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This chapter describes how a Convolutional Neural Network (CNN) operates
from a mathematical perspective. This chapter is self-contained, and the focus
is to make it comprehensible for beginners to the CNN field.

The convolutional neural network (CNN) has shown excellent performance
in many computer vision, machine learning and pattern recognition problems.
Many solid papers have been published on this topic, and quite some high quality
open source CNN software packages have been made available.

There are also well-written CNN tutorials or CNN software manuals. How-
ever, we believe that an introductory CNN material specifically prepared for
beginners is still needed. Research papers are usually very terse and lack de-
tails. It might be difficult for beginners to read such papers. A tutorial targeting
experienced researchers may not cover all the necessary details to understand
how a CNN runs.

This chapter tries to present a document that

• is self-contained. It is expected that all required mathematical background
knowledge are introduced in this chapter itself (or in other chapters in this
book);

• has details for all the derivations. This chapter tries to explain all the
necessary math in details. We try not to ignore any important step in a
derivation. Thus, it should be possible for a beginner to follow (although
an expert may feel this chapter a bit tautological.)

• ignores implementation details. The purpose is for a reader to under-
stand how a CNN runs at the mathematical level. We will ignore those
implementation details. In CNN, making correct choices for various im-
plementation details is one of the keys to its high accuracy (that is, “the
devil is in the details”). However, we intentionally left this part out,
in order for the reader to focus on the mathematics. After understand-
ing the mathematical principles and details, it is more advantageous to
learn these implementation and design details with hands-on experience
by playing with CNN programming. The exercise problems in this chapter
provide opportunities for hands-on CNN programming experiences.

CNNs are useful in a lot of applications, especially in image related tasks.
Applications of CNN include image classification, image semantic segmentation,
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object detection in images, etc. We will focus on image classification (or cate-
gorization) in this chapter. In image categorization, every image has a major
object which occupies a large portion of the image. An image is classified into
one of the classes based on the identity of its main object, e.g., dog, airplane,
bird, etc.

1 Preliminaries

We start by a discussion of some background knowledge that are necessary in
order to understand how a CNN runs. One can ignore this section if he/she is
familiar with these basics.

1.1 Tensor and vectorization

Everybody is familiar with vectors and matrices. We use a symbol shown in
boldface to represent a vector, e.g., x ∈ RD is a column vector with D elements.
We use a capital letter to denote a matrix, e.g., X ∈ RH×W is a matrix with
H rows and W columns. The vector x can also be viewed as a matrix with 1
column and D rows.

These concepts can be generalized to higher-order matrices, i.e., tensors. For
example, x ∈ RH×W×D is an order 3 (or third order) tensor. It contains HWD
elements, and each of them can be indexed by an index triplet (i, j, d), with
0 ≤ i < H, 0 ≤ j < W , and 0 ≤ d < D. Another way to view an order 3 tensor
is to treat it as containing D channels of matrices. Every channel is a matrix
with size H ×W . The first channel contains all the numbers in the tensor that
are indexed by (i, j, 0). Note that in this chapter we assume the index starts
from 0 rather than 1. When D = 1, an order 3 tensor reduces to a matrix.

We have interacted with tensors day-to-day. A scalar value is a zeroth-order
(order 0) tensor; a vector is an order 1 tensor; and a matrix is a second order
tensor. A color image is in fact an order 3 tensor. An image with H rows and
W columns is a tensor with size H ×W × 3: if a color image is stored in the
RGB format, it has 3 channels (for R, G and B, respectively), and each channel
is a H×W matrix (second order tensor) that contains the R (or G, or B) values
of all pixels.

It is beneficial to represent images (or other types of raw data) as a tensor.
In early computer vision and pattern recognition, a color image (which is an
order 3 tensor) is often converted to the grayscale version (which is a matrix)
because we know how to handle matrices much better than tensors. The color
information is lost during this conversion. But color is very important in various
image (or video) based learning and recognition problems, and we do want to
process color information in a principled way, e.g., as in CNN.

Tensors are essential in CNN. The input, intermediate representation, and
parameters in a CNN are all tensors. Tensors with order higher than 3 are
also widely used in a CNN. For example, we will soon see that the convolution
kernels in a convolution layer of a CNN form an order 4 tensor.
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Given a tensor, we can arrange all the numbers inside it into a long vec-
tor, following a pre-specified order. For example, in Matlab / Octave, the (:)

operator converts a matrix into a column vector in the column-first order. An
example is:

A =

[
1 2
3 4

]
, A(:) = (1, 3, 2, 4)T =


1
3
2
4

 . (1)

In mathematics, we use the notation “vec” to represent this vectorization
operator. That is, vec(A) = (1, 3, 2, 4)T in the example in Equation 1. In order
to vectorize an order 3 tensor, we could vectorize its first channel (which is a
matrix and we already know how to vectorize it), then the second channel, . . . ,
till all channels are vectorized. The vectorization of the order 3 tensor is then
the concatenation of the vectorization of all the channels in this order.

