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Fig. 1. Network traffic exploration at the level of semantics through the creation of three selections of interest in parallel.

Abstract—Most network traffic analysis applications are designed to discover malicious activity by only relying on high-level flow-
based message properties. However, to detect security breaches that are specifically designed to target one network (e.g., Advanced
Persistent Threats), deep packet inspection and anomaly detection are indispensible. In this paper, we focus on how we can support
experts in discovering whether anomalies at message level imply a security risk at network level. In SNAPS (Semantic Network traffic
Analysis through Projection and Selection), we provide a bottom-up pixel-oriented approach for network traffic analysis where the
expert starts with low-level anomalies and iteratively gains insight in higher level events through the creation of multiple selections of
interest in parallel. The tight integration between visualization and machine learning enables the expert to iteratively refine anomaly
scores, making the approach suitable for both post-traffic analysis and online monitoring tasks. To illustrate the effectiveness of this
approach, we present example explorations on two real-world data sets for the detection and understanding of potential Advanced
Persistent Threats in progress.

Index Terms—Anomaly detection, network traffic analysis, multivariate analysis, streaming data, interaction, parse data analysis.

1 INTRODUCTION

One of the main challenges in the area of network traffic analysis is
how to detect when a network is being exploited. Especially for critical
infrastructures, such as power plants [4], hackers nowadays are will-
ing to design complex viruses to maximize the damage in one specific
infrastructure. The main difficulty with Advanced Persistent Threats
(APTs) [25] is the involvement of domain knowledge such that their
traffic can no longer be distinguished from regular activity by simple
inspection of high-level properties, such as message length and desti-
nation address. Current methods [7, 11, 12, 17] focus on the analysis
of these properties, because in practice they have shown to be suffi-
cient for the discovery of traditional attacks [8, 16]. The fact that these
techniques consider traffic content as a black box makes them unaware
of anomalies at the level of semantics.
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To ensure that systems and data in the network are secure from
APTs, the content of the traffic has to be taken into account. For ex-
ample, we are not only interested in which host sends packets to a par-
ticular host, but we are also interested in whether the action inferred
by these messages represents the access to an uncommon function call
or file in the network. The heterogeneity and abstraction level of the
data makes it very difficult to decide if a message is truly malicious.
We believe that the greatest insights can be obtained by comparing
anomalies to similar parts of traffic and try to understand how they
differ from each other with respect to context and structure. In order
to gain this insight, we propose a new approach that enables security
experts to discover high-level security risks, starting from a collection
of automatically classified low-level anomalies, through the use of se-
lection and projection. More specifically, our main contributions are:

• A novel exploration method for the analysis of raw network traf-
fic, enabling the expert to inspect and compare specific parts of
the traffic in parallel while preserving context;

• A tight coupling of machine learning and visualization that as-
sists experts in detecting malicious traffic, through iterative re-
finement of classifier parameters;

• The ability to gain statistical insight in how messages differ from
regular traffic and why a message was classified as malicious.
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The paper is structured as follows. First, related work is discussed
in Section 2. Next, the scope and approach for traffic analysis is dis-
cussed in Section 3. In Sections 4, 5, and 6 an overview of the system
is presented after which visualization, classification, and interaction
are described. In Sections 7 and 8 we provide two example explo-
rations on real-world data sets and discuss the limitations of the ap-
proach. Conclusions and future work are presented in Section 9.

2 RELATED WORK

Network traffic analysis is an extensively studied topic, covering a
wide range of techniques. We give a broad overview first, followed
by a detailed discussion on pixel-based visualization techniques.

2.1 Data
From a data perspective, current analysis techniques can be grouped
into two categories: byte-oriented and attribute-oriented analysis.

In byte-oriented analysis, network messages are considered as a se-
quence of bytes enabling visualization techniques to analyze the full
payload of a network message. These visualizations typically provide
insight in the traffic by encoding the byte sequences in text or pixels.
The binary rainfall [7], digraphs [6] and malware images [19] are well-
known examples in this category. Anomaly detection systems for this
type of analysis typically rely on byte distributions and pattern match-
ing to discover undesired content. Since byte sequences do not contain
any information about which bytes together represent an attribute in a
message, these detection methods often work poorly for anomalies at
the level of attributes.

In attribute-oriented analysis, messages are dissected according to
their protocol structure, thereby gaining knowledge about the actual
values that were sent in the message. The result of dissecting a mes-
sage typically is a collection of attributes and values. The presence of
an attribute or value is determined by the type of network message,
thereby significantly increasing the heterogeneity of the data. Current
methods often limit their analysis to high-level protocols such as TCP
and IP, thereby only relying on common flow-based attributes such as
IP addresses, port numbers, and message lengths [11, 15, 27]. For a
more complete overview, see the survey paper of Shiravi et al. [23].

