefore the monsoon rainfall at each of the eight rainfall
locations is chosen as the first hydrological variable on which
detection and attribution analysis is performed. Gridded
observed monthly precipitation data for years 1951–1999 at
1� latitude by 1� longitude grid, interpolated from station
data, are obtained from the India Meteorological Department
(IMD). Figure 2 shows the time series of the observed mon-
soon precipitation at the eight locations from 1951–1999. A
significant decreasing trend is found at 95% confidence level
by the nonparametric Mann–Kendall test at locations 1, 5, 6,
and 7. All the other locations show statistically insignificant
trends. Very weak increasing trends are found in locations 3
and 4. In general, observed monsoon precipitation is found
to decrease in the river basin.
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[18] The Mahanadi River being mostly rain-fed, a large
fraction of the total annual streamflow results during the
summer monsoon, which is stored in the Hirakud Reservoir
to meet the demands during the year. Absence of a major
control structure upstream lets us treat the inflows to the
Hirakud Reservoir as naturalized streamflows in the river.
Observed monthly inflows are obtained from the Dept of
Irrigation, Government of Orissa [Patri, 1993]. Figure 3
shows the time series of the observed monsoon streamflow
of Mahanadi at Hirakud from 1959–1993.

[19] The observed monsoon streamflow also shows a sig-
nificant decreasing trend at 90% confidence level by the
nonparametric Mann–Kendall test. Significant decreases in
both the monsoon precipitation and streamflow suggest that
there have been major changes in the hydrology of the
region. If such changes are due to natural variability of cli-
mate, the hydrological cycle is expected to revert back to
its previous state with time [Barnett et al., 2008]. However,
if a human-induced climate change signal is indeed dis-
cernible in the observed decreases, modifications in water
policies become indispensable for sustainable management
of water resources in the river basin. Hence, a formal D&A
analysis to detect and attribute human-induced climate
change in the monsoon precipitation and streamflow in the
river basin is required. To achieve this, the fingerprint-
based detection method described in section 2 has been
employed, along with several climate model simulations
(including control runs and runs that are forced by anthro-
pogenic emissions or solar and/or volcanic forcings), a

statistical downscaling procedure to get the precipitations
for each climate model simulation and a GP based rainfall-
runoff model for generation of streamflows. As an example,
the step-by-step procedure to get the observed signal
strength (Sobs) for both precipitation and streamflow is
shown in Figure 4. In order to get the signal strength for
any other model run (say, segments from the control run, or
any other run forced by an external forcing), the D(x,t) se-
ries for precipitation and streamflow have to be simply
replaced by the downscaled precipitation from that model
run and the corresponding GP generated streamflow,
respectively. The details of the elements used in the D&A
analysis are discussed in the following sections.

3.1. Climate Models and Data

[20] The WCRP/CMIP3 archive has climate data simu-
lated by 23 climate models by 15 modeling groups from
across the world, in support of the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change
(IPCC AR4). Since the purpose of this study is to demon-
strate D&A analysis results across different climate mod-
els, 14 out of these 23 climate models are chosen as they
have data available for all the four predictors for the down-
scaling model (described in section 3.2), over the region of
interest, not only for the 20th century experiments, but also
for the preindustrial control runs. The details of the models
and simulations used in this study are indicated in Table 1.
The control runs include only natural internal variability of
climate (i.e., no external forcings), whereas the different

Figure 1. Mahanadi River Basin with the eight precipitation locations and the location of the Hirakud
Dam [from Raje and Mujumdar, 2009].
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Figure 2. Observed monsoon precipitation at the eight locations. The best fit lines are also shown.
Monsoon precipitation at stations 1, 5, 6, and 7 have statistically significant trends at 95% confidence
level.
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anthropogenically forced climate model runs include differ-
ent combinations of natural and anthropogenic forcings.
Four realizations (B06.66, B06.67, B06.68, B06.68) of the
Parallel Climate Model (PCM2.1) forced with both solar

and volcanic forcings, three realizations (B06.74, B06.75,
B06.76) forced with only solar forcing and three realiza-
tions (B06.78, B06.79, B06.81) forced with only volcanic
forcing, depending on availability of predictor data set, are

Figure 3. Observed monsoon streamflow in the Mahanadi River at the Hirakud Dam.

Figure 4. Step-by-step procedure for getting the observed signal strength (Sobs), for precipitation and
streamflow. In order to obtain the signal strengths corresponding to a climate model run, the precipitation
D(x,t) is simply replaced with the statistically downscaled precipitation from that model run and the
streamflow D(x,t) is replaced with the corresponding GP generated streamflow.
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used to test whether the natural external effects can explain
the observed changes in hydrology. Realizations with these
natural external forcings alone are not available for any other
GCM in the WCRP/CMIP3 database. Apart from the control
runs, for all other GCM runs, climate model data from 1951–
1999, corresponding to the period of observed hydrologic
data, are collected from the WCRP/CMIP3 archive. The
number of years of available control runs data varies across
different GCMs, as shown in the last column of Table 1.

3.2. Downscaling Methodology

[21] The climate data from each realization of the
GCMs, as mentioned in Table 1, are statistically down-
scaled to get the river basin–scale precipitation correspond-
ing to them. A principle component analysis and simple
linear regression based downscaling method taking season-
ality into consideration is employed here, following Ghosh
and Mujumdar [2006]. Near surface air temperature, mean
sea level pressure, specific humidity at 850 hPa and geopo-
tential height at 500 hPa are selected as predictors for precip-
itation in the downscaling model. Details of the downscaling
method are given in Appendix A. The R values of the final
regression models at the eight locations (1 to 8) are found to
be 0.892, 0.906, 0.873, 0.898, 0.879, 0.922, 0.896 and 0.943,
respectively. Overfitting is avoided by removing insignifi-
cant regression coefficients as found using the t-statistic.

[22] Additionally, a principal component analysis and ar-
tificial neural networks (ANN) based downscaling methodol-
ogy is also employed. Several recent studies have used ANN
as a statistical downscaling model to assess hydrological
impacts of climate change [e.g., Crane and Hewitson, 1998;

Wilby et al., 1998; Cavazos and Hewitson, 2005]. In our
opinion, linear regression and ANN form the two extremes
in representing the predictor-predictand relationship which is
the core of the statistical downscaling procedure, one being
linear and the other being essentially nonlinear in nature.
However, since no significant differences in the detection
and attribution results are noticed by varying the downscal-
ing model, the results shown here are those using only the
linear regression based downscaling model. Use of any other
statistical downscaling technique is unlikely to vary the
results of the D&A analysis.

[23] It is to be noted, however, that the structure of the
downscaling model is constant over all the scenarios of cli-
mate used in this study—the long preindustrial control runs
as well as the externally forced historical runs. Stationarity
assumption is a long-standing and well-recognized limita-
tion of statistical downscaling [Ghosh and Mujumdar,
2006, 2008] and presently there is no other known alterna-
tive with respect to statistical downscaling that can be used
here for obtaining rainfall corresponding to the different
GCM runs.