The vectorization of an order 3 tensor is a recursive process, which utilizes
the vectorization of order 2 tensors. This recursive process can be applied to
vectorize an order 4 (or even higher order) tensor in the same manner.

1.2 Vector calculus and the chain rule

The CNN learning process depends on vector calculus and the chain rule. Sup-
pose z is a scalar (i.e., z ∈ R) and y ∈ RH is a vector. If z is a function of y,
then the partial derivative of z with respect to y is a vector, defined as[

∂z

∂y

]
i

=
∂z

∂yi
. (2)

In other words, ∂z
∂y is a vector having the same size as y, and its i-th element

is ∂z
∂yi

. Also note that

∂z

∂yT
=

(
∂z

∂y

)T

.

Furthermore, suppose x ∈ RW is another vector, and y is a function of x.
Then, the partial derivative of y with respect to x is defined as[

∂y

∂xT

]
ij

=
∂yi
∂xj

. (3)

This partial derivative is a H ×W matrix, whose entry at the intersection of
the i-th row and j-th column is ∂yi

∂xj
.

It is easy to see that z is a function of x in a chain-like argument: a function
maps x to y, and another function maps y to z. The chain rule can be used to
compute ∂z

∂xT , as
∂z

∂xT
=

∂z

∂yT

∂y

∂xT
. (4)
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A sanity check for Equation 4 is to check the matrix / vector dimensions.
Note that ∂z

∂yT is a row vector with H elements, or a 1×H matrix. (Be reminded

that ∂z
∂y is a column vector). Since ∂y

∂xT is an H×W matrix, the vector / matrix
multiplication between them is valid, and the result should be a row vector with
W elements, which matches the dimensionality of ∂z

∂xT .
For specific rules to calculate partial derivatives of vectors and matrices,

please refer to Chapter 2 and the Matrix Cookbook .

2 CNN overview

In this section, we will see how a CNN trains and predicts in the abstract level,
with the details left out for later sections.

2.1 The architecture

A CNN usually takes an order 3 tensor as its input, e.g., an image with H
rows, W columns, and 3 channels (R, G, B color channels). Higher order ten-
sor inputs, however, can be handled by CNN in a similar fashion. The input
then sequentially goes through a series of processing. One processing step is
usually called a layer, which could be a convolution layer, a pooling layer, a
normalization layer, a fully connected layer, a loss layer, etc.

We will introduce the details of these layers later in this chapter. We will
give detailed introductions to three types of layers: convolution, pooling, and
ReLU, which are the key parts of almost all CNN models. Proper normalization,
e.g., batch normalization is important in the optimization process for learning
good parameters in a CNN. Although they are not introduced in this chapter,
we will present some related resources in the exercise problems.

For now, let us give an abstract description of the CNN structure first.

x1 −→ w1 −→ x2 −→ · · · −→ xL−1 −→ wL−1 −→ xL −→ wL −→ z (5)

The above Equation 5 illustrates how a CNN runs layer by layer in a forward
pass. The input is x1, usually an image (order 3 tensor). It goes through the
processing in the first layer, which is the first box. We denote the parameters
involved in the first layer’s processing collectively as a tensor w1. The output of
the first layer is x2, which also acts as the input to the second layer’s processing.
This processing proceeds till all layers in the CNN have been finished, which
outputs xL.

One additional layer, however, is added for backward error propagation,
a method that learns good parameter values in the CNN. Let’s suppose the
problem at hand is an image classification problem with C classes. A commonly
used strategy is to output xL as a C dimensional vector, whose i-th entry
encodes the prediction (posterior probability of x1 coming from the i-th class).
To make xL a probability mass function, we can set the processing in the (L−
1)-th layer as a softmax transformation of xL−1 (cf. Chapter 9). In other
applications, the output xL may have other forms and interpretations.
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The last layer is a loss layer. Let us suppose t is the corresponding target
(groundtruth) value for the input x1, then a cost or loss function can be used
to measure the discrepancy between the CNN prediction xL and the target t.
For example, a simple loss function could be

z =
1

2
‖t− xL‖2 , (6)

although more complex loss functions are usually used. This squared `2 loss can
be used in a regression problem.