There are also examples where both byte structure and attribute
analysis are taken into account. For instance, the open source appli-
cation Wireshark [5] is an extensive protocol analyzer that can dis-
sect network packets and display the payload in a (hierarchical) tex-
tual representation. Especially for debugging applications, the wealth
of information provided by Wireshark can help the expert to analyze
traffic in great detail. The software unfortunately does not assist the
expert in finding anomalies and can become a burden when analyzing
or monitoring large network samples.

2.2 Visualization
In SNAPS we use a pixel-based visualization that conveys the global
structure of network messages as well as anomalies in that structure.
A message is displayed as a horizontal sequence of pixels. Pixel-based
visualizations have been used often for network traffic analysis, some
examples are:

• Binary rainfall [7] by Conti et al. visualizes network messages as
a single line of pixels where pixels are colored based on protocol
type, various byte encodings and frequency. They showed that
the visual encoding of network traffic does not have to be com-
plex in order to discover nontrivial patterns. Their byte-oriented
approach unfortunately makes the method unsuitable for the de-
tection of APTs.

• PortVis [17] by McPherson et al. uses a color-based grid visual-
ization to visualize the amount of network activity between port
numbers. By using a zoom lens, the user can obtain port number
information to trace back the cause of the anomaly.

• IDS rainstorm [1] by Abdullah et al. visualizes Stealthwatch [13]
intrusion detection alerts by showing the severity of alerts over
time using a set of rectangular regions that represent a large con-
tinuous range of IP addresses.

Previous methods construct an image to represent the values for one
or two attributes in the data. To cover the wide variety of attributes, in
SNAPS we construct an image to represent the full range of attributes.

A method specifically designed for multivariate data exploration
and closest to our technique is the Pixel Carpet visualization by Land-
storfer et al. [14]. In this visualization every log record is visualized
as a stack of pixels, where every pixel denotes the frequency of a value
in that record. By means of filtering, uninteresting records can be re-
moved from the data, after which the frequencies of the remaining
records are updated. Although our visualization method is similar to
the stacked pixel approach in the Carpet visualization, there are dif-
ferences. First, the Carpet visualization is limited to a single view,
indicating that it is impossible for experts to zoom in on a specific
subset without losing context of other activities over time. We provide
a time view to maintain awareness of temporal patterns and enable ex-
perts to duplicate pixel views before applying new filters. Second, the
tight integration of filtering and recomputing statistics causes the fre-
quency analysis to overfit the data when filters become too specific. In
SNAPS, experts can refine classifiers when necessary or train a new
classifier on a subset of the data. Third, Landstorfer et al. already
indicate that their method is designed to work for a low number of
attributes, while our approach is designed to work for hundreds of at-
tributes. Finally, our selections of interest enable experts to construct
more complex queries using boolean search and regular expressions.

In summary, current methodologies are either focused on the vi-
sualization of high-level message attributes or the visualization of un-
structured low-level representations. Current methods that do consider
message attributes typically consider only a few flow-based attributes.

3 PROBLEM STATEMENT

With the vast amount of information that is sent over networks, one of
the main concerns is to know when something undesired is being sent.
Especially for critical infrastructures, the presence of malicious traffic
can have severe if not life-threatening consequences.

The involvement of domain knowledge in APTs makes the infiltra-
tion of these viruses (typically through social engineering) in networks
nearly impossible to prevent. Once the threat is established, we can
analyze unencrypted internal network traffic for anomalies that arise
during the APTs exploitation phase. As a consequence, traffic from or
to external sources is considered outside this scope.

In practice it is possible for messages to consist of an arbitrary num-
ber of protocols, where one protocol can even occur multiple times.
Since semantic attacks happen at the application layer of the network
protocol, we restrict the analysis of messages to the following pro-
tocols: (DCE)RPC, SMB2 and S7 [24]. (DCE)RPC are application
protocols to send remote procedure calls over a network. SMB2 is
typically used for file management in a network, whereas S7 is a clas-
sified industrial control protocol by Siemens for controlling low-level
hardware components. We use ETH, IP, and TCP protocol informa-
tion to trace the anomalies back to physical entities in the network.
To avoid the significant increase in attribute space due to protocols
occurring multiple times, analysis of messages is limited to the first
occurrence of every protocol.

