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Abstract—Visual surveillance is an active research topic in
image processing. Transit systems are actively seeking new or
improved ways to use technology to deter and respond to acci-
dents, crime, suspicious activities, terrorism, and vandalism. Hu-
man behavior-recognition algorithms can be used proactively for
prevention of incidents or reactively for investigation after the fact.
This paper describes the current state-of-the-art image-processing
methods for automatic-behavior-recognition techniques, with fo-
cus on the surveillance of human activities in the context of transit
applications. The main goal of this survey is to provide researchers
in the field with a summary of progress achieved to date and to
help identify areas where further research is needed. This paper
provides a thorough description of the research on relevant human
behavior-recognition methods for transit surveillance. Recogni-
tion methods include single person (e.g., loitering), multiple-
person interactions (e.g., fighting and personal attacks), person–
vehicle interactions (e.g., vehicle vandalism), and person–facility/
location interactions (e.g., object left behind and trespassing). A
list of relevant behavior-recognition papers is presented, includ-
ing behaviors, data sets, implementation details, and results. In
addition, algorithm’s weaknesses, potential research directions,
and contrast with commercial capabilities as advertised by man-
ufacturers are discussed. This paper also provides a summary of
literature surveys and developments of the core technologies (i.e.,
low-level processing techniques) used in visual surveillance sys-
tems, including motion detection, classification of moving objects,
and tracking.

Index Terms—Anomaly detection, event detection, human be-
havior recognition, smart transit system, video analytics, visual
surveillance.

I. INTRODUCTION

M ILITARY, intelligence, and mass-transit agencies are
increasingly using video cameras to fight crime and

terrorism. Due to hardware and storage improvements during
the last decade, a collection of continuous surveillance video
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is already at our doorstep. However, the means to continuously
process it are not.

To illustrate the scope and scale of large surveillance transit
systems, consider the following examples. The New York City
Transit System [1] is the busiest metro system in the U.S. (based
on 2006 statistics), with a total of 468 stations and 1.49 billion
riders a year, that is, 4.9 million riders a day. Moscow metro [2]
is the busiest metro in Europe and, as of 2007, has 176 stations
with 2.52 billion riders annually, that is, 9.55 million daily
riders. This ridership represents a 9.53% growth since 1995.
Transit systems are spread through hundreds of kilometers and
already require several tens of thousands of employees for
daily operations. A complete deployment of visual surveillance
to cover a system of this magnitude requires thousands of
cameras, which makes human-based/dependent surveillance
unfeasible for all practical purposes.

As the volume of video data increases, most existing digital
video-surveillance systems provide the infrastructure only to
capture, store, and distribute video while exclusively leaving the
task of threat detection to human operators. Detecting specific
activities in a live feed or searching in video archives (i.e., video
analytics) almost completely relies on costly and scarce hu-
man resources. Detecting multiple activities in real-time video
feeds is currently performed by assigning multiple analysts to
simultaneously watch the same video stream. Each analyst is
assigned a portion of the video and is given a list of events
(behaviors) and objects for which to look. The analyst issues
an alert to the proper authorities if any of the given events or
objects are spotted. Manual analysis of video is labor intensive,
fatiguing, and prone to errors. Additionally, psychophysical
research indicates that there are severe limitations in the ability
of humans to monitor simultaneous signals [3]. Thus, it is clear
that there is a fundamental contradiction between the current
surveillance model and human surveillance capabilities.

The ability to quickly search large volumes of existing video
or monitor real-time footage will provide dramatic capabilities
to transit agencies. Software-aided real-time video analytics or
forensics would considerably alleviate the human constraints,
which currently are the main handicap for analyzing continuous
surveillance data. The idea of creating a virtual analyst or
software tools for video analytics has become of great im-
portance to the research community. It is our goal to review
the state-of-the-art methods for automatic video analytic tech-
niques, with focus on surveillance of human activities in transit
systems. Human and vehicle behavior recognition has become
one of the most active research topics in image processing
and pattern recognition [4], [5], [93], [123]. Previous surveys
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TABLE I
RELATED LITERATURE SURVEY SUMMARY

have emphasized low-level processing techniques used in visual
surveillance (what we will refer to as “core technologies,” e.g.,
motion detection and tracking). In contrast, we focus on human
behavior recognition topics, drawing special attention to transit
system applications. However, for clarity, a brief review of
the state-of-the-art core technologies is offered, and previous
surveys in related areas are identified (see Table I).

Video analytics gained significant research momentum in
2000, when the Advanced Research and Development Activity
(ARDA) started sponsoring detection, recognition, and under-
standing of moving object events. Research focused on news
broadcast video, meeting/conference video, unmanned aerial
vehicle (UAV) motion imagery and ground reconnaissance
video, and surveillance video. The Video Analysis and Content
Extraction (VACE) project focused on automatic video content
extraction, multimodal fusion, event recognition, and under-
standing. The Defense Advanced Research Projection Agency
(DARPA) has also supported several large research projects
involving visual surveillance and related topics. Projects in-
clude Visual Surveillance and Monitoring (VSAM, 1997) [8]
and Human Identification at a Distance (HID, 2000). Recently,
the Video and Image Retrieval Analysis Tool (VIRAT, 2008)
project has been announced. VIRAT’s purpose is to develop and
demonstrate a system for UAV video data exploitation, which
would enable analysts to efficiently provide alerts of events
of interest during live operations and retrieve video content of
interest from archives.

Video analytics have increasingly become popular in com-
mercial systems. Later in this survey, a summary of some of
the existing commercial systems is provided. The list includes
advertised capabilities for human behavior recognition. How-
ever, it is unclear how well systems are able to cope with
crowds of people, which is typical of mass transit systems.
The cost effectiveness of behavior detection systems to transit
agencies depends on independent verification. Verification of
the systems’ performance is based on the tasks deemed most

important by the transit agencies for the application. Efforts
to create standard evaluation frameworks (methodologies to
quantify and qualify performance) have been of increasing
interest to the research surveillance community [9]–[17], [19].
Additionally, there are methods for evaluating the performance
of the evaluators [18]. Despite the large number of existing eval-
uation techniques, a robust study that experimentally compares
algorithms for human activity recognition is still lacking.