3.3. Generation of Streamflows Corresponding to
Different GCM Runs

[24] In order to generate streamflows corresponding to
long preindustrial control runs or historical externally forced
runs a GP-based rainfall-runoff model is employed. The
statistically downscaled monthly precipitations from the cli-
mate model runs are used as input to the GP-based rainfall-
runoff model. Monsoon streamflow in a year for each run is
thereafter calculated from the monthly streamflow series.

Table 1. Details of the Climate Model Runs Used in This Study

Name of the Model Run Model Origin
No. of Years
of Data Used

CONTROLbccr BBCR-BCM2.0 Bjerknes Center for Climate Research, Norway 250
ANTHbccr BBCR-BCM2.0 Bjerknes Center for Climate Research, Norway 1 � 49
CONTROLcgcm_t47 CCCma-CGCM3.1(T47) Canadian Centre for Climate Modeling and Analysis, Canada 1001
ANTHcgcm_t47 CCCma-CGCM3.1(T47) Canadian Centre for Climate Modeling and Analysis, Canada 5 � 49
CONTROLcgcm_t63 CCCma-CGCM3.1(T63) Canadian Centre for Climate Modeling and Analysis, Canada 300
ANTHcgcm_t63 CCCma-CGCM3.1(T63) Canadian Centre for Climate Modeling and Analysis, Canada 1 � 49
CONTROLcnrm CNRM-CM3 Meteo-France/Centre National de Recherches Meteorologiques, France 500
ANTHcnrm CNRM-CM3 Meteo-France/Centre National de Recherches Meteorologiques, France 1 � 49
CONTROLcsiro_mk3_0 CSIRO-Mk3.0 Commonwealth Scientific and Industrial Research Organization, Australia 380
ANTHcsiro_mk3_0 CSIRO-Mk3.0 Commonwealth Scientific and Industrial Research Organization, Australia 2 � 49
CONTROLcsiro_mk3_5 CSIRO-Mk3.5 Commonwealth Scientific and Industrial Research Organization, Australia 330
ANTHcsiro_mk3_5 CSIRO-Mk3.5 Commonwealth Scientific and Industrial Research Organization, Australia 3 � 49
CONTROLfgoals IAP-FGOALS-g1.0 Institute for Atmospheric Physics, China 3 � 350
ANTHfgoals IAP-FGOALS-g1.0 Institute for Atmospheric Physics, China 3 � 49
CONTROLinmcm INM-CM3.0 Institute for Numerical Mathematics, Russia 330
ANTHinmcm INM-CM3.0 Institute for Numerical Mathematics, Russia 1 � 49
CONTROLipsl IPSL-CM4 Institute Pierre Simon Laplace, France 500
ANTHipsl IPSL-CM4 Institute Pierre Simon Laplace, France 1 � 49
CONTROLmpi_echam5 ECHAM5/MPI-OM Max-Planck Institute for Meteorology, Germany 506
ANTHmpi_echam5 ECHAM5/MPI-OM Max-Planck Institute for Meteorology, Germany 3 � 49
CONTROLmri_cgcm MRI-CGCM2.3.2a Meteorological Research Institute, Japan 350
ANTHmri_cgcm MRI-CGCM2.3.2a Meteorological Research Institute, Japan 5 � 49
CONTROLpcm PCM2.1 National Center for Atmospheric Research, USA 749
ANTHpcm PCM2.1 National Center for Atmospheric Research, USA 6 � 49
SOLVOLpcm PCM2.1 National Center for Atmospheric Research, USA 4 � 49
SOLpcm PCM2.1 National Center for Atmospheric Research, USA 3 � 49
VOLpcm PCM2.1 National Center for Atmospheric Research, USA 3 � 49
CONTROLhadcm3 UKMO-HadCM3 Hadley Center for Climate Prediction and Research, UK 341
ANTHhadcm3 UKMO-HadCM3 Hadley Center for Climate Prediction and Research, UK 2 � 49
CONTROLhadgem1 UKMO-HadGEM1 Hadley Center for Climate Prediction and Research, UK 240
ANTHhadgem1 UKMO-HadGEM1 Hadley Center for Climate Prediction and Research, UK 2 � 49
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[25] In the recent past, GP has been increasingly used
to model the rainfall-runoff process [Savic et al., 1999;
Whigham and Crapper, 2001; Muttil and Liong, 2001;
Liong et al., 2002; Dorado et al., 2003; Babovic and
Keijzer, 2006; Kashid et al., 2010; Rodriquez-Vázquez
et al., 2012] and has been shown to be a viable alternative
to traditional rainfall-runoff models. This is particularly im-
portant for data scarce regions such as the Indian river
basins, for which applications of a physically based hydro-
logical model might be infeasible. Moreover, GP has the
advantage of providing inherent functional input-output
relationships as compared to traditional black box models,
which can offer some possible interpretations to the under-
lying process [Jayawardena et al., 2005].

[26] The rainfall-runoff model is calibrated using the
observed monthly rainfall from July 1958 to June 1984 at
locations 4 to 8 (since they are the ones contributing
directly to the Mahanadi streamflow at Hirakud) as input,
and the observed monthly inflows to the Hirakud reservoir
as the target output. The weights of the rainfalls at each of
these stations are implicitly learnt by the GP model; for
example, rainfall at a station not contributing significantly
to the streamflow at Hirakud is expected to have a low
weight in the final GP model. The model does lead to negli-
gibly small negative flows which are replaced by zero in
our analysis. The data from July 1984 to June 1993 has
been used for testing. Figure 5 shows the training and test-
ing results of the rainfall-runoff model. The R values
obtained for training and testing are 0.89 and 0.64, respec-
tively. Methodological details of the GP-based rainfall-run-
off model are described in Appendix B.

[27] The GP-based rainfall-runoff model is capable of
learning and implicitly simulating the intermediate proc-
esses that convert rainfall into runoff. The structure and pa-
rameters of the GP-based rainfall-runoff model can be
related to actual causal physical hydrological processes, fol-
lowing some recent studies which attempt to extract hydro-
logical knowledge from artificial neural network model
parameters [Jain and Kumar, 2009; Sudheer and Jain,
2009; Jain et al., 2008]. However, this paradigm is out of
scope of our present study since our primary focus remains
on the D&A analysis. A more rigorous approach of generat-
ing the streamflows would be to consider all the influencing
climate variables like temperature, humidity and wind speed
that affect the intermediate processes in the conversion of
rainfall to runoff in the streamflow generation process.