3.1 Data acquisition
Before we can analyze network traffic in greater detail, we first need
to analyze network traffic with protocol semantics. We use the Wire-
shark dissector to convert a raw network message to a so called Packed
Detail Markup Language (PDML) parse tree, describing on a per pro-
tocol basis the values and attributes that are present in that message.
Figure 2b shows an illustration of how PDML trees are structured.
Attributes in a protocol are structured hierarchically. In general, net-
work messages consist of multiple protocols, each with their own pur-
pose and different level of abstraction. Depending on the protocol se-
mantics, attributes in protocols can represent numerical ranges (e.g.,
tcp.srcport), strings (e.g., ip.src), or boolean values (e.g.,
tcp.flag.SYN). The presence of a protocol, attribute, or value not
only depends on the type of message, but also depends on the context
in which the message was sent.
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Fig. 2. Data acquisition by dissecting PCAP packets (a) to PDML trees (b) after which they are serialized into one (sparse) multivariate table (c).

More formally, let S represent the set of attributes that the expert
wants to analyze. Furthermore, let PDML(m) represent the PDML
tree of message m. Attribute A⊆ PDML(m) if and only if there exists
a path P = [p0, p1, . . . , pn] from root to leaf in PDML(m) such that
p0.p1. · · · .pn = A. A is also referred to as the serialization of P. Fi-
nally, let val(A) represent the value stored in pn of A. We can now
model a message m as a set of (A,v) pairs such that:

A ∈ S , and (1)

v =

{
val(A) if A⊆ PDML(m)

undefined otherwise
(2)

Since the set of all possible attributes is too large to analyze, in SNAPS
we use domain knowledge and a large sample of network traffic to
determine which attributes are worth analyzing. The resulting table
after serializing the collected PDML trees can be found in Figure 2c.
Since the set of possible attributes is much larger (500 or more) than
the set of attributes contained in a message (order of 10s), the data
can become quite sparse, increasing the complexity of visualizing the
payload data.

Using our previous model, we can now formulate the analysis task
for the detection of APTs as trying to gain insight in the presence, de-
scription, temporal behavior, and rarity of these (attribute,value) pairs.
The serialization of PDML trees to one multivariate table enables us to
compare differences and similarities between messages at the level of
attributes. Since the presence of one attribute depends on the presence
of other attributes, showing values of multiple attributes simultane-
ously enables us to gain insight in these dependencies. In order to
make the visualization of alerts and patterns feasible for a large num-
ber of attributes, we chose for a pixel-based visualization approach.

4 SNAPS: SELECTION AND PROJECTION

Network traffic exploration is a challenge due to the large amount of
data that is being generated in a relatively short period of time. Fur-
thermore, the heterogeneity and complex structure of the traffic con-
tent adds a new dimension to the analysis of network traffic. We cannot
expect the expert to know the meaning of every dissected value or at-
tribute. However, the expert should be able to determine the severity
or cause of an anomaly by inspecting and comparing similar type of
messages in different contexts. To support this, we need a scalable in-
teractive method to simultaneously explore low-level anomalies, while
maintaining a high-level overview.

We tackle the scalability problem by visualizing network traffic us-
ing a pixel map [10]. The high “data-to-space” ratio of pixel maps en-
ables us to visualize large amounts of attributes and network messages
in a limited amount of screen space. Furthermore, to maximize the
speed of analyzing traffic, we aim for a computationally cheap clas-
sification method using histograms. The level of granularity in which
traffic is analyzed is determined by filtering on attributes or values in
the traffic. In the world of relational algebra [2], these operations are
referred to as projection and selection respectively. To enable the si-
multaneous exploration of traffic in local and global contexts, we do
not limit the exploration to one selection, but to a number of selections
of interest (see Section 4.1.2) enabling the expert to:

• Drill down: inspecting alerts against different subparts of the
network, while remaining aware of the rest of the traffic, or

• Scatter: creating multiple views to keep an eye on critical or
suspicious entities in the network (e.g., hosts, files etc.).

To tackle the problem of dealing with large amounts of false positive
alerts, we use a human-in-the-loop approach [21] that enables the ex-
pert to inspect and refine classification results on a per selection basis.
By means of color rules, the expert is able to highlight specific events
in the traffic for which the severity is already known. Figure 3 shows
a schematic overview of the SNAPS exploration process. When try-
ing to find potential virus attacks, time is of the essence. The earlier
anomalies in the network can be detected, the faster we are able to
manage the attack. For this reason, we designed the system in such a
way that it is suitable for both post-traffic analysis and live monitor-
ing. Although the traffic dissection by Wireshark is rather computa-
tionally intensive to be used for real-time monitoring, there are (more
complex) alternatives, like the Bro dissector [20], that are suitable for
obtaining near-real time dissections. To assist the expert in exploring
and explaining traffic alerts, we use five coordinated views as depicted
in Figure 5. For each view we describe its functionality and design
decisions. For the demonstration of the functionality in practice, we
refer to the supplementary video 1.