In the last decade, there have been many conferences and
workshops dedicated to visual surveillance, including the IEEE
International Conference on Advanced Video and Signal-based
Surveillance (AVSS) 2005 challenge, which focused on real-
time event detection solutions. The Challenge for Real-time
Events Detection Solutions (CREDS) [19] defined by the needs
of the public transportation network of Paris (RATP, the second
busiest metro system in Europe) focused on proximity warning,
dropping objects on tracks, launching objects across platforms,
persons trapped by the door of a moving train, walking on
rails, falling on the track, and crossing the rails. Several CREDS
proposals can be found in [20]–[23]. The Performance Eval-
uation of Tracking and Surveillance (PETS) [24] workshops
started with the goal of evaluating visual tracking and surveil-
lance algorithms. The initiative provides standard data sets,
with available ground truth, to evaluate object tracking and
segmentation. Recently, a metric to evaluate surveillance results
has also been introduced [25]. Some PETS data sets contain
relevant information closely related to transit systems. Data
sets include single-camera outdoor people and vehicle track-
ing (PETS, 2000); multicamera outdoor people and vehicle
tracking (2001); diverse surveillance-related events, including
people walking alone, meeting with others, window shopping,
fighting, passing out, and leaving a package in a public place
(2004); and images containing left-luggage scenarios (2006).

Around the world, large underground metro networks
(e.g., France’s RATP, the U.K.’s LUL and BAA, and Italy’s
ATM) have deployed and tested large real-time transit visual-
surveillance systems that include human-behavior recognition.
There have been several transit surveillance projects that have
been funded by the European Union. The Proactive Integrated
Systems for Security Management by Technological, Institu-
tional, and Communication Assistance (PRISMATICA) [26]
has deployed video analytic systems in France. The Content
Analysis and Retrieval Technologies to Apply Knowledge Ex-
traction to Massive Recording (CARETAKER) [27] project was
deployed in Italy. The Annotated Digital Video for Intelligent
Surveillance and Optimized Retrieval (ADVISOR) [28] was
successfully deployed and tested in Spain and Belgium, includ-
ing previous work from the Crowd Management with Telem-
atic Imaging and Communication Assistance (CROMATICA)
project [29]–[32].

A. Paper Overview

The main focus of this survey is to offer a comprehensive
survey of image-processing human behavior recognition algo-
rithms in the context of transit applications. All the preprocess-
ing steps prior to behavior recognition are referred to in this
paper as “core technologies.” Human behavior recognition
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Fig. 1. Paper organization flowchart.

using video starts with the detection of foreground objects,
which is commonly achieved through environmental model-
ing or motion-based segmentation. Subsequently, foreground
objects are classified depending on the application as humans
or vehicles. Object classification can be shape based, motion
based, or based on a particular descriptor suitable for a specific
application. Finally, tracking establishes the spatiotemporal re-
lationship between the objects and the scene. The organization
of this paper is depicted in Fig. 1. We begin Section II with a
brief glance on the core technologies, to facilitate the under-
standing of the later sections of this paper. For organization
purposes, all pertinent surveys dealing with core technologies
are identified and summarized in Table I. Behavior-recognition
strategies are discussed in Section III. Section IV elaborates
on many important topics describing the current state-of-the-art
strengths, weaknesses, and future research directions. Section V
summarizes the contents of this paper.

II. CORE TECHNOLOGIES

A. Motion Detection

Visual surveillance systems for fixed cameras traditionally
include some sort of motion detection. Motion detection is used
to segment moving objects from the rest of the image. Knowl-
edge about the motion of objects is useful in both the object
and behavior recognition processes. A survey on early work in
motion detection can be found in [33]. In transit-surveillance
applications, motion detection typically refers to movement of
objects as a whole, e.g., movement of pedestrians or vehicles.
However, human motion can also be referred to articulated mo-
tion of the human body, such as the motion of certain body parts
like legs or arms. There are two types of articulated motion:
1) large-scale body movements like movements of the head,
arms, torso, and legs [7]; and 2) small-scale body movements
like hand gestures and facial expressions [34], [35]. In general,
motion detection can be subdivided into environment modeling,

motion segmentation, and object classification. All three often
overlap during processing. Nearly all current surveillance sys-
tems rely on 2-D data for motion processing; thus, the focus
of this survey will be on this domain. However, advances in
image sensors and evolution of digital computation are leading
to creation of new sophisticated methods for capturing, process-
ing, and analyzing 3-D data from dynamic scenes. Recent de-
velopments include 3-D environmental modeling reconstructed
using the shape-from-motion technique [36] and 3-D imagery
from a moving monocular camera [37]. Most 3-D approaches
require landmarks to be present in the scene [38] to accurately
estimate the required extrinsic parameters of the camera, which
sets an additional set of practical constraints for deployment of
systems. A survey on emerging perspective time-varying 3-D
scene capture technologies can be found in [39].

1) Background Subtraction and Temporal Differencing: A
popular object segmentation strategy is background subtraction.
Background subtraction compares an image with an estimate of
the image as if it contained no objects of interest. It extracts
foreground objects from regions where there is a significant
difference between the observed and the estimated image.
Common algorithms include methods by Heikkila and Silven
[40], Stauffer and Grimson (adaptive Gaussian mixture model
or GMM) [41], Halevy and Weinshall [42], Cutler and Davis
[43], and Toyama et al. (Wallflower) [44]. A detailed general
survey of image change algorithms can be found in [45].
The GMM is one of the most commonly used methods for
background subtraction in visual surveillance applications for
fixed cameras. A mixture of Gaussians is maintained for each
pixel in the image. As time goes on, new pixel values update the
mixture of Gaussians using an online K-means approach. The
estimation update is used to account for illumination changes,
slight sensor movements, and noise. Nevertheless, transit sur-
veillance researchers continue to emphasize the importance
of robust background subtraction methods [47] and online
construction and adaptive background models [46]. A large
number of recent background subtraction methods improve on
prior existing methods by modeling the statistical behavior of
a particular domain or by using a combination of methods. For
example, in [47], a slow adapting Kalman filter was used to
model the background over time in conjunction with statistics
based on an elliptical moving object model. Robust background
subtraction is typically computationally expensive; thus, meth-
ods to improve standard algorithms are becoming increasingly
popular [31]. For example, authors of [38] state that, for a
GMM, speed can be improved by a factor of 8 with an image-
size of 640 × 480 pixels.

Another common object segmentation method is temporal
differencing. In temporal differencing, video frames are sepa-
rated by a constant time and compared to find regions that have
changed. Unlike background subtraction, temporal differencing
is based on local events with respect to time and does not
use a model of the background to separate motion. Typically,
two or three frames are used as separation time intervals,
depending on the approach. A small time interval provides
robustness to lighting conditions and complex backgrounds,
since illumination changes and objects in the scene are more
likely to be similar over short periods of time. However, an
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image-stabilization algorithm is required when there is a sig-
nificant movement of the camera [48]. Temporal differencing
is usually computationally inexpensive, but it regularly fails
at properly extracting the shape of the object in motion and
can cause small holes to appear. For these reasons, hybrid
approaches [49], [50] often combine both background subtrac-
tion and temporal differencing methods to provide more robust
segmentation strategies.