[28] It is to be also noted that the GP-based rainfall-run-
off model structure, and hence the streamflow generating
mechanism is assumed to be constant for generation of
streamflows corresponding to all the scenarios—the long
preindustrial control runs or the historical externally (natu-
rally or anthropogenically) forced runs of climate models.
Nonetheless, even if the computational GP-based rainfall-
runoff model is replaced by a perfectly calibrated physically
based distributed hydrological model like the Variable
Infiltration Capacity (VIC) or the Soil and Water Assess-
ment Tool (SWAT) or the Hydrologic Engineering Cen-
ter’s Hydrologic Modeling System (HEC-HMS), the results
of the D&A analysis are unlikely to vary since the struc-
ture and parameters of these physically based models are
also assumed to be constant for runoff generation corre-
sponding to the preindustrial or historical climate model

Figure 5. Performance of the GP-based rainfall-runoff model for (a) training and (b) testing periods.
The subzero GP-simulated flow values, which are negligibly small in number and magnitude, are
replaced by 0 for subsequent analysis.
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runs [Hidalgo et al., 2009]. The GP-based rainfall-runoff
model can hence replace a perfectly calibrated physically
based hydrological model. It can also be noted that the
mapping between rainfall and runoff is highly complex and
nonlinear since the model is calibrated with observed pre-
cipitation and streamflow data and conversion of observed
rainfall to observed streamflows involve complex interme-
diate processes like evapotranspiration, infiltration, etc.
Hence, even if the generated streamflows corresponding to
all historical GCM runs are thus deterministically deter-
mined, the trends or variabilities in the generated stream-
flows would not be the same as the trends or variabilities
of the rainfall used to generate them.

3.4. Calculation of Signal Strengths

[29] The statistically downscaled monsoon precipitations
from the anthropogenically forced (ANTH) runs of the dif-
ferent GCMs at all the eight locations are expressed as
anomalies with respect to the means calculated over the
entire 49 years observation period, and thereafter standar-
dized by division with the corresponding standard deviations.
The single spatial precipitation fingerprint corresponding to
each GCM is defined as the leading empirical orthogonal
function (EOF) of the ensemble-averaged eight precipitation
time series. Ensemble averaging and use of the leading EOF
are both noise reduction techniques [Santer et al., 1995;
Bonfils et al., 2008]. The projections of the observational, or
downscaled data from preindustrial control runs of the
GCMs or the anthropogenically or naturally forced runs of
the GCMs on the fingerprint are used for the detection and
attribution analysis. Thus, each location is weighted depend-
ing on how much it participates in the estimated anthropo-
genic signal. In general it is found that the EOF that
comprises the fingerprint for each GCM, explains 70% or
more of the total variance in the data set corresponding to
the GCM.

[30] Figure 6 shows the fingerprints derived from the en-
semble-averaged anthropogenically forced runs of the dif-
ferent GCMs for monsoon precipitation. For streamflow,
since runoff at only one outlet for the single river is under
consideration, the fingerprint is unity and does not define
any spatial pattern. It can be observed from Figure 6 that
the fingerprint is a monopole in sign across all the locations
for all the GCMs. Also, fingerprints from the different
GCMs are very similar despite their differences in external
forcings. It is interesting to examine whether or not this
leads to similar results in the D&A analysis. The multimodel
ensemble-averaged fingerprint is also shown in Figure 6.
Following the method given in Santer et al. [2007], the
hydrological time series are first averaged across an individ-
ual model’s 20th century realizations (where multiple real-
izations are available), and then the average across models
is taken. The observed monsoon precipitations or the down-
scaled monsoon precipitations from the various climate
model runs, and the corresponding streamflows are also
standardized before the fingerprint is projected onto them to
get the corresponding signal strength (S) values.

4. Results and Discussions
[31] The resulting detection plots for monsoon precipita-

tion and streamflow are given in Figure 7 and Figure 8,
respectively. The observed signal strengths, along with their
95% confidence intervals, calculated using different finger-
prints from different GCMs are very similar. Considering
fingerprints from all the GCMs, the observed signal strength
for monsoon precipitation, for example, lies in the range
[0.0439 6 0.001]. The observed signal strength for monsoon
streamflow is 0.0384 and it does not vary with different
GCM fingerprints since the fingerprint for one streamflow
location defines no spatial pattern. Hence, only the observed
signal strengths considering multimodel ensemble-averaged

Figure 6. Fingerprints (Leading EOF loadings) from the anthropogenically forced runs of the different
GCMs for monsoon precipitation. The multimodel ensemble-averaged ANTH fingerprint is shown in
black. The locations follow no ordering and the EOF loadings at the locations are not connected.
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fingerprint is shown in Figure 7 and Figure 8. The observa-
tions show a positive signal, which does not include zero at
95% statistical confidence level. The percentile ranks with
respect to the noise distribution for the observed signal
strength as well as the ensemble-averaged signal strengths
for the different GCM runs are shown in Figure 9 and Figure
10 for monsoon precipitation and monsoon streamflow,
respectively. These ranks are calculated from the distribution
of trends in the control runs, which is derived by a Monte

Carlo method described in details below. It can be seen that
the observed signal strength, considering multimodel ensem-
ble-averaged fingerprint (also true when most of the other
GCM fingerprints are considered), lies outside the range
expected from natural variability alone at very high statisti-
cal confidence (>95%) for both monsoon precipitation and
monsoon streamflow, thus achieving ‘‘detection.’’

[32] The significance tests in Figure 9 and Figure 10 are
conducted using an ensemble approach which reduces the

Figure 8. Detection plot for monsoon streamflow. Markings are same as Figure 7.

Figure 7. Detection plot for monsoon precipitation. The ensemble-averaged signal strengths (S values)
from each model run (dots) and their 95% confidence intervals (bars) are shown. The observed signal
strength (Sobs) with its 95% confidence interval, considering the multimodel ensemble-averaged ANTH
fingerprint is shown in black. The GCMs for which the ANTH signal strength is inconsistent in sign with
the observed signal strength are marked in cyan and those for which the ANTH signal strength is consist-
ent with the observed signal strength are marked in blue.
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random ‘‘weather noise’’ [Barnett et al., 2008]. The Monte
Carlo method used to estimate the distribution of noise esti-
mates the likelihood that a given ensemble mean value of
signal strength, S, can be drawn from the control runs,
given an ensemble of k members (for example, k ¼ 6 for
ANTHpcm, k ¼ 3 for SOLpcm, k ¼ 3 for VOLCANICpcm
and k ¼ 4 for SOLVOLpcm, k ¼ 1 for Observations, etc.).
Pooled noise data set is first estimated by joining N(t) series
from control runs of all the GCMs together (Table 1).

Pooling of control runs data from all the GCMs is preferred
since it gives conservative estimate of noise [Santer et al.,
2007].