4.1 Pixel viewer
For every selection of interest, the pixel viewer visualizes message
payload by creating an image where the horizontal axis represents
the attribute space the expert is interested in and the vertical axis
represents the collection of network messages. The result is that every
message corresponds to a single line of pixels, where the brightness of
a pixel pi j represents the rarity of message i at attribute j according to
Section 5. Since it is hard to distinguish colors for small objects [26],
we use a discrete gray scale map (Figure 5) consisting of three colors:
pixels are colored black if the message does not contain the corre-
sponding attribute, gray if the value in that message is not considered
rare and white if the value in the message is considered to be rare. The
rarity of a message as a whole is visualized by prepending the image
with an additional column. Values and attributes in messages become
visible by inspecting pixels with a zoom lens (Figure 5b). Besides the
grey shades that indicate rarity, a subtle hue can be added to message
attributes to indicate different protocols (Figure 4). Besides coloring
attributes, we enable the expert to discover patterns by coloring pixels
according to their value or more complex expressions. To improve the
distinction between pixels and prevent pixel colors from spreading to
their neighboring cells, tiles of 2 by 2 physical pixels are used instead.
As soon as an incoming message adheres to some color rule r, SNAPS
creates a marker in front of the pixel view whose color corresponds
to r. In situations where multiple color rules apply, SNAPS creates a
marker according to the first matching color rule. Figure 5 shows an
example how coloring is applied.

1https://www.youtube.com/watch?v=aYywTOYjYDA
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Fig. 3. The SNAPS workflow model for network traffic exploration. The
expert uses the overview to monitor the presence of alerts in the se-
lections of interest. Upon the discovery of an alert, the expert tries to
gain more insight by inspecting its location and value. Depending on
the familiarity and rarity of the inspected value(s) and attribute(s), the
expert assesses the severity of the alert by iteratively inspecting: the
occurrence of other values in the message; the value distribution of an
attribute; or the presence of a message value over time. Depending on
his findings, the expert either decides to ignore the alert, prevent the
alert from happening by refining the classifier, or refining his selections
of interest to analyze the alert in a different context.

Similar to the pixel visualization by Conti et al. [7], we use the
notion of a radar to replace old messages with new ones. In contrast
to traditional scrolling, previous messages are not shifted at the ar-
rival of new data, thereby making the visualization more stable when
analyzing traffic at a larger pace. A direct consequence of visualiz-
ing messages in a sequential fashion is that the inter arrival time be-
tween messages is no longer visible. To make the expert aware of these
changes in flow, the radar creates a green marker in front of the image
whenever the timestamp difference between messages is larger than a
second. The distance between green markers is an indicator for the
amount of traffic that is being sent in between timestamps. For more
detailed information about temporal behavior, the expert can use the
time view (Section 4.2).

4.1.1 Attribute ordering
When combining multiple PDML trees into one attribute space, the
ordering in which attributes should be positioned is not uniquely de-
fined. To illustrate the latter, consider two message m1 and m2 with
attribute sequences [ A,B,C ] and [ A,B,D ] respectively. Although
the ordering of attributes in a message depends on its structure, when
combining the attribute space of two messages into one, it is undefined
whether attribute C should precede D or vice versa. Although this or-
dering does not influence the classification result of a message, it can
help the expert to localize attributes in the visualization more quickly.
One way to solve this is to sort attributes alphabetically. Since the hier-
archy is implicitly stored in the attributes, sorting attributes alphabet-
ically causes the attributes with the same PDML paths to be grouped
together. Any logical ordering between siblings (e.g., header attributes
before payload), unfortunately, may no longer be preserved. To solve
the second issue, we sort the siblings within each group according to
their frequency. The effect of sorting attributes with and without fre-
quency analysis is illustrated in Figure 4.

4.1.2 Selections and Projections
As mentioned earlier, selection and projection enable the expert to in-
spect anomalies against different parts of traffic while focusing on a
specific subset of attributes. A downside of applying filters, is that the

Fig. 4. Attribute ordering without (left) and with (right) frequency cluster-
ing. Attributes are colored according to their protocol.

expert is no longer aware of alerts that were present in previous set-
tings. One can imagine, however, that an expert wants to keep an eye
on specific entities in the network (e.g., a critical host), while staying
aware of other activities. To prevent the expert from losing context, we
enable the expert to create multiple selections of interest by creating
multiple pixel views in parallel.