2) Optical Flow: Optical flow is a vector-based approach
that estimates motion in video by matching points on objects
over multiple frames. A moderately high frame rate is required
for accurate measurements. It should be noted that a real-time
implementation of optical flow will often require specialized
hardware, due to the complexity of the algorithm. A benefit of
using optical flow is that it is robust to multiple and simulta-
neous camera and object motions, making it ideal for crowd
analysis and conditions that contain dense motion. Popular
techniques to compute optical flow include methods by Black
and Anandan [51], Horn and Schunck [52], Lucas and Kanade
[53], and Szeliski and Couglan [54]. A comparison of methods
for calculating optical flow can be found in [55].

B. Object Classification

After finding moving regions or objects in an image, the next
step in the behavior-recognition process is object classification.
For example, a pedestrian crossing a street and a vehicle run-
ning a red light can be similar if there is no knowledge of the
object causing the motion. Furthermore, object classification
could distinguish interesting motion from those caused by
moving clouds, specular reflections, swaying trees, or other
dynamic occurrences common in transit videos. It is important
to note here that there are multiple possible representations
of objects before and after classification. Common geometric
or topological properties used include height/width ratio, fill
ratio, perimeter, area, compactness, convex hull, and histogram
projection. For detailed definitions of these properties, see [56].
Some of these properties are also used in postobject classifica-
tion to keep track of the object in sequential frames or separate
cameras. In general, for object classification in surveillance
video, there are shape-based, motion-based, and feature-based
classification methods.

1) Shape-Based Classification: The geometry of the ex-
tracted regions (boxes, silhouettes, blobs) containing mo-
tion are often used to classify objects in video surveillance.
Some common classifications in transit system surveillance are
humans, crowds, vehicles, and clutter [8]. For transit appli-
cations, particularly those oriented to human-behavior recog-
nition, appearance features extracted from static images have
been proven effective in segmenting pedestrians without the use
of motion or tracking [57]–[59]. In general, shape-based recog-
nition methods find the best match between comparisons of
these properties in association with a priori statistics about the
objects of interest. For example, in [60], blobs are first extracted
and classified based on the calculated human height/width ratio
based on data from the National Center for Health Statistics.
Shape-based classification is particularly useful in certain tran-
sit systems when only certain parts of the objects are fully

visible; for instance, in buses and metros, objects will partially
be occluded most of the time, in which case, the head [61] could
be the only salient feature in the scene.

2) Motion-Based Classification: This classification method
is based on the idea that object motion characteristics and
patterns are unique enough to distinguish between objects. Hu-
mans have been shown to have distinct types of motion. Motion
can be used to recognize “types” of human movements such as
walking, running, or skipping, as well as for human identifica-
tion. Starting with the HumanID Gait Challenge [62], image-
processing researchers actively proposed gait-based methods
[63] for human identification at a distance. For more infor-
mation on motion extraction and motion-based classification,
see [64] and [65]. For an overview of motion estimation and
recognition, with focus on optical flow techniques, see [66].

3) Other Classification Methods: Skin color [67] has
proved to be an important feature that can be used for the
classification of humans in video, as it is relatively robust to
changes in illumination, viewpoint, scale, shading, and occlu-
sion. Skin color has also successfully been combined with
other descriptors [68] for classification purposes. In [60], the
authors describe a method that consists of three parts: First,
a red–green–blue normalization procedure was adopted to get
the pure color components. A color transform is then applied,
which correlates each pixel to that of its Gaussian distribution
of the skin color, higher intensities being closer to the center.
Hence, the output shows the region of the image that has
closely matched with skin color, indicating human motion. This
method has also been extended in [69] and fused with other
methods, including depth analysis using binocular imaging.
Fusion of methods has been shown to be very effective when
combining shape- and motion-based methods [70], [71].

C. Object Tracking

In the context of transit systems, tracking is defined as the
problem of estimating the trajectory of a pedestrian in the image
plane while he is in the transit station or vehicle. The increasing
need for automated video analysis has motivated researchers to
explore tracking techniques, particularly for surveillance appli-
cations. Object tracking, in general, is a difficult task. Many
problems that come from general object tracking are the same
as those for human and vehicle tracking, among them multiple
moving objects, noise, occlusions, object complexity, scene
illumination variations, and sensor artifacts. For additional in-
formation on tracking, the reader is referred to detailed object
tracking surveys [72], [73]. Specific issues that arise within
the transit domain include dealing with multiple persons in
complex scenarios [74], tracking across large-scale distributed
camera systems [75], tracking in highly congested areas with
crowds of people [76] (e.g., near ticket offices, metro, or bus
waiting areas at rush hour), or tracking using mobile platforms
[77]. Extremely frequent occlusions are typical; consequently,
the traditional localization and tracking of individuals is not
sufficiently reliable. Furthermore, surveillance inside transit
vehicles often only allows parts of individuals to be captured
by the sensors (e.g., common occlusions from seats and other
passengers often expose only faces inside buses and metros).
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Tracking systems assign persistent identification tags to
tracked pedestrians in different frames of a video. Depending
on the application requirements, it is common for the system
to also maintain other subject characteristics, such as aspect
ratio, area, shape, color information, etc. Selecting good fea-
tures that can be used for future tracking or identification
is a necessity, since the object’s appearance in a later frame
may vary due to orientation, scale, or other natural changes.
In addition, feature uniqueness plays an important role. Some
common features used in image-processing applications are
color, edges, motion, and texture. In [78], researchers describe
a system that monitors suspicious human activities around bus
stops, in which tracking of pedestrians is performed using a
kernel-based method proposed in [79]. This tracker is based
on the color distribution of previously detected targets. The
current position is found by searching the neighborhood around
the previously found target and computing a Bhattacharyya
coefficient, which is used as a correlation score. In [60], the
shirt color is used as the main feature for tracking purposes, and
kernel-based tracking is dropped in favor of blob-based track-
ing. Blob-based tracking offers a computational advantage over
kernel search since the latter has to be first initialized, which
would redundantly require blob extraction to be performed.
Blob-based methods are extremely popular in the literature;
for example, in proposed solutions to the CREDS challenge,
[20] considers the use of a long-memory matching algorithm
[80] using the blob’s area, perimeter, and color histogram,
and [22] performs blob-based color histogram tracking. The
French project Système d’Analyse de Médias pour une Sécurité
Intelligente dans les Transports publics (SAMSIT) focuses on
automatic surveillance in public transport vehicles by ana-
lyzing human behaviors. Inside metros and buses, faces are
the only body part mostly captured by surveillance cameras,
whereas the other body parts are occluded, particularly by
the seats. Therefore, tracking is performed using faces with a
color particle filter [81] similar to [82]. Tracking is based on
the likelihood from the Bhattacharyya distance between color
histograms in the hue-saturation-value color space. Color-based
tracking is robust against vibration of the moving vehicles like
trains and buses. However, it is sensitive to extreme changes
in lighting conditions, such as a train entering a tunnel. Many
multisensor approaches [83], [84], algorithm-fusion techniques
[85], and integrating features over time [86] have been proposed
to overcome many of the mentioned tracking difficulties and
to generate robust tracking performance in transit-surveillance
applications.