[33] Groups of k members are now randomly selected
from among all the nonoverlapping 49-year segments in
the pooled noise and their ensemble-averaged S value is
calculated. This is repeated 10,000 times to form a distribu-
tion of control S for comparison with forced runs for each
model run or the observations. The likelihood that the

Figure 10. Percentile ranks of ensemble mean signal strengths with respect to pooled noise for mon-
soon streamflow. Markings are same as Figure 9. For streamflow, too, both the multimodel ensemble-
averaged ANTH signal strength and the observed signal strength are found to lie outside the 95% confi-
dence range expected from the control runs.

Figure 9. Percentile ranks of ensemble-averaged signal strengths with respect to pooled noise for mon-
soon precipitation. The 95 percentile from the noise distribution is shown as a dotted line and the signal
strengths from the externally forced runs which lie above the line are beyond the range expected from
natural internal climate variability. Both the multimodel ensemble-averaged ANTH signal strength and
the observed signal strength are found to lie outside the 95% confidence range expected from the control
runs.
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signal strength corresponding to each model run or the
observations falls within the noise distribution is estimated
based on their percentile ranks with respect to the noise dis-
tribution. As an example, if we consider the ANTH signal
strengths of BCCR-BCM2.0 and CGCM3.1-T63 for mon-
soon precipitation, ensemble size k ¼ 1 for each. Hence,
one 49-year segment is drawn from the pooled N(t) series
and the signal strength is computed. This is repeated
10,000 times.

[34] The probability density functions (pdf) of these signal
strengths is shown in Figure 11, along with the positions of
the ANTH signal strengths from BCCR-BCM2.0 and
CGCM3.1 T63 and the observed signal strength with multi-
model ensemble-averaged fingerprint. It is observed that the
ANTH signal strength from BCCR-BCM2.0 is more likely
to be drawn from the control runs than the ANTH signal
strength from CGCM3.1 T63, or the observed signal strength
(Sobs). Figure 7 and Figure 8 show that the signal strength in
the hydrological observations, which cannot be explained by
natural internal climate variability alone, is consistent in sign
with signal strengths of anthropogenically forced runs of
several GCMs (shown in blue). In general, such consistency
is more common across GCMs for monsoon streamflow than
for monsoon precipitation.

[35] It is argued in recent studies [Santer et al., 2007;
Pierce et al., 2009] that multimodel ensemble-averaged
estimates perform superior in simulating climate compared
to any individual model. One possible reason for this is the
reduction in noise because of ensemble-averaging. In this
study, too, it has been found that the multimodel ensemble-
averaged anthropogenic signal strength is consistent with

the observed signal strength for both precipitation and
streamflow. The difference in S values between the obser-
vation and the multimodel ensemble average anthropogenic
run is statistically insignificant for both monsoon precipita-
tion and streamflow. The multimodel ensemble-averaged
ANTH signal strength is about 71% of the observed signal
strength for monsoon precipitation, which means that about
71% of the trends in monsoon precipitation in the Maha-
nadi river basin over the second half of the 20th century
can be attributed to anthropogenic climate change. The
unexplained portion (about 29%) of the trends in monsoon
precipitation, on the other hand, can be due to changes in
regimes of atmospheric circulation patterns which are not
taken into account in the historical GCM runs or because of
other local influences. For monsoon streamflow, the multi-
model ensemble-averaged ANTH signal is stronger than
the observed signal strength. Thus, the multimodel ensem-
ble-averaged anthropogenic climate change estimate is, in
some sense, underpredicting the responses in local mon-
soon precipitation and overpredicting the same in monsoon
streamflow for this river basin. The percentage attribution
for each GCM is given in Table 2, both for monsoon pre-
cipitation and streamflow.

[36] Figure 7 and Figure 8 also give us an idea about the
relative merits of each climate model in simulating the
hydrological variables in this region of interest. The GCMs
shown in cyan (BCCR-BCM2.0, CGCM3.1-T47, CNRM-
CM3, CSIRO-Mk3.0, CSIRO-Mk3.5, INM-CM3.0 for mon-
soon precipitation; BCCR-BCM2.0 and MPI-ECHAM5 for
monsoon streamflow) are performing poorly as compared to
those shown in blue, since their anthropogenic signal strengths

Figure 11. Pdf of trends from the control run, with k ¼ 1. The positions of the ANTH signal strengths
from BCCR-BCM2.0 and CGCM3.1 (T63) for monsoon precipitation are shown. It can be seen that the
probability of finding the ANTH signal strength from BCCR-BCM2.0 in the control runs is much higher
than the probability of finding the same from CGCM3.1 (T63). Thus, the ANTH signal strength of
BCCR-BCM2.0 is not significantly different from the noise distribution. The observed signal strength
with multimodel ensemble-averaged fingerprint for monsoon precipitation is also shown to be unlikely
to be found in the control runs.
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are opposite in sign with the observed signal strength
(Figure 7 and Figure 8). A reason for this might be the
unrealistic simulation of climate by these GCMs so far as
the regional hydrological variables are concerned in the
river basin of interest. This is reaffirmed in Figure 9 and
Figure 10, which show that the anthropogenically forced
signal strengths of these GCMs do not evolve or signifi-
cantly differ from the preindustrial control runs. An exam-
ple can be seen in Figure 11 which shows that BCCR-
BCM2.0 anthropogenic signal is definitely less realistic as
compared to that of CGCM3.1 (T63), for the region and
variable of interest. This implies that for the poorer GCMs,
the human emissions and the subsequent increase in green-
house gases in the atmosphere post industrialization might
not have been taken into consideration accurately, as far as
regional hydrology in this region of interest is concerned.
Hidalgo et al. [2009] also mention that averaging over rela-
tively small regions often produces a distribution of anthro-
pogenically forced responses that is not well separated
from that of natural internal variability.

[37] Among the other plausible natural external climato-
logical causes for the observed hydrological changes, it is
interesting to note that the volcanically forced signal
strength is also consistent with the observed trends for mon-
soon precipitation, and both solar and volcanically forced
signal strength is also consistent with the observed trends
for monsoon streamflow (shown in Figure 7 and Figure 8).
However, this observation about natural external forcings is
based on outputs from one single GCM. (PCM2.1). It is to
be noted that in order to convincingly conclude about
observed hydrological changes being explained (or not) by
the solar or volcanic activities, we would require data from
runs with only these external forcings from several GCMs
instead of PCM2.1 alone, which at present is not available
from the WCRP/CMIP3 database. Gillett et al. [2004] also
detected volcanic influence in global precipitation, based on
the outputs of PCM2.1 alone.

[38] For estimation of detection times, least squares lin-
ear trends of increasing length are fitted to the signal and
noise series for each GCM. A two-tailed test is used,
assuming a Gaussian distribution of trends in the noise se-
ries N(t). However, here, instead of using pooled noise

from all the GCMs together, following Santer et al. [1994],
noise is derived from long preindustrial control runs of
each of the individual GCMs separately. In other words,
noise and signal from the same GCM are considered. The
detection years for both the hydrological variables are also
mentioned in Table 2. The time evolutions of signal-to-
noise ratio for monsoon precipitation and streamflow are
given in Figure 12 and Figure 13, respectively. Figure 12
and Figure 13 also show the 10% significance levels of the
signal-to-noise ratio assuming a Gaussian distribution of
trends, and detection is achieved when the signal-to-noise
ratio stays above this line.