When creating a new view B, by default, projection, selection, and
color settings are inherited from view A where the filtering was initi-
ated. This enables the expert to continue the exploration without hav-
ing to reapply every setting in the new view. The histograms for view
B are constructed by revisiting the network traffic within data win-
dow ω , only considering messages that are valid with respect to the
current selection. Network messages in B are visualized in the pixel
view if and only if these messages are also visually present in A. This
way, messages in B initially are always a subset of the messages in A
enabling the expert to see the impact of applying a new selection of
interest. By means of the time view, the expert can revisit earlier parts
of traffic that are outside the scope of the pixel view.

In order to gain insight in anomalies within a specific selection of
interest, the expert is enabled to train a separate classifier for that se-
lection. Since highly specific selections may result in inaccurate alerts
due to overfitting, by default, alerts with respect to the histograms of
the parent view are shown in the visualization. Since both anomaly
scores are maintained in parallel, the expert can toggle between local
and global anomaly scores. An overview of the current selections is
shown by means of a tree structure (see Figure 5e). The expert can add,
remove, show or hide selections whenever necessary. We enable the
expert to apply new settings simultaneously to all views, the selected
view or the selected view along with its descendants.

4.2 Time view

The time view shows an overview of the number of messages that are
sent over the last n time units. By selecting an attribute A, the expert
is enabled to inspect the distribution of the values of A over various
periods in time. Depending on the selected pixel view, only messages
that are valid with respect to that selection are shown in the time view.
Upon the arrival of new data, the line chart is shifted to the left, causing
messages older than n time units to be no longer visible. To prevent
the chart from cluttering, only the top m values in A are shown that are
either most frequent, most rare, or selected by the expert. Remaining
values are grouped in a miscellaneous category.

The time view enables the expert to scroll back to earlier parts of
traffic. To make the expert aware of the time interval that is spanned
between the oldest and the newest message in the selected pixel view,
a black window is rendered in the time view. Since the time interval of
the pixel view depends on the inter arrival time between messages in
that view, the width of the visualization window may vary over time.
The expert can scroll back to earlier parts of traffic by dragging the
visualization window along the time axis after which the selected view
and all descendants are updated. Here traditional scrolling is preferred
over a radar, since experts can determine their own rate in which the
views have to be updated.



SNAPS: SEMANTIC NETWORK TRAFFIC ANALYSIS THROUGH PROJECTION AND SELECTION

Fig. 5. Graphical user interface of the implemented system: A) Pixel view showing parts of the network traffic within the scope of selections and
projections of interest. Settings with respect to the scan speed and coloring and ordering of attributes are adjusted using the controls in A. B) Lens
view for the inspection of message values and alerts in the pixel view. C) Depending on the selected pixel view and attribute, the time view shows
the attribute distribution over some specified time range. Settings with respect to axis scaling, coloring of values, and time range are adjusted using
controls in C. D) Attribute view enabling the expert to inspect value distributions of attributes and refine the classifier by modifying rarity thresholds
or removing predominating values from the histograms. E) Selection view showing an overview of current selections.

When scanning messages sequentially, there is a choice between
message-oriented versus time-oriented scanning. In message-oriented
scanning, messages are scanned at a fixed rate causing the pixel visu-
alization to be updated at a constant rate. Since the inter arrival time
between messages is not taken into account, the update rate of the
time view varies over time. In time-oriented scanning, messages are
grouped in fixed time intervals such that the time view is updated at
a regular pace. Since multiple messages can adhere to the same time
interval, the refresh rate of the pixel views is no longer constant. In
case of for instance traffic bursts, message-oriented scanning may be
preferred over time-oriented scanning if the data contains samples of
malicious activity (e.g., file-scan). If a data burst is not of interest, the
expert can switch to time-oriented scanning to analyze these messages
at a higher rate.

4.3 Attribute view
The attribute view (Figure 1d) enables the expert to inspect the fre-
quency and rarity of attributes and values that are present within data
window ω . Depending on the selected pixel view, only messages that
are valid with respect to the pixel view selection settings are visible
in the attribute view. The tree structure on the left shows an overview
of all attributes in ω by taking the union of all PDML paths in the
PDML trees of messages in ω . The expert can adjust the projection
settings of the pixel view by changing the visibility of attributes using
check boxes. Only attributes that occur in the projection settings are
taken into account during classification. When selecting an attribute,
the table on the right shows the value distribution of that attribute. The
expert can inspect the frequency of values by means of sorting and
filtering. Besides frequency, the rarity of a value (see Section 5) is
visualized using a bar.