III. HUMAN-BEHAVIOR RECOGNITION

In this survey, the terminology and classification strategy
for the human behavior is similar to that used by the VIRAT
project. VIRAT divides the human behavior into two cate-
gories, namely, “events” and “activities.” An event refers to
a single low-level spatiotemporal entity that cannot be further
decomposed (e.g., person standing and person walking). An
activity refers to a composition of multiple events (e.g., a person
loitering). Across the literature, the term “event” is often inter-
changeably used to describe “events” or “activities,” as defined

Fig. 2. Sample single-person or no interaction behavior. Suspicious person
(marked with an ellipse) loitering for a long period of time without leaving in
a bus.1

Fig. 3. Sample multiple-person interaction behavior. Pedestrians on a
crosswalk.2

by VIRAT. For clarity, we use the term “behavior” to include
both “events” and “activities” and do not worry about incon-
sistencies of technical definitions. For organizational purposes,
transit surveillance operationally relevant behaviors are divided
into four general groups: 1) single person or no interaction;
2) multiple-person interactions; 3) person–vehicle interactions;
and 4) person–facility/location interactions. Next, we provide
some examples for each of these groups.

1) Single person or no interaction (see Fig. 2) consists of
behaviors that can be defined only by considering per-
son(s), which are not interacting with any other person or
vehicle. For example, loitering, people (crowd) counting,
crowd flow (behavior) analysis, and person talking on a
cell phone.

2) Multiple-person interactions (see Fig. 3) consist of be-
haviors that involve persons interacting with each other.
For example, following, tailgating, meeting, gathering,
moving as a group, dispersing, shaking hands, kissing,
exchanging objects, and kicking.

3) Person–vehicle interactions (see Fig. 4) consist of behav-
iors that are defined through interactions with persons and
vehicles. For example, driving, getting in (out), loading
(unloading), opening (closing) trunk, crawling under car,
breaking window, dropping off, and picking up.

1Images courtesy of the Center for Distributed Robotics, University of
Minnesota. Images are part of the data set used in [60].

2Images courtesy of the Computer Vision Laboratory, ETH Zurich. Images
are part of the data set used in [86].
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Fig. 4. Sample person–vehicle interaction. Person being run over by a
vehicle.3

Fig. 5. Sample person–facility/location interaction. Object left behind in a
train station.4

4) Person–facility/location interactions (see Fig. 5) are be-
haviors defined through interactions with persons and
facilities/locations. For example, entering (exiting),
standing, waiting at checkpoint, evading checkpoint,
passing through gate, object left behind, and vandalism.

In surveillance systems, behavior recognition can be am-
biguous, depending on the scene context. The same behavior
may have several different meanings depending on the envi-
ronment and task context in which it is performed. Human
behavior recognition has been the focus of several workshops
such as Visual Surveillance (1998) [87], [88], Event Min-
ing (2003) [89], [90], and Event Detection and Recognition
(2004) [91], [92]. See [93], where a brief background review
of advances in intelligent visual surveillance is presented,
and [94] and [95] for a review on studies of motion of the
human body.

Any reliable behavior recognition strategy must be able
to handle uncertainty. Many uncertainty–reasoning models
have been proposed by the artificial intelligence and image-
understanding community and already have been used in visual
surveillance applications. The Bayesian approach is perhaps the
most common model due its robustness and relatively low com-
putational complexity, as compared with other methods, such
as the Dempster–Shafter theory [96]. Uncertainty handling can

3Crime solver public video release from Hartford Police Department in
Connecticut.

4Object left behind sample images from PETS 2006 data set [24].

improve visual attention schemes [97]. Various other models
have been used in surveillance-related applications, including
classifying human motion and simple human interactions using
a small belief network [98], human postures using belief net-
works [99], description of traffic scenes using a dynamic Bayes
network [100], human activity recognition using a hierarchical
Bayes network [101], and anomalous behavior detection using
trajectory learning with hidden Markov models [102], [103].

A. Single Person or No Interaction

1) Loitering: Loitering is defined as the presence of an
individual in an area for a period of time longer than a given
time threshold. Methods for automatically detecting loitering
in real time would enable deployed security to investigate
suspicious individuals or to target loitering stations for future
investigation. Loitering is of special interest to public transit
systems since it is a common practice of drug dealers, beggars,
muggers, graffiti vandals, among others. In this survey, loitering
refers to a behavior that exclusively involves a human. It is
not to be confused with stationarity of objects (e.g., object left
behind), which in our classification falls under person–facility
interaction behaviors. Before a loitering activity is detected,
individuals can be engaged in other activities like browsing,
entering, leaving, and passing through [104].

In general, the literature for loitering detection in transit
system applications mostly consists of tracking using indoor
video (see Table II). However, publications often lack of imple-
mentation and technical details [21], [105], [106]. The technical
literature exclusively to outdoor loitering detection is scarce.
In [60], outdoor loitering is used as a cue to detect potential
drug-dealing operations in bus stations. Often, drug dealers
wait for their clients to come by bus, buy drugs, and leave.
Consequently, a suspicious activity is defined as individuals
loitering, using a time threshold longer than the maximum
time that it would typically take to catch a bus. The technique
proposed in [60] uses a refined Gaussian mixture background
subtraction algorithm to detect motion blobs in a calibrated
scene. Blobs are classified as humans using size and shape
descriptors, and a short-term biometric based on the color of
clothing is used for tracking purposes. A calibrated scene is
used to calculate the effect of distortions in the pedestrian’s size
due to the perspective projection. However, in transit scenes, it
is often impractical to manually measure camera parameters on
site and almost impossible when working only with prerecorded
examples [107].

2) Crowd Counting: Accurate people detection can increase
management efficiency in public transportation by marking
areas with high congestion or signaling areas that need more
attention. Moreover, estimation of crowds in underground tran-
sit systems can be used to give passengers a good estimate of
the waiting time in a queue. Multiple solutions to automate
the crowd-counting process have been proposed, including
solutions from a moving platform (e.g., camera on a bus) [108]
that analyze the optic flow generated from the moving objects
and the moving platform.