[39] In general, the signal to noise ratios are found to be
higher for streamflow as compared to precipitation. It can
also be noted that detection of hydrologic change over and
above natural internal climate variability is discernible ear-
lier in monsoon streamflow than in monsoon precipitation,
across most of the GCMs. Barnett et al. [2008] also
reported detection of anthropogenic signal in streamflow
center timing, while trends in precipitation are indistin-
guishable from natural variability. In order to understand
why the detection and attribution results of precipitation
may differ from that of streamflow, it must be kept in mind
that while calculating the observed signal strengths (shown
in black in Figure 7 and Figure 8), as well as the signal to
noise ratios (shown in Figure 12 and Figure 13), year by
year dot products are taken between the anthropogenic fin-
gerprint and the observed space-time series of precipitation
and streamflow, depending on the variable under considera-
tion. Thus, the difference in trends and variability in the
observations of precipitation and streamflow significantly
influences the precipitation-streamflow differences in the
detection and attribution analysis, in this case, leading to
earlier detection times and a stronger signal in streamflow
as compared to precipitation. The coefficient of variation
(Cv) for observed monsoon streamflow series is 51.436,
while for precipitation series, the maximum value of Cv out
of the eight locations is 28.801. Variability in the stream-
flows is likely to be more because it is influenced by land
use change and also by climate variables such as tempera-
ture, net radiation, relative humidity etc that determine
evapotranspiration. The GP based rainfall-runoff model

Table 2. Detection and Attribution Summary at 10% Significance

GCM Name

Precipitation Streamflow

Detection Year of Detection Attribution Detection Year of Detection Attribution

BCCR_BCM2_0 � 1981 X � 1974 X
CGCM3_1_T47 � 1999 X � 1974 79%
CGCM3_1_T63 � 1999 97% � 1990 66%
CNRM_CM3 � 1974 X � 1990 5%
CSIRO_MK3_0 X – X � 1981 6%
CSIRO_MK3_5 X – X � 1981 7%
IAP_FGOALS1_0_g � 1998 100% X – X
INMCM3_0 � 1998 X � 1974 30%
IPSL_CM4 � 1996 100% � 1983 56%
MPI_ECHAM5 � 1999 25% � 1988 X
MRI_CGCM X – X � 1974 100%
PCM2_1 � 1998 62% � 1987 68%
UKMO_HadCM3 X – X � 1989 50%
UKMO_HadGEM1 � 1998 6% � 1987 60%
MultiModel � 1996 71% � 1968 100%
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Figure 13. Time-dependent signal to noise estimates for monsoon streamflow. Markings are same as
Figure 12.

Figure 12. Time-dependent signal to noise estimates for monsoon precipitation. The time-evolution of
the signal to noise ratios from the different GCMs and the multimodel ensemble average is shown. The
red horizontal line shows the 10% significance level and detection occurs when the signal-to-noise ratio
stays above this line.
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which is used to derive simulated streamflow correspond-
ing to each GCM run, is assumed to be capable of learning
the behavior of the complex intermediate processes con-
verting rainfall to runoff. Although the simulated stream-
flows are thus deterministically derived, yet this does not
guarantee that the variabilities or the trends of the rainfall
and the generated streamflow are same, particularly, given
the highly nonlinear and complex relation between them.

[40] It is to be noted that the fingerprint-based ‘‘detection
of climate change’’ in precipitation or streamflow that is
presented here, is different from the commonly perceived
‘‘detection of statistical change’’ in the hydrological time
series. ‘‘Detection of statistical change’’ involves paramet-
ric and nonparametric methods for detecting significant
trends or change points in the hydrologic time series. On
the other hand, ‘‘detection of climate change’’ occurs only
when the trends in the hydrological observations lie signifi-
cantly outside the distribution of trends expected from nat-
ural internal variability of climate alone (estimated from
precipitation and streamflow corresponding to no-forcing
preindustrial control runs of climate models). It is not
unnatural for the observed trend in streamflow to differ
from the observed trend in precipitation because of the
complex transformation of precipitation into streamflow,
and this is what subsequently causes the differences in the
climate change detection results between precipitation and
streamflow. It should be mentioned that our estimate of nat-
ural internal variability of climate, for both precipitation
and streamflow, may be uncertain because of stationarity
assumption of both the statistical downscaling model and
the streamflow generating mechanism. Also, long observed
precipitation or streamflow data spanning over centuries
including the preindustrial times that would correctly esti-
mate climate noise is unavailable. However, since in this
case study, the observed trends in streamflow or precipitation
are much higher than the trends expected from climate noise,
moderate change in climate noise trend values introduced by
use of a physically based model is unlikely to change the
D&A analysis results to a great extent. As an example,
Figure 11 shows that the mean trend value expected from
climate noise is about 0.005, while the observed trend (signal
strength) is about 0.045, almost an order of magnitude
higher.

[41] The findings of the D&A analysis in monsoon precipi-
tation and streamflow in the Mahanadi river basin is signifi-
cant in the context of changing climate and the predicted
further decrease in future flows in this region reported in other
studies [Mujumdar and Ghosh, 2008; Ghosh and Mujumdar,
2009; Raje and Mujumdar, 2010] and hence, it needs to be
considered for future water planning and adaptation.

4.1. Limitations of the Study

[42] It is to be noted that the detection and attribution
procedure adopted in this study involves uncertainties
because of the observed data, the fingerprint method, as
well as because of the use of models in order to derive the
climate change signal and the noise of natural internal cli-
mate variability in the monsoon precipitation and stream-
flow. Although the observed precipitation and streamflow
data are obtained from official government sources that
perform quality control exercises on the data, uncertainties
in observed records cannot be ruled out completely. The

fingerprint based detection and attribution analysis has
been applied rarely in regional hydrological applications
[Barnett et al., 2008] which are known to have more noise.
Additionally, the analysis is forced to rely on models for
estimation of climate change signal and natural internal
variability noise, in the absence of long observation records
prior to and after industrialization. Calibration or verifica-
tion of the detection analysis is not possible because of ab-
sence of any hydrologic or climate reconstructions data set
for this river basin. Also, the GCM predictions and their
subsequent downscaling to simulate basin-scale precipita-
tion may not be completely accurate because of limitations
of our knowledge of the climate system, scale mismatch
between GCM grid points and hydrological observation
stations and uncertainties in the downscaling model. The
GP-based rainfall-runoff model further acts as a source of
uncertainty, and our analysis relies on the assumption that the
model is capable of learning, at least implicitly, the complex
underlying processes that convert rainfall to river flows. The
structure of the downscaling model as well as the streamflow
generating mechanism is assumed to unchanging over differ-
ent climate scenarios, which acts as a further limitation of the
analysis. Considering several influencing climate variables in
the streamflow generation process that affects the intermedi-
ate processes converting rainfall to runoff would be more ten-
able. Addressing data and model uncertainties and fixing the
scale and methodological issues can be taken up in future
research.