In a classification problem, the cross entropy (cf. Chapter 10) loss is often
used. The groundtruth in a classification problem is a categorical variable t. We
first convert the categorical variable t to a C dimensional vector t (cf. Chapter
9). Now both t and xL are probability mass functions, and the cross entropy
loss measures the distance between them. Hence, we can minimize the cross
entropy loss. Equation 5 explicitly models the loss function as a loss layer,
whose processing is modeled as a box with parameters wL, although in many
cases a loss layer does not involve any parameter, i.e., wL = ∅.

Note that there are other layers which do not have any parameter, that is,
wi may be empty for some i < L. The softmax layer is one such example.
This layer can convert a vector into a probability mass function. The input to
a softmax layer is a vector, whose values may be positive, zero, or negative.
Suppose layer l is a softmax layer and its input is a vector xl ∈ Rd. Then, its
output is a vector xl+1 ∈ Rd, which is computed as

xl+1
i =

exp(xli)∑d
j=1 exp(xlj)

, (7)

that is, a softmax transformed version of the input. After the softmax layer’s
processing, values in xl+1 form a probability mass function, and can be used as
input to the cross entropy loss.

2.2 The forward run

Suppose all the parameters of a CNN model w1,w2, . . . ,wL−1 have been learned,
then we are ready to use this model for prediction. Prediction only involves run-
ning the CNN model forward, i.e., in the direction of the arrows in Equation 5.

Let’s take the image classification problem as an example. Starting from
the input x1, we make it pass the processing of the first layer (the box with
parameters w1), and get x2. In turn, x2 is passed into the second layer, etc.
Finally, we achieve xL ∈ RC , which estimates the posterior probabilities of x1

belonging to the C categories. We can output the CNN prediction as

arg max
i

xLi . (8)

Note that the loss layer is not needed in prediction. It is only useful when
we try to learn CNN parameters using a set of training examples. Now, the
problem is: how do we learn the model parameters?
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2.3 Stochastic gradient descent (SGD)

As in many other learning systems, the parameters of a CNN model are opti-
mized to minimize the loss z, i.e., we want the predictions of a CNN model to
match the groundtruth labels on the training set.

Let’s suppose one training example x1 is given for training such parameters.
The training process involves running the CNN network in both directions. We
first run the network in the forward pass to get xL to achieve a prediction using
the current CNN parameters. Instead of outputting this prediction, we need to
compare it with the target t corresponding to x1, that is, continue running the
forward pass till the last loss layer. Finally, we achieve a loss z.

The loss z is then a supervision signal, guiding how the parameters of the
model should be modified (updated). And the Stochastic Gradient Descent
(SGD) way of modifying the parameters is

wi ←− wi − η ∂z

∂wi
. (9)

A cautious note about the notation. In most CNN materials, a superscript
indicates the “time” (e.g., training epochs). But in this chapter, we use the
superscript to denote the layer index. Please do not get confused. We do not
use an additional index variable to represent time. In Equation 9, the ←− sign
implicitly indicates that the parameters wi (of the i-layer) are updated from
time t to t+ 1. If a time index t is explicitly used, this equation will look like(

wi
)t+1

=
(
wi
)t − η ∂z

∂ (wi)
t . (10)

In Equation 9, the partial derivative ∂z
∂wi measures the rate of increase of z

with respect to the changes in different dimensions of wi. This partial deriva-
tive vector is called the gradient in mathematical optimization. Hence, in a
small local region around the current value of wi, to move wi in the direction
determined by the gradient will increase the objective value z. In order to min-
imize the loss function, we should update wi along the opposite direction of the
gradient. This updating rule is called the gradient descent. Gradient descent is
illustrated in Figure 1, in which the gradient is denoted by g.

If we move too far in the negative gradient direction, however, the loss
function may increase. Hence, in every update we only change the parameters
by a small proportion of the negative gradient, controlled by η, which is called
the learning rate. η > 0 is usually set to a small number (e.g., η = 0.001) in
deep neural network learning.

One update based on x1 will make the loss smaller for this particular training
example if the learning rate is not too large. However, it is very possible that
it will make the loss of some other training examples become larger. Hence, we
need to update the parameters using all training examples. When all training
examples have been used to update the parameters, we say one epoch has been
processed.
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Figure 1: Illustration of the gradient descent method, in which η is the learning
rate.
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One epoch will in general reduce the average loss on the training set until the
learning system overfits the training data. Hence, we can repeat the gradient
descent updating for many epochs and terminate at some point to obtain the
CNN parameters (e.g., we can terminate when the average loss on a validation
set increases).