Researchers have identified crowd counting to be often highly
sensitive to training data [109], and in these cases, algorithms or
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TABLE II
EXPERIMENTAL RESULTS AS STATED IN THEIR RESPECTIVE PUBLICATIONS (TP: TRUE POSITIVES;

FP: FALSE POSITIVES; ROC: RECEIVER OPERATING CHARACTERISTIC CURVE)
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crowd density classifiers [110] will greatly benefit from having
a realistic and robust training data set. However, new techniques
for creating human crowd scenes are continuously being devel-
oped, particularly due to the growing demand from the motion
picture industry [111]. Simulated crowds have widely been
studied in many application domains, including emergency
response [112] and large-scale panic situation modeling [113],
[114]; perhaps, simulated crowds [115] or flow models could
also potentially offer visual surveillance researchers a new way
to efficiently generate training data.

Solutions using fixed cameras that use standard image-
processing techniques can be separated into two types: The first
type uses an overhead camera, which contains “virtual gaits”
that count the number of people crossing a predetermined area.
Clearly, segmentation of a group of people into individuals is
necessary for this purpose [116]. The second type attempts to
count pedestrians using people detection and crowd segmen-
tation algorithms. In the overhead camera scenario, many diffi-
culties that arise with traditional side-view surveillance systems
are rarely present. For example, overhead views of crowds are
more easily segmented, since there is likely a space between
each person, whereas the same scenario from a side-view angle
could incorrectly be segmented as one continuous object. When
strictly people counting, some surveillance cameras are placed
at bottlenecked entrance points, where at most one person at
any given time is crossing some predetermined boundary (such
as a security checkpoint or an access gate at a subway terminal).
However, a potential drawback is that overhead views are prone
to tracking errors across several cameras (unless two cameras
are operating in stereo) since human descriptors for overhead
views are only reliable for a small number of pedestrians [117].
Hence, using multiple cameras may further complicate crowd
counting. In cases where overhead surveillance views are not
available, side-view cameras must be used to count people, and
the multiple problems associated with this view (e.g., crowd
segmentation and occlusion) come into play. In the case of
crowd segmentation, some solutions that have been proposed
include shape indexing, face detection, skin color, and motion
[118], [119]. However, most of these methods heavily rely
on image quality and frame rate for accurate results. Shape
indexing and skin colors are considered robust to poor video
quality, whereas motion and face detection are most dependent
on video quality. Occlusion is another problem, since all or part
of a person may be hidden from view. Some techniques try
to mitigate this issue by detecting only heads [120] or omega-
shaped regions formed by heads and shoulders [121].

3) Crowd Behavior: Crowd behavior analysis has drawn
significant interest from researchers closely working with the
transit domain [122]. A recent survey [123] focused on crowd
analysis methods employed in image processing. The flow of
large human crowds [107] is a useful cue for human operators
in real-time behavior detection, such as diverging crowd flow
and obstacles. Flow cues can be used reactively by human
operators to efficiently deal with accidents or preventively to
timely control situations that potentially could lead to graver
incidents. Recent crowd behavior analysis methods include
tracking of moving objects [124], motion models using optical
flow [125]–[128], and crowd-density measurement using back-

ground reference images [129]. A related surveillance problem
consists of identifying specific individual events in crowded
areas [130], in which motion from other objects in the scene
will cause significant clutter under which algorithms might fail.
Detecting particular behaviors based on crowd analysis (e.g.,
panic, fighting, and vandalism) is a new research direction for
projects like SEcuRization KEeps Threats (SERKET) [131],
which has recently been funded by the European Union to
create methods to analyze crowd behaviors and aid in the fight
against terrorism. Common abnormal crowd characteristics that
have been researched are fallen person, blocked exit, and escape
panic [125]–[127]. Behavior classification is often based on the
vector fields generated by crowd motion instead of individual
person tracking.

4) Human Pose Estimation (Stance Change): In transit sur-
veillance applications, human pose estimation refers to the pose
of the entire human body (e.g., going from standing to lying
down in a metro is an indication of pedestrian collapse), and
not a pose related to a single body part, such as a head pose,
that can be used in applications such as driving monitoring
[132]. However, keeping track of multiple body parts is often
useful to estimate the global body poses. In fact, there are
two main approaches to estimating the body pose. The first
approach calculates ratios between the height and the width of
the bounding box around a detected human. In [133], vertical
and horizontal projection templates are used to detect stand-
ing, crawling/bending, lying down, and sitting. The second
approach attempts to track specific joints and body parts [134],
[135], both because they are useful for indicating the human
pose and because, when accurately modeled, they can be used
to recover the pose even after occlusion and other common
tracking failures [136]. Due to self-occlusion and background
clutter, some approaches also use the motion generated from
each body part as a feature for pose change [137], since
movements from each joint are shown to be interdependent. In
[138], the observed motion is compared with registered motion
exemplars, whereas action models are used to estimate possible
future poses.

B. Multiple-Person Interactions

Multiple-person interactions have largely been motivated by
the growing demand for recognizing suspicious activities in
security and surveillance applications. In [139], the behavior
detection process consists of foreground segmentation, blob
detection, and tracking. Semantic descriptions of suspicious
human behaviors are defined through groups of low-level blob-
based events. For example, fights are defined as many blobs’
centroid moving together, merging and splitting, and overall
fast changes in the blobs’ characteristics. Attacks are defined
as one blob getting too close to another blob, with one blob
perhaps being initially static, and one blob erratically moving
apart. Large projects like Computer-assisted Prescreening of
Video Streams or Unusual Activities (BEHAVE) (2004–2007)
[140] and Context Aware Vision using Image-based Active
Recognition (2002–2005) [141] have each produced several
publications focusing on multiple-person interactions. Algo-
rithms include the use of a nearest neighbor classifier based on
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trajectory information [142] to detect human interactions such
as walking together, approaching, ignoring, meeting, splitting,
and fighting; Bayesian networks [143]; and moment-invariant
feature descriptions [144] to detect events, including sitting
down, standing up, bending over, getting up, walking, hug-
ging, bending sideways, squatting, rising from a squatting
position, falling down, jumping, punching, and kicking. Often,
performance relies on the ability to accurately segment and
separate multiple human motions. Multiple free-form blobs
and course models of the human body were used in a two-
person interaction in [145], which used a hierarchical Bayesian
network to recognize human behaviors based on body part
segmentation and motion. This work was extended [146] to
track multiple body parts of multiple people. Processing at
three levels (pixel, blob, and object) was used to distinguish
punching, handshaking, pushing, and hugging. A technique that
does not use temporal motion information but instead uses
pose is discussed in [147]. By using a string matching method
using a K-nearest neighbor approach, the authors were able to
classify shaking hands, pointing, standing hand in hand, and the
intermediate transitional states between these events.