5. Concluding Remarks
[43] A fingerprint-based detection and attribution analy-

sis has been attempted in this study to obtain an insight into
the observed changes during the second half of the 20th
century in monsoon precipitation and streamflow in the
catchment of the Mahanadi River, a tropical rain-fed river
draining large coastal areas in eastern India. The fingerprint
based detection and attribution analysis employed in this
study attempts to isolate the signature of anthropogenically
forced changes in the hydrological variables from the his-
torical climate model runs, and to determine how similar
the observed changes are to the fingerprint. Thereafter the
likelihood of a signal of the observed strength occurring by
chance due to natural climate variability alone, as estimated
from the long preindustrial control runs, is calculated.

[44] Fourteen climate models are chosen based on avail-
ability of predictor data set for all the historical runs used
in this study. Statistical downscaling is used to obtain pre-
cipitation in the river basin from the large-scale climate
variables for each GCM run. A Genetic-Programming
based rainfall-runoff model has been used to get corre-
sponding streamflows from the downscaled precipitations.

[45] Using a standard approach that takes into considera-
tion the variability across different climate model simula-
tions, it has been found that the observed trends over the
second half of the 20th century in both monsoon precipita-
tion and streamflow lie outside the range expected from
natural internal climate variability alone at 95% statistical
confidence level for most of the GCMs. However, the
observed hydrological changes cannot yet be collectively
attributed to human-induced climate change across all the
climate models. For some climate models which are found
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to simulate the climate more reliably and realistically, the
observed hydrological trends are found to be consistent
with those predicted by anthropogenic emissions of green-
house gases. The multimodel ensemble averaged anthropo-
genic signal strength is found to explain the trends in the
observations, for both monsoon precipitation and stream-
flow. However, changes in observed monsoon precipitation
are found to be consistent with those expected from histori-
cal volcanic emissions too, while observed monsoon
streamflow changes also agree with those expected as a
result of both solar and volcanic activities. Detection and
attribution of the observed hydrological trends to human-
induced climate change is, in general, more conspicuous
across the climate models for streamflow as compared to
precipitation. Also, detection has been achieved earlier for
streamflow than precipitation for most of the GCMs.

[46] The study attempts to formally establish the pres-
ence and impacts of human-induced climate change in the
observed decreases in monsoon precipitation and stream-
flow in the Mahanadi river basin. Significant observed
hydrological trends above the natural internal variability of
climate alone would imply an unlikely restoration of the
hydrological cycle to its natural state on its own. This is
critical, particularly in the light of the likely increases in
dryness and water shortage in the river basin predicted by
other recent studies.

[47] It is to be noted, however, that uncertainties because
of the detection methodology, data or models used may affect
the findings of the analysis. Though GCMs are the most cred-
ible tools at present to study regional impacts of climate
change on natural systems, they may not capture local-scale
features like land-use changes. The statistical downscaling
and subsequent rainfall-runoff model provide only the present
best approximation to simulate regional hydrological fea-
tures, subject to observational and modeling constraints.

[48] The detection and attribution analysis presented in
this work for river basin–scale hydrological variables can
be further extended to consider the effects of nonclimatic
localized influences like land-use and land-cover changes,
changes in irrigation practices, urbanization etc. This can
be achieved by an end-to-end attribution approach where
the interface between climate and nonclimate models is ex-
plicitly modeled [Stone and Allen, 2005; Zwiers and
Hegerl, 2008; Stone et al., 2009]. Modifications in the
D&A methodology to address uncertainties can also be
attempted in future studies.

Appendix A: Principal Component Analysis and
Linear Regression Based Downscaling Model

[49] Statistical downscaling techniques are tools to gener-
ate synthetic weather data required for regional climate
change impact assessment studies from large-scale atmos-
pheric variables. They are extensively being used in studies
on climate change impacts on local hydrology in the recent
past, since the large-scale outputs of GCMs cannot directly
be used in any regional hydrologic model of interest [Wigley
et al., 1990; Carter et al., 1994]. Statistical downscaling
techniques essentially form a predictor-predictand relation-
ship between the large-scale climate variables and the re-
gional- or local-scale meteorological/hydrological variables.

[50] The most popular approach of downscaling is the use
of a transfer function which is a regression based downscal-
ing method [Crane and Hewitson, 1998; Wilby et al., 1998,
2002; Ghosh and Mujumdar, 2008], that relies on direct
quantitative relationship between the local-scale variable
(predictand) and the variables containing the large-scale
climate information (predictors) through some form of
regression. In this study, per Ghosh and Mujumdar [2006],
a principal component analysis and linear regression model
is used to downscale the GCM outputs for estimation of
monthly rainfall at the eight rainfall locations. Appropriate
seasonal component is added to the regression model for
improving the goodness of fit.

[51] Precipitation is linked to air mass transport and
atmospheric water content and thus can be related to atmos-
pheric circulation or pressure patterns, specific humidity
and temperature. Hence, near surface air temperature, mean
sea level pressure, specific humidity at 850 hPa and geopo-
tential height at 500 hPa are selected as predictors for the
downscaling model. Apart from being physically meaning-
ful, these predictors are reasonably well simulated by the
GCMs, and are available for many control runs and historical
runs of the GCMs used in this study. In absence of observed
climate variables, as per standard practice, monthly data of
these predictors for a region extending from 15�N to 25�N
and 80�E to 90�E are obtained from the National Centers for
Environmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) reanalysis data for the years 1951–
1999 [Kalnay et al., 1996] (available online at: http://
www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html) and are
used for training the model, with the observed monthly pre-
cipitation as the predictand. Large-scale monthly atmos-
pheric variables output from the different GCM runs are
extracted from the multiple model data set of WCRP/CMIP3
(see https://esg.llnl.gov:8443/about/ftp.do). Principal com-
ponent analysis is done following bias removal and normal-
ization [Ghosh and Mujumdar, 2008], on the NCEP data to
identify the patterns of multidimensional variables and to
transfer correlated variables into a set of uncorrelated varia-
bles. The regression equations are now fit between the first
10 principal components (which explains 99% of the overall
variance) of the predictor data set and the observed precipita-
tion at each of the eight locations. All the coefficients used in
the regression equations are rewritten in terms of seasonal
component which is assumed to be different for different
months with a periodicity of 12.