One major problem of anomaly detection is that there is no intrinsic
difference between a malicious value and a new incoming value. One
can imagine however that the creation of a new file in the network is
not necessarily harmful. To keep the number of false alerts in such
attributes minimal, the expert can adjust the rarity thresholds of the
histograms on a per value basis (or bin basis for numeric attributes).

Dominating values can be removed from the histogram by means of
a checkbox in front of the value. The rarity threshold that is appli-
cable to a certain value is shown as a vertical bar in the previously
mentioned rarity bars. The expert can modify the threshold by either
dragging the threshold in the bar visualization or filling an exact value
in a popup (Figure 1f). To prevent the expert from having to adjust ev-
ery threshold manually, the expert is enabled to select multiple values
at the same time or to specify a global rarity threshold at the level of an
attribute or pixel view. In other words, if there is no threshold set for a
value v in (A,v), the threshold for A is used instead. Alerts for specific
values and attributes can be ignored during their classification by set-
ting the rarity threshold to 100%. The effect of modifying a threshold
is immediately reflected in the brightness of the pixels. The expert can
save and load thresholds on a per pixel view basis through import and
export functionality.

5 CLASSIFICATION

Due to the large number of attributes per message, it is difficult for the
expert to manually spot anomalous values in the traffic. To assist the
expert in finding these anomalies, a simple but effective histogram-
based classifier is used. Histograms in general are computationally
cheap to maintain, easy to understand and can be applied to both nu-
merical and categorical attributes. Their ability to be updated in an
incremental fashion makes them both suitable for offline and online
analysis. Anyhow, the SNAPS approach is independent of the chosen
classifier, and developing better classifiers is a topic for future work.

5.1 Model
Anomalies in general can be classified into the following three cate-
gories [3]: point, contextual, and collective anomalies. Network mes-
sages are considered point anomalies whenever they are anomalous
with respect to the entire data set (e.g., the invocation of a deprecated
function call). Messages that are only anomalous in a specific context
(e.g., the access of a restricted file by an unauthorized user) are con-
textual anomalies. Collective anomalies are collections of messages
that together are anomalous with respect to the entire data set. Since
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automatic collective anomaly detection methods are rather error prone
for highly heterogeneous and time-dependent data, they are considered
outside the scope of this work. Instead, we provide the expert a time
view where collective patterns can be visually inspected over different
periods in time.

In our online classification approach, network traffic is considered
to be relevant within time window ω . Upon the arrival of new data
at current time t, messages older than t −ω are removed from the
window and replaced by new ones. For every incoming message, the
classifier determines the rarity of values in that message after which
the histograms are updated. When training a classifier on a new subset
of traffic, the minimum size of the training set T with respect to that
subset is determined using Yamane’s sample size formula [9].

5.2 Anomalies
In order to decide whether a network message is a point anomaly, we
first have to define when a value in the message is considered to be
anomalous. Let T = (A,v) be an attribute value pair in message m.
Let #A denote the number of messages in the data set with attribute A
other than undefined and let #v denote the number of messages with
(A,v). T is considered to be rare if and only if:

1− #v
#A

> τ (3)

where τ represents a rarity threshold defined by the expert. In case
where #A is smaller than Yamane’s sample size with respect to T , ev-
ery value is considered to be rare, since the number of samples in this
attribute is too low to build an accurate histogram. undefined values
are excluded from the histograms, since they predominate the distri-
bution of sparse attributes. To minimize the number of false positive
alerts, values for numeric attributes are binned. By default, the bin size
s of a numeric attribute is computed by applying Scott’s rule [22] on
the training set after removing outliers:

s =
3.5σ

n1/3

Scott’s rule is chosen for its simplicity, since we expect bin sizes to be
refined during exploration.

For the detection of contextual anomalies, the expert is enabled to
train a new classifier on a selection of interest (see Section 4.1.2). This
enables the expert to inspect distributions and look for anomalies on a
smaller subset of the traffic.

6 INTERACTION

To enable querying in SNAPS, three operations are supported:

• inspecting values;
• color messages according to rules;
• creation of selections of interest.

For the inspection of values, the notion of a lens is used, showing an
enlarged part of the pixel visualization where additional information
such as the values and attributes of pixels become visible. Upon the
detection of an alert, the expert can stop the message scanning and
lock the lens to inspect values in more detail. The rarity score of a
value is shown by means of a popup (Figure 6). The expert is enabled
to inspect the contents of a pixel in even more detail by switching to
the Wireshark interface with one click of a button.

Visual coherence between views is achieved by using color. Hov-
ering the mouse over a value highlights all messages in the pixel view
with that value. Similarly, hovering the mouse over a message reveals
the location of that message in other pixel views (Figure 1b).