Exchanging objects between persons is a common security
concern in airports and other transit scenarios. In [148], back-
pack exchanging is detected based on the shape analysis of each
person. First, a person is detected to be carrying or not carrying
a backpack or any other object. Then, the object is segmented
and tracked for possible future exchanges between people.
The involuntary exchanging of objects such as pickpocketing
is discussed in [149], and a real-time implementation of this
behavior can be found in [150]. Other methods have extended
the concept of “objects left behind” to analyze higher level
information [190] of objects being “switched,” i.e., changing
hands. A noncontact hand gesture between people such as
waiving was studied in [130]. This event was based on the
localization of spatiotemporal patterns of each human motion
and uses a shape-and-flow matching algorithm.

C. Person–Vehicle Interactions

In general, transit systems involve surveillance of motorized
vehicles and humans. Spatiotemporal relationships between
people and vehicles for situational awareness [151] are the
basis for analysis of “the big picture.” However, operationally
relevant behavior detection (e.g., human breaking in or vandal-
izing a car) has yet to be addressed in the research literature.
As mentioned before, the focus of interest for this survey is
human behavior recognition; however, for completeness, this
following section provides a short general overview on vehicle
visual surveillance. For a complete review of on-road vehicle
detection systems, see [152].

Most existing automated vehicle surveillance systems are
based on trajectory analysis. Detected events are abnormal
low-frequency ones (e.g., U-turns, sudden brake, and pedes-
trians trespassing the street) [153], [154] or a small group
of predefined events, such as accidents [155], [156], illegal
parking [157], congestion status [158], illegal turns, or lane
driving [159]. Events of interest are commonly learned using
expectation–maximization [160] or modeled using semantic

rules [161] similar to the human interpretation of such events
and validated using existing data. Trajectory-based approaches
have been the subject of significant study, particularly in
the traffic analysis domain. Common approaches to trajectory
analysis are based on Kalman filter [162], [163], dynamic
programming [164], and hidden Markov models [160]. Discrete
behavior profiling has been proposed [165] to avoid tracking
difficulties associated with occlusion and noise. There is signif-
icant research done in domain-independent anomaly behavior
detection [166], [167], as well as events based on group ac-
tivities [165]. Transit surveillance involves many subproblems,
including classification of different types of vehicles [168]–
[170], vehicle recognition [171], or discrimination between
vehicles and other frequent objects [172], such as pedestrians,
bicycles, buses, cars, pickups, trucks, and vans.

D. Person–Facility/Location Interactions

1) Intrusion or Trespassing: Intrusion or trespassing is de-
fined as the presence of people in a forbidden area. A forbidden
area can also be defined in terms of time (e.g., after hours)
or spatial relationships (e.g., a pedestrian walking close to the
train platform edge or walking on the rails). A large number
of intrusion detection algorithms rely on the use of a digital
“trip wire.” A trip wire is typically a line drawn over the
image, which separates regions into “allow” and “do not allow”
areas. In [20], [21], and [23], whenever a bottom corner of the
bounding rectangle of an object intersects this line (rails in a
subway), an intrusion is detected, and a warning is given. The
warning stops when both corners of the rectangle come back
to the allowed area. Intrusion detection is necessary to detect
suicidal behaviors, such as people jumping on the train tracks.
To reduce false positives, often, the blob needs to be tracked
over time for a given number of frames after intrusion. To
mitigate strong illumination changes, edges can be used in the
motion extraction process [173]. Trespasser hiding [139] can be
defined as a blob disappearing in many consecutive frames with
the blob’s last centroid position not close to an area previously
defined as a possible “exit area.” Access time and motion
trajectory have also been shown to be useful for intrusion
violation detection using hidden Markov models [174].

Another security-sensitive activity similar to intrusion is
tailgating (i.e., illegal piggyback entry). Tailgating is a topic
that has not received much attention in research but has been
implemented in many commercial systems. Rather than strictly
detecting an intrusion past a trip wire, illegal entry can occur
when a human gains access through a door or gate by staying
close to the person or car in front of him, sometimes without
the knowledge of the authorized person.

2) Wrong Direction: Wrong direction occurs when an ob-
ject is moving in a restricted direction. Typical examples of
this behavior are people or crowds breaching security check-
points at airports and subways or cars driving in wrong traffic
lanes. In general, algorithms used to detect wrong direction
heavily rely on a tracking algorithm, since successful tracking
allows the movement of the object to easily be estimated
and later compared with acceptable motion vectors [175]. In
some scenarios, the overall crowd characteristics, which do not
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rely on the tracking of individual objects, may be sufficient
[107]. For instance, the movement of large groups of people
in an uncommon direction may indicate panic or danger. To
entirely automate the process, motion vectors can be calculated
in conjunction with a GMM to learn the correct directional
patterns of traffic in the scene [176].

3) Vandalism: Vandalism is defined in [139] as irregular
centroid motion of a blob, combined with detected changes in
the background. This definition is also implemented in [177]
when a blob enters a scene and causes changes in the back-
ground or predefined “vandalisable” areas. In [178], vandalism
is detected in unmanned railway environments using a neural
net by detecting erratic or strange behaviors of a single person
or a group.

4) Object Stationarity (Object Removal and Object Left
Behind): In this survey, object stationarity exclusively refers
to nonanimated objects. In transit surveillance systems, objects
left behind usually represent suspicious or potentially danger-
ous elements (e.g., a suitcase and a backpack). Detection of
dangerous objects is a critical task that leads to safety and
security of the passengers. In 2004 and 2006, object stationarity
was one of the events targeted by PETS. Most algorithms
presented a simple background subtraction method to find
stationary objects that were not present before. Many other
methods have been proposed to deal with objects left behind
or removed. In [179], an edge matching algorithm is used,
which compares the current frame to the background model to
detect objects removed or left behind. In [21], a block-based
matching algorithm is used to detect stationarity. Each video
frame is separated into blocks and classified as background or
foreground using frame differences with respect to the training
phase. If at any given time a foreground block is not moving, it
is then considered to be stationary. There is still quite a lack of
research in terms of object stationarity in the context of crowded
areas, but researchers [180] have admitted this weakness and
mentioned ways to include crowd segmentation algorithms to
improve stationarity detection performance.

IV. STATE-OF-THE-ART DISCUSSION

AND FUTURE DEVELOPMENTS

Future developments mentioned in the previous survey [4]
include multimodal data fusion, robust occlusion handling,
usage of 3-D data, and usage of personal identification. In this
section, additional potential directions of work are explored. In
addition, an analysis of the current state-of-the-art behavior un-
derstanding algorithms is presented. Research weaknesses are
identified, and possible solutions are discussed. The surveyed
papers in Table III offer an indication to the level of interest in
this research area. As shown in Fig. 6, it is clear that behavior
recognition is an active research topic. In fact, there have been
three times as many publications in the last three years than the
number of all publications found before 2005.