[52] Thus, precipitation Pt at time step t is given by
[Ghosh and Mujumdar, 2006]

Pt ¼ C þ
XK

k¼1

�k � pckt; (A1)

where pckt is the kth principal component of the predictor
data set in time t, and C and �k are the regression coeffi-
cients, K (¼10) is the number of principal components. In
terms of the seasonal components,

C ¼ C0 þ C1 � sin ð2�p=12Þ þ C2 � cos ð2�p=12Þ; (A2)

�k ¼ �0
k þ �1

k � sin ð2�p=12Þ þ �2
k � cos ð2�p=12Þ; (A3)
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where p is the serial number of the month within a year
(p ¼ 1, 2, 3, . . ., 12), corresponding to time period t of
equation (A1). Insignificant coefficients (in terms of the
t statistic p value) are removed from the model without loss
in the R value. The residuals, after relevant statistical tests,
are found to be independent and identically distributed fol-
lowing the normal distribution.

[53] Additionally, fuzzy clustering is performed on the
predictor data set and the fuzzy memberships are used as
input in the regression model. However, since no signifi-
cant improvement is noticed in the correlation coefficient
for the testing data set, fuzzy clustering is dropped from the
downscaling methodology.

[54] The coefficient matrix from the NCEP data and the
regression parameters are supplied to standardized and nor-
malized predictor data set from the different GCM runs,
interpolated at the NCEP grid points by Mercator projec-
tions (conformal cylindrical map projections), to yield
downscaled monthly precipitations at the eight locations
corresponding to each GCM run.

Appendix B: Genetic Programming Based
Rainfall-Runoff Model

[55] Genetic-Programming (GP) is an evolutionary algo-
rithm based model with the unique ability of optimizing
both the structure of the model and its parameters. In GP, a
computer program, representing the model, relating the out-
put to the input variables is evolved across generations until
it represents the best estimate of the model. Koza [1992]
defines GP as a domain independent problem-solving
approach in which computer programs are evolved to solve,
or approximately solve, problems based on the Darwinian
principles of reproduction and ‘‘survival of the fittest.’’

[56] In principle, GP is the application of Genetic Algo-
rithms (GA) [Goldberg, 1989] to a population of computer
programs. However, unlike GA, GP works on parse trees
instead of bit strings. A parse tree consists of a terminal set
(the variables in the problem) and a function set (the basic
operators used to form the function). GP first creates a ran-
domly generated population of parse trees. Fitness measure
of an individual tree is calculated based on how well it sol-
ves the given problem. Subsequently, fit parse trees are
selected for reproduction and variation to form a new popu-
lation or parse trees. Selection, crossover and mutation oper-
ations in GP are similar to those of GA functionally. This
process is continued until a preset stopping criterion is met.

[57] The implementation of GP to predict monthly inflows
to the Hirakud dam from the monthly rainfall in the 5 loca-
tions (Location 4—21.5�N, 81.5�E, Location 5—21.5�N,
82.5�E, Location 6—21.5�N, 83.5�E, Location 7—22.5�N,
82.5�E, and Location 8—22.5�N, 83.5�E) that contribute
directly to the unregulated inflows to the Hirakud reservoir,
is done through the MATLAB GP toolbox GPTIPS1.0
(which is an open source toolbox available at http://gptips.
sourceforge.net/as). The population size chosen is 200, and
the maximum number of generations is set to 500. Multi-
gene symbolic regression fitness function is used, which
minimizes the root mean square error (RMSE) between the
output and the predicted output, which means that the
weights for the genes are obtained using ordinary least

squares to regress the genes against the output data. The
maximum depth of the trees is chosen as 15 nodes. From
the observed data, it is noticed that nonmonsoon flows are
extremely insignificant in comparison to the monsoon
months flows. Thus there is no additional need to take
groundwater base flow into consideration. The variability in
streamflow, even if there is no change in precipitation, is
taken into consideration by training the model with observed
real-time streamflows, and thus, all the factors contributing
to generation of streamflow from precipitation are implicitly
incorporated into the model.
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through email, and the four anonymous reviewers and the Associate Editor,
for reviewing the manuscript and providing critical comments to improve
the paper.

References
Allen, M. R., and P. A. Stott (2003), Estimating signal amplitudes in optical

fingerprinting, part I : theory, Clim. Dyn., 21, 477–491.
Allen, M. R., and S. F. B. Tett (1999), Checking for model consistency in

optimal fingerprinting, Clim. Dyn., 15, 419–434.
Babovic, V., and M. Keijzer (2006), Rainfall-runoff modeling based on

genetic programming, in Encyclopedia of Hydrological Sciences, Wiley,
New York, doi:10.1002/0470848944.

Barnett, T. P., D. W. Pierce, and R. Schnur (2001), Detection of anthropo-
genic climate change in the world’s oceans, Science, 292, 270–274.

Barnett, T. P., D. W. Pierce, K. M. AchutaRao, P. J. Gleckler, B. D. Santer,
J. M. Gregory, and W. M. Washington (2005), Penetration of human-
induced warming into the world’s oceans, Science, 309, 284–287.

Barnett, T. P., et al. (2008), Human-induced changes in the hydrology of
the western U.S., Science, 319, 1080–1083.

Bonfils, C., et al. (2008), Detection and attribution of temperature changes
in the mountainous western United States, J. Clim., 21, 6404–6424.

Carter, T. R., M. L. Parry, H. Harasawa, and S. Nishioka (1994), IPCC
Technical Guidelines for Assessing Climate Change Impacts and Adap-
tations, Univ. College, London.

Cavazos, T., and B. C. Hewitson (2005), Performance of NCEP variables in
statistical downscaling of daily precipitation, Clim. Res., 28, 95–107.

Crane, R. G., and B. C. Hewitson (1998), Doubled CO2 precipitation
changes for the Susquehanna basin: Downscaling from the GENESIS
general circulation model, J. Climatol., 18, 65–76.

Dorado, J., J. R. Rabunal, A. Pazos, D. Rivero, A. Santos, and J. Puertas
(2003), Prediction and modeling of the rainfall–runoff transformation of a
typical urban basin using ANN and GP, Appl. Artif. Intell., 17, 329–343.

Gedney, N., P. M. Cox, R. A. Betts, O. Boucher, C. Huntingford, and P. A.
Stott (2006), Detection of a direct carbon dioxide effect in continental
river runoff records, Nature, 439, 835–838.

Ghosh, S., and P. P. Mujumdar (2006), Future rainfall scenario over Orissa
with GCM projections by statistical downscaling, Curr. Sci., 90, 3, 396–
404.

Ghosh, S., and P. P. Mujumdar (2007), Nonparametric methods for model-
ing GCM and scenario uncertainty in drought assessment, Water Resour.
Res., 43, W07405, doi:10.1029/2006WR005351.

Ghosh, S., and P. P. Mujumdar (2008), Statistical downscaling of GCM
simulations to streamflow using relevance vector machine, Adv. Water
Resour., 31(1), 132–146.