Experts can create selections of interest using default, text-based
and table-based filtering. To improve interaction speed, SNAPS pro-
vides default filtering functionality when the expert selects a pixel,
value, or attribute. By means of context menus, the expert can choose
to filter the traffic by the presence or absence of the selected value,
sending or receiving IP address, or by the conversation in which the

Fig. 6. Multiselection of values and corresponding query.

message occurred. For more complex queries, a textual interface is
provided to assist the expert in creating a query. When writing the
query, the expert is instantly notified if the query is syntactically cor-
rect. Depending on the part of the query that is being constructed, the
expert receives a list of possible attributes, operations, or values that
were found in the selected view.

Since the usage of brackets in a query can affect the readability of a
query in a negative way, an alternative form of visual querying similar
to Excel’s advanced criteria filtering [18] is introduced. Queries can
be represented as a table where the columns represents attributes and
a cell represents a condition (op,reg) where reg represents a regular
expression and op the corresponding operation (either ==, !=, < (=),
or > (=)). Since a message can have at most one value per attribute,
the query is constructed by taking the conjunction of all non empty
conditions in a row, after which a disjunction is taken over all rows in
the table. Figure 7 shows an example of the resulting encoding. We
can use the same encoding to enable the selection of multiple pixels
into a new filtering condition. To prevent the selection border of two
neighboring pixels from occluding each other, selection borders are
drawn using a contour algorithm. For a more concrete overview of the
interaction, we refer to the supplementary video in Section 4.

7 USE CASES

To illustrate the effectiveness of our approach, we tested the appli-
cation on two types of data sets. The first data set is obtained by
recording one day of internal network traffic from a university. The
data consists of approximately 400,000 messages and 500 attributes
sent by 25 hosts, initially training the classifier on 30,000 messages
corresponding to one hour of traffic. The second data set consists of
approximately 500,000 messages, 650 attributes, 10 to 15 hosts repre-
senting one week of S7 traffic from a governmental industrial control
system. For this data set, the classifier is initially trained on 100,000
messages corresponding to one day of traffic. In the use cases, ω is set
to half a day and three days of network traffic respectively.

7.1 University

We initially start the exploration by scanning messages without any
selections of interest. The network data contains a wide variety of
TCP, DCERPC, and SMB2 traffic (view 1, Figure 5a). Since we are
interested to find anomalies at application layer, we create a selection
of interest B only containing SMB2 traffic (view 2, Figure 5a). To
obtain more reliable classification results for SMB2 traffic, we switch
to the local classifier trained on B. Finally, predominating values in
the data such as Ioctrl request are ignored during classification and
the rarity thresholds of attributes like smb2.file name were raised
to reduce the number of false positives in the visualization.

After scanning 30 minutes of traffic data, in approximately 5
minutes, we noticed a group of anomalies in B. The lens view
showed that the alert was raised by a non-zero value in attribute
smb2.nt status (Figure 5b). To receive automatic notification of
this alert, a color rule for this condition is applied (indicated by the
cyan markers). By creating a new selection of interest C for which
smb2.nt status < 0 and specifying that the pixels showing the
source IP address of such messages should be colored green, we can
see that these, what turned out to be SMB2 buffer size warnings, were
coming from the same IP address (view 3, Figure 5a). We close C and
continue exploration.
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Fig. 7. In view a) the sudden change in S7 traffic raises alerts in attribute s7.rosctr. The Wireshark interface shows that alerts are coming from
commands to reprogram the PLC. Creating view b) only containing these commands shows that four machines were responsible for sending these
commands in the last 72 hours.

Around 10:27 AM, an SMB2 burst was detected as depicted in Fig-
ure 1a. Selecting the smb2.cmd attribute in the time view of A shows
an increased number of files being created in the network (Figure 1e).
By creating a selection of interest D only considering file creations,
we obtain more frequent patterns (depicted in Figure 1b). During
the burst, a group of alerts was spotted in the smb2.file name
attribute. Although it is common for that attribute to generate alerts
(e.g., creation of a file), the fact that these alerts were occurring quite
fast after one another in D was suspicious. The IP address responsible
for sending these messages was found by means of coloring. Cre-
ating a separate selection of interest for this address with respect to
D and selecting the ip.dst attribute in the attribute viewer, we ob-
tain a list of all locations where these files have been created (Figure
1c). Hovering the mouse over address 192.168.4.34 highlights all
locations of this value in the pixel views, showing that most files in
the burst period were created at this location (Figure 1f). The values
corresponding to the alerts represented a large collection of Microsoft
group policy files being accessed in the network (Figure 1d). Since
policy files store authorization access at network level, they can only
be modified by network administrators. The interesting part, however,
is that none of the users in the data set are administrators.