A. Core Technology Limitations

Human behavior algorithms heavily rely on the available
core technology. There are many limiting factors to the usability
of these core technologies in real transit systems. Implementing

analytics on some videos may not be feasible or could be
restricted to only a subset of the available algorithms. There are
many hardware-related problems such as poor resolution, low
frame rates, or insufficient processing hardware. For instance,
crowd-monitoring algorithms usually rely on the calculation of
optical flow, which requires a moderately high frame rate and
significant processing power. In fact, optical flow often requires
special hardware if a real-time solution is needed [4]. In this
survey, we separate algorithms in terms of processing speed
into two groups, namely, real time and offline processing (see
Table III). Nevertheless, in the last decade, the image-
processing community in this context agrees that the definition
of real time is not clear, although many researchers use it in
their systems [7]. This point brings the biggest concern to create
an accurate assessment of core technology limitations: the
lack of independent studies that compares behavior detection
performance in transit environments with a common set of data
set and metrics. For instance, although significant progress has
been made in object tracking in the last decade, tracking meth-
ods usually rely on assumptions that often overly simplify the
real problem. Assumptions such as smoothness of motion, lim-
ited occlusion, illumination constancy, and high contrast with
respect to background [73] effectively limit the algorithms’ us-
ability in real scenarios within the transit-surveillance domain.

B. Evaluation Framework

Robust evaluation of automatic computer-vision methods is
a complicated task. Standard baseline algorithms are required
for comparison purposes. These baseline algorithms are usually
well known to computer scientists working in related areas of
research. However, there are no accepted baseline algorithms
in behavior recognition for transit applications. Surprisingly, a
few papers in Table III formally compare performance against
any other related work, making behavior-detection algorithm
comparison scarce in the literature. Dealing with new detection
tasks that have not previously been studied will clearly require
baselines to be developed. In any case, the use of well-known
and standard low-level processing techniques is a must. A
meaningful study must compare performance with techniques
that are likely to work under most circumstances, rather than
compare with techniques likely to fail under the scope of
interest. Transit data are far from common as are the problems
that come along with them. On top of typical problems faced in
vision-based surveillance applications, the transit domain faces
particularly difficult problems, including poor illumination with
drastic lighting changes (e.g., underground stations and tunnels)
and heavily crowded scenes. In outdoor transit, weather can
also have a significant impact on the quality of the data. A
previous study on capturing human motion, which compares
over 130 papers, found algorithms to be heavily constrained
to assumptions [7] related to movement, environments, and
subjects. Nearly a decade later, algorithms still rely on many of
the same assumptions. The problem is that performance under
these situations is not well specified in the literature. In transit
environments, particular concerns are assumptions of camera
motion, camera parameters, field of view, background complex-
ity, landmarks, lighting and weather conditions, crowd density,
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TABLE III
PUBLICATIONS OF BEHAVIOR RECOGNITION ALGORITHMS APPLICABLE TO TRANSIT SURVEILLANCE SYSTEMS (O: DATA SET

INCLUDES OUTDOOR DATA SETS; R: MENTIONS A REAL-TIME IMPLEMENTATION; C: DATA SET INCLUDES CROWDED SCENES)
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Fig. 6. Increasing interest on human behavior recognition research is shown
through a comparison of a number of papers published up to 2008.

number and severity of occlusions, subject initialization or
a priori information (e.g., known pose, movement, and tight-
fitting clothes), and variability of motion patterns. Going back
to a point made earlier, there is a lack of independent studies
that attempt to describe the effect of these problems in dif-
ferent transit scenarios; therefore, it is unclear how behavior
detection algorithms and commonly used low-level process-
ing methods are affected by some of these domain-specific
problems.

C. Standard Terminology

It is often assumed that crowds will be evenly distributed
across the available space. However, that is not necessarily the
case in transit areas such as a metro platform, where people
are “competing” for space to ensure they get on the next
train. The occupancy capacity of a given area depends on the
pertinent licensing authority (e.g., fire or police department and
emergency agency). For example, in U.K., the Communities
and Local Government regulations set the limit occupancy for
a bar [181] to 0.3–0.5 m2 per person, but the same regulations
do not apply to shopping malls. In image processing, to find
a common ground for publications and experimental results,
sometimes, it is necessary to use standard operational defini-
tions. In [109] and [182], definitions based on current practical
safety guidelines are used. For example, very low density is
defined as people/m2 < 0.5, whereas very high density is de-
fined as people/m2 > 2. Other studies use less mathematically
precise definitions such as “Overcrowding occurs when too
many people congregate within a certain location. Congestion
is a situation where it becomes difficult for an individual to
move within a crowded area” [21]. A common approach is
to describe a crowd in terms of the number of individuals in
it, like in [32], where authors define “very low density (0–
15 people), low density (16–30 people), moderate density
(31–45 people), high density (46–60 people), and very high
density (more than 60 people).” Clearly, comparing related
work dealing with “crowds” becomes extremely complicated
since there is no widely accepted standard way to define crowd
levels in the literature. Additionally, it is hard to identify
methods that directly refer to similar data sets in terms of crowd
density.

Fig. 7. Data set description analysis based on 52 transit surveillance-related
papers surveyed in this paper. “None” refers to papers that include no reference
to the data set used. “Complete” indicates that a full description is included,
i.e., quantity and pixel resolution for both training and testing data. “Incom-
plete” indicates that there is some description but not enough to account for
“Complete.”

D. Data Sets

This survey has found across the literature the tendency to
not fully specify the data set used. As shown in Fig. 7, most
papers, regardless of the review process, chose to not com-
pletely disclose the data set description of their work. Clearly,
this information is necessary when showing the significance of
an algorithm and understanding their results. Moreover, relative
improvements over other previously reviewed publications may
be hard to quantify since a comparison of the data sets cannot
be made. Consequently, it is often unclear what level of empir-
ical validation is behind published techniques. An advantage
of using similar or common data sets is that performance
scores from different algorithms can directly be compared,
as long as the evaluation framework is comparable. However,
in general, transit security data are hard to come by, due to
the difficulty of gathering an adequate supply of valid video
sequences containing operationally relevant events [139], and
overcome privacy and security concerns [193]. Initiatives like
TREC Video Retrieval Evaluation [183] encourage research
by providing large data set collections and uniform scoring
procedures. Efforts like this will be required as organizations
become interested in comparing behavior detection reliability
and results. Nevertheless, some authors using available data
sets report concrete results only on very small portions of the
data set but make reference of general testing on the entire
data. Other authors refer to algorithms being able to work
without any level of detail on performance, which does not
offer researchers in the field with any meaningful performance
information. In this survey, we found these to be common
problems in the literature.