Ghosh, S., and P. P. Mujumdar (2009), Climate change impact assessment-
uncertainty modeling with imprecise probability, J. Geophy. Res., 114,
D18113.

Gillett, N. P., F. W. Zwiers, A. J. Weaver, and P. A. Stott (2003), Detection of
human influence on sea-level pressure, Nature, 448, 461–465, doi:10.1038/
nature01487.

Gillett, N. P., A. J. Weaver, F. W. Zwiers, and M. F. Wehner (2004), Detec-
tion of volcanic influence on global precipitation, Geophys. Res. Lett.,
31, L12217, doi:10.1029/2004GL020044.

Goldberg, D. E. (1989), Genetic Algorithms for Search, Optimization and
Machine Learning, Addison-Wesley Publ., Reading, Mass.

Hasselmann, K. (1979), On the signal-to-noise problem in atmospheric
response studies, in Meteorology Over the Tropical Oceans, edited by
B. D. Shaw, pp. 251–259, R. Meteorol. Soc., Bracknell, U.K.

W10520 MONDAL AND MUJUMDAR: DETECTION AND ATTRIBUTION OF HYDROLOGIC CHANGE W10520

17 of 18



Hawkins, E., and R. Sutton (2012), Time of emergence of climate signals,
Geophy. Res. Lett., 39, L01702.

Hegerl, G. C., and F. W. Zwiers (2011), Use of models in detection and
attribution of climate change, Clim. Change, 2, 570–591.

Hegerl, G. C., H. von Storch, K. Hasselmann, B. D. Santer, U. Cubasch,
and P. D. Jones (1996), Detecting greenhouse-gas induced climate
change with an optimal fingerprint method, J. Clim., 9, 2281–2306.

Hidalgo, H. G., et al. (2009), Detection and attribution of streamflow timing
changes to climate change in the western United States, J. Clim., 22,
3838–3855.

Intergovernmental Panel on Climate Change (2010), Meeting report of the
Intergovernmental Panel on climate change expert meeting on detection and
attribution related to anthropogenic climate change, report, pp. 55, IPCC
Working Group I Technical Support Unit, Univ. of Bern, Bern, Switzerland.

Jain, A., and Kumar, S. (2009), Dissection of trained neural network hydro-
logic model architectures for knowledge extraction, Water Resour. Res.,
45, W07420, doi:10.1029/2008WR007194.

Jain, S. K., P. C. Nayak, and K. P. Sudheer (2008), Models for estimating
evapotranspiration using artificial neural network and their physical
interpretation, Hydrol. Processes, 22(13), 2225–2234.

Jayawardena, A. W., N. Muttil, and T. M. K. G. Fernando (2005), Rainfall-
Runoff modeling using Genetic Programming, in MODSIM 2005 Inter-
national Congress on Modeling and Simulation, edited by A. Zerger and
R. M. Argent, pp. 1841–1847, Model. and Simul. Soc. of Aust. and N.Z.,
Canberra, Australia.

Jones, P. D., and G. C. Hegerl (1998), Comparisons of two methods of
removing anthropogenic-related variability from the near-surface obser-
vational temperature field, J. Geophys. Res., 103, 13,777–13,786.

Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project,
Bull. Am. Meteorol. Soc., 77, 437–471, doi:10.1175/1520-0477.

Karoly, D. J., and Q. Wu (2005), Detection of regional surface temperature
trends, J. Clim., 18, 4337–4343.

Kashid, S., S. Ghosh, and R. Maity (2010), Streamflow prediction using
multi-site rainfall obtained from hydroclimatic teleconnection, J. Hydrol.,
395, 23–38, doi:10.1016/j.jhydrol.2010.10.004.

Koza, J. (1992), Genetic Programming: On the Programming of Com-
puters by Natural Selection, MIT Press, Cambridge, Mass.

Liong, S. Y., T. R. Gautam, S. T. Khu, V. Babovic, and N. Muttil (2002),
Genetic programming: A new paradigm in rainfall-runoff modeling,
J. Am. Water Res. Assoc., 38(3), 705–718.

Maurer, E. P., I. T. Stewart, C. Bonfils, P. B. Duffy, and D. R. Cayan
(2007), Detection, attribution, and sensitivity of trends toward earlier
streamflow in the Sierra Nevada, J. Geophys. Res., 112, D11118,
doi:10.1029/2006JD008088.

Min, S. K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, (2011), Human con-
tribution to more-intense precipitation extremes, Nature, 470, 378–381,
doi:10.1038/nature09763.

Mohapatra, M., and U. C. Mohanty (2006), Spatio-temporal variability of
summer monsoon rainfall over Orissa in relation to low pressure systems,
J. Earth Syst. Sci., 115, 2, 203–218.

Mujumdar, P. P., and S. Ghosh (2008), Modeling GCM and scenario uncer-
tainty using a possibilistic approach: Application to the Mahanadi River,
India, Water Resour. Res., 44, W06407, doi:10.1029/2007WR006137.

Muttil, N., and S. Y. Liong (2001), Improving runoff forecasting by input vari-
able selection in genetic programming, in Proc. ASCE World Water Con-
gress, vol. 111, p. 76, Am. Soc. of Civil Eng., Orlando, Fl. doi:10.1061/
40569(2001)76.

Parthasarathy, B., A. A. Munot, and D. R. Kothawale (1995), Monthly and
seasonal rainfall series for all India homogeneous regions and meteoro-
logical subdivisions: 1871–1994, Res. Rep. RR-065, Indian Inst. of Trop.
Meteorol., Pune, India.

Patri S. (1993), Data on flood control operation of Hirakud dam, report,
Dept. of Irrigation, Gov. of Orissa, India.

Pierce, D. W., et al. (2008), Attribution of declining western U.S. snowpack
to human effects, J. Clim., 21, 6425–6444.

Pierce, D. W., T. P. Barnett, B. D. Santer and P. J. Gleckler (2009), Select-
ing global climate models for regional climate change studies, Proc.
Natl. Acad. Sci. USA, 106, 8441–8446.

Raje, D. and P. P. Mujumdar (2009), A conditional random field based
downscaling method for assessment of climate change impact on multisite
daily precipitation in the Mahanadi basin, Water Resour. Res., 45,
W10404, doi:10.1029/2008WR007487.

Raje, D., and P. P. Mujumdar (2010), Constraining uncertainty in regional
hydrologic impacts of climate change: Nonstationarity in downscaling,
Water Resour. Res., 46, W07543, doi:10.1029/2009WR008425.

Rao, P. G. (1995), Effect of climate change on streamflows in the Mahanadi
river basin, India, Water Int., 20, 205–212.

Rao, P. G., and K. K. Kumar (1992), Climatic shifts over Mahanadi river
basin, Curr. Sci., 63, 192–196.

Rodr��guez-Vázquez, K., M. L. Arganis Juárez, C. C. Villanueva, and
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