7.2 Industrial control system

In contrast to the office network data, S7 traffic in the governmental
control system shows very regular patterns, suggesting that entities in
the system send traffic within a particular ordering (Figure 7a). Based
on the shape and values that arise from these “vertical histogram” pat-
terns, we can see that the monitoring system 192.168.0.13 reads
sensor values from components at a fixed pace. On May 13th 9:00
the pattern becomes disturbed, raising a large collection of alerts in
attribute s7comm.rsotv. When switching to the Wireshark inter-
face, it becomes clear that these messages correspond to commands
to reprogram the PLC. Since we did not expect this behavior, we cre-
ate a new selection of interest only containing these program com-
mands (Figure 7b). When selecting the ip.src attribute in the time
view and attribute view, they show that four IP addresses were send-
ing these commands at very specific moments in time over the last 72
hours. Although it is not strange for the main controller to send these
commands, the presence of the other IP addresses was unexpected.

8 DISCUSSION AND LIMITATIONS

The SNAPS approach consists of 5 basic steps: 1) create an overview
of potential threats at payload level of a message; 2) use the notion
of a lens to inspect alerts in more detail; 3) try to gain insight in the
alert by inspecting distributions, temporal patterns and co-occurrence
of other alerts in the traffic; 4) create selections of interests to either
drill down or analyze traffic from different angles; 5) use close coop-
eration between machine learning and expert to minimize the number
of false positive alerts in the visualization.

Rare values are indicated by the SNAPS classifier, and the addi-
tional color rules enable experts to define and reuse insights in suspi-

cious behavior. Another plus is that the reuse of existing visualization
techniques and tight integration to the trusted environment Wireshark
makes the approach relatively easy to learn. Interaction is kept simple
and minimal so that the expert can focus entirely on the traffic data.
Views for instance are automatically updated when inspecting values
through hovering while the wide range of default selections and the
use of auto completion enables the expert to create/refine selections
with minimal effort. The integration between machine learning and
visualization makes the system flexible enough to be configured for
different environments.

The approach, however, also has some limitations. First, the scala-
bility in the number of attributes and number of selections is limited to
the size of the screen. The more attributes that are of interest, the fewer
selections can be shown in parallel. Although we provide the expert
functionality to hide and scroll between pixel views, this only solves
the problem partly. Second, the number of histograms that have to be
maintained in parallel linearly increases with the number of selections
of interest. For the cases we studied, we found that up to four selec-
tions of interest were sufficient for the expert to answer their questions
and understand the complexity of their selections. If the number of
selections becomes large, however, updating all histograms in parallel
becomes too computationally and memory intensive. Third, one dis-
advantage of the current data acquisition approach is that the quality
of the payload analysis highly depends on the dissector. Since the S7
protocol is classified, the Wireshark dissector for S7 was constructed
by means of reverse engineering and therefore produces an abstract
attribute space. Although we were able to discover some interesting
events, the interpretation of alerts in S7 attributes becomes difficult,
even with Wireshark.

Finally, some remarks with respect to the classifier. We used a sim-
ple and straightforward classifier, and will consider alternatives in the
future. We used an online classifier, which suffers from producing
suboptimal classification results in the presence of traffic bursts. Es-
pecially when the data window ω is set too small, traffic bursts can
predominate the presence of regular traffic. A partial solution would
be to use an offline classifier, but this would require to maintain a
separate histogram model for the classifier and data window, thereby
significantly increasing the complexity of the approach.

9 CONCLUSIONS AND FUTURE WORK

We presented a novel approach for domain experts to discover anoma-
lies in network traffic by combining deep packet inspection, machine
learning and visualization into one coherent system. The ability to
create multiple selections in parallel enables the expert to drill down
or to focus on specific entities while still maintaining an overview of
the state in the network. The time view enables experts to detect pat-
terns and trends over time, while the pixel, attribute and lens viewer
together enables the expert to detect outliers. Furthermore, the ability
to train and refine classifiers on multiple selections of interest makes
the approach flexible enough to be optimized for very specific environ-
ments. We have shown the effectiveness of SNAPS on two real-world
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data sets. Since the approach only relies on the structure of parse data
in general, the proposed method is suitable to be applied in other do-
mains as well.

For future work it is interesting to study how we can analyze net-
work traffic at higher levels of abstraction by grouping messages based
on context and structure. This would enable the expert to discover
more complex collective anomalies such as file scans or replay attacks.
Furthermore, there is still an open question about how the speed of the
radars affects the detection rate of the expert. Finally, evaluation is
necessary to study the effectiveness and scalability of the approach in
larger network environments.
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