E. Distributed Surveillance

Distributed surveillance systems are networks of sensors that
can be spread over large regions. Often, a single view of a transit
scene could be insufficient to determine certain complex human
behaviors. Large networks of cameras and other sensors could
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TABLE IV
BEHAVIOR RECOGNITION SUMMARY ADVERTISED BY COMMERCIAL PROVIDERS IN THEIR WEBSITES

interact to form a “bigger picture,” which can potentially offer
a viable solution to complex problems. Many transit systems
have large sensor networks (e.g., audio, video, motion sensors,
and smoke detectors) already in place. Under such scenar-
ios, multiple sensors can be used to generate more accurate,
complete, and dependable data. For example, camera networks
can be used to provide multiple views of a scene, which might
diminish the number of tracking occlusions [184]. In addition,
sensors can often overcome weaknesses of other sensors; for
example, fusing color and infrared video can be used to improve
tracking through occlusions [185]. However, there is not much
work reported on the integration of different types of sensors in
automated video surveillance systems [5]. Multimodal fusion,
such as audio and video [186] or infrared and stereovision
[187], can potentially offer better scene understanding, thereby
improving situational awareness and response time. For general
distributed surveillance, see a detailed survey in [5] for more
information.

F. Aerial Surveillance

Moving cameras and mobile surveillance platforms have yet
to become an important player in transit surveillance. With
much research and commercial interest in UAVs and mobile
surveillance platforms, current solutions are not far from being
usable as an efficient surveillance platform for transit networks.
Early works using surveillance video from UAVs [195], [196]
describe behavior analysis algorithms for low-resolution vehi-
cles to monitor roadblock checkpoints (e.g., avoiding, passing
through, and getting closer). As aerial surveillance has gained
increased interest within the research community, authors have
proposed techniques to detect low-resolution vehicles [197] and
buildings [198] from aerial images. As surveillance techniques

using image-processing algorithms are created to be used on
aerial platforms, tracking-based methods often used in current
transit applications will likely have problems with aerial video.
Tracking systems have problems with objects following broken
trajectories resulting from limited field of view and occlusion
due to terrain features. Recent work is being driven by these
problems, leading to solutions for problems such as the study
of global motion patterns [199] from aerial video. As resolution
and video quality increases, transit surveillance, including peo-
ple, vehicles, and behavior analysis, is logically the next step.

G. Commercial Systems

There are many commercial system providers who offer
visual surveillance solutions for residential, commercial, gov-
ernment, and law enforcement agencies. Most modern systems
now include video analytics software useful for automatic
behavior recognition. Moreover, the actual storage of the video
is significantly reduced if recording is performed only when
an alarm is triggered by one of such behaviors. Customers
are also able to specify defining attributes of moving objects,
such as shape and speed, to provide means to efficiently search
large video databases. Along with a visual cue on a security
monitor, other common features include automatic e-mail or
text messaging to cell phones or personal display assistants
when alarms are triggered. In addition, geocoded mapping tools
combined with real-time communication allow key personnel
to further investigate the alarms. Table IV shows a summary of
existing commercial systems, including current general behav-
ior detection capabilities. Capabilities are based on information
advertised by vendors in their websites as in April 2009. Due
to the broad terminology used by different providers, we based
behavior labels on the most common names found. In Table IV,
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crowd analysis refers to any analytics that targets crowds in
general; thus, it would include events like people counting,
crowd density, and queue length monitoring.

As capabilities advertised by commercial providers increase,
the necessity for an independent evaluation of such capabilities
becomes increasingly more prominent. Currently, there are no
published efforts in the literature or independent data that can
sustain the providers’ claims. Furthermore, it is not clear how
typical problematic conditions of mass transit systems, such
as heavy traffic, crowded areas, detrimental weather effects,
and drastic illumination changes, could affect performance.
Additionally, without independent verification studies, there is
no way to determine strict technical terminology commonality,
and therefore, we could not compare performance across plat-
forms. In other words, we have no idea which system (vendor)
will perform better using a given set of requirements. Let us
consider detection of the loitering behavior as an example.
Looking at Table IV, almost two thirds of vendors advertised
loitering detection capabilities. Let us take into account that,
as discussed earlier in this paper, we describe that, in [60],
loitering is detected over long periods of time, including likely
situations of subjects leaving the scene or being frequently
occluded. However, it is unclear that any of the systems listed
in this table can achieve the same results as in [60]. In fact,
based on direct discussions with some vendors, it was made
clear that systems, in general, have significant limitations with
respect to camera placement, image quality and resolution,
lighting conditions, occlusions, object contrast and stationarity,
and weather.

V. CONCLUSION

Public transit agencies are under mounting pressure to pro-
vide a safe and secure environment for their passengers and
staff on their buses, light-rail, subway systems, and transit
facilities. Transit agencies are increasingly using video surveil-
lance as a tool to fight crime, prevent terrorism, and increase
the personal safety of passengers and staff. Visual surveillance
for transit systems is currently a highly active research area
in image processing and pattern recognition. The number of
research papers published in the last three years outnumbers
the rest of the previous related literature threefold. This survey
presented an overview of the state-of-the-art developments on
behavior recognition algorithms for transit visual surveillance
applications. A literature sample of 52 papers was used to study
state-of-the-art strengths and weaknesses. Analysis includes be-
haviors, data sets, and implementation details. A classification
strategy is presented that separates these papers by the targeted
human behavior. The behavior groups are as follows: 1) single
person or no interaction (i.e., behaviors exhibited by a single
person that does not interact with any other person or vehicles);
2) multiple-person interactions; 3) person–vehicle interactions;
and 4) person–facility/location interactions.

In this survey, a brief overview of the core technologies (i.e.,
all preprocessing steps before behavior recognition) has been
included. There are many well-known limitations in the core
technologies that need to be addressed. Techniques are often
sensitivity to poor resolution, frame rate, drastic illumination

changes, detrimental weather effects, and frequent occlusions,
among other common problems prevalent in transit surveillance
systems. Consequently, improved core technology algorithms
are needed to increase the reliability of human behavior recog-
nition. Over the last decade, numerous methods for evaluating
core technologies have been proposed. However, there are no
standard evaluation methods for human behavior recognition.
Creating standard evaluation tools includes defining a common
set of terminology and generating operationally similar data
sets. For example, a bus and a metro can both be “crowded.”
However, operationally, the “crowds” in both situations are
very different. Thus, without a standard precise definition of
“crowd,” formal comparisons become a very difficult task.

There are vast amounts of untapped information present in
surveillance video footage, which can be exploited for auto-
matic behavior detection. However, there is still a big gap in
analytical skills between a typical security guard and state-
of-the-art image-processing algorithms. On the other hand,
there is a never-ending struggle to increase security personnel
effectiveness over long periods of time while reducing labor
costs. Many think of computer technology as the only solution
that is able to close that gap.
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