Gradient descent may seem simple in its math form (Equation 9), but it is
a very tricky operation in practice. For example, if we update the parameters
using the gradient calculated from only one training example, we will observe
an unstable loss function: the average loss of all training examples will bounce
up and down at very high frequency. This is because the gradient is estimated
using only one training example instead of the entire training set—the gradient
computed using only one example can be very unstable.

Contrary to single example based parameter updating, we can compute the
gradient using all training examples and then update the parameters. However,
this batch processing strategy requires a lot of computations because the param-
eters are updated only once in an epoch, and is hence impractical, especially
when the number of training examples is large.

A compromise is to use a mini-batch of training examples, to compute the
gradient using this mini-batch, and to update the parameters correspondingly.
Updating the parameters using the gradient estimated from a (usually) small
subset of training examples is called the stochastic gradient descent. For exam-
ple, we can set 32 or 64 examples as a mini-batch. Stochastic gradient descent
(using the mini-batch strategy) is the mainstream method to learn a CNN’s
parameters. We also want to note that when mini-batch is used, the input of
the CNN becomes an 4th order tensor, e.g., H ×W × 3× 32 if the mini-batch
size is 32.

A new problem now becomes apparent: how to compute the gradient, which
seems a very complex task?

2.4 Error back propagation

The last layer’s partial derivatives are easy to compute. Because xL is connected
to z directly under the control of parameters wL, it is easy to compute ∂z

∂wL .
This step is only needed when wL is not empty. In the same spirit, it is also
easy to compute ∂z

∂xL . For example, if the squared `2 loss is used, we have an

empty ∂z
∂wL , and

∂z

∂xL
= xL − t .

In fact, for every layer, we compute two sets of gradients: the partial deriva-
tives of z with respect to the layer parameters wi, and that layer’s input xi.

• The term ∂z
∂wi , as seen in Equation 9, can be used to update the current

(i-th) layer’s parameters;

• The term ∂z
∂xi can be used to update parameters backwards, e.g., to the

(i − 1)-th layer. An intuitive explanation is: xi is the output of the
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(i − 1)-th layer and ∂z
∂xi is how xi should be changed to reduce the loss

function. Hence, we could view ∂z
∂xi as the part of the “error” supervision

information propagated from z backward till the current layer, in a layer
by layer fashion. Thus, we can continue the back propagation process,
and use ∂z

∂xi to propagate the errors backward to the (i− 1)-th layer.

This layer-by-layer backward updating procedure makes learning a CNN much
easier. In fact, this strategy is also the standard practice for other types of
neural networks beyond CNN, which is called error back propagation, or simply
back propagation.

Let’s take the i-th layer as an example. When we are updating the i-th layer,
the back propagation process for the (i + 1)-th layer must have been finished.
That is, we already computed the terms ∂z

∂wi+1 and ∂z
∂xi+1 . Both are stored in

memory and ready for use.
Now our task is to compute ∂z

∂wi and ∂z
∂xi . Using the chain rule, we have

∂z

∂(vec(wi)T )
=

∂z

∂(vec(xi+1)T )

∂ vec(xi+1)

∂(vec(wi)T )
, (11)

∂z

∂(vec(xi)T )
=

∂z

∂(vec(xi+1)T )

∂ vec(xi+1)

∂(vec(xi)T )
. (12)

Since ∂z
∂xi+1 is already computed and stored in memory, it requires just a

matrix reshaping operation (vec) and an additional transpose operation to get
∂z

∂(vec(xi+1)T )
, which is the first term in the right hand side (RHS) of both equa-

tions. So long as we can compute ∂ vec(xi+1)
∂(vec(wi)T )

and ∂ vec(xi+1)
∂(vec(xi)T )

, we can easily get

what we want (the left hand side of both equations).
∂ vec(xi+1)
∂(vec(wi)T )

and ∂ vec(xi+1)
∂(vec(xi)T )

are much easier to compute than directly comput-

ing ∂z
∂(vec(wi)T )

and ∂z
∂(vec(xi)T )

, because xi is directly related to xi+1, through

a function with parameters wi. The details of these partial derivatives will be
discussed in the following sections for different layers.

3 Layer input, output and notations

Now that the CNN architecture is clear, we will discuss in detail the different
types of layers, starting from the ReLU layer, which is the simplest layer among
those we discuss in this chapter. But before we start, we need to further refine
our notations.

Suppose we are considering the l-th layer, whose inputs form an order 3

tensor xl with xl ∈ RHl×W l×Dl

. Thus, we need a triplet index set (il, jl, dl) to
locate any specific element in xl. The triplet (il, jl, dl) refers to one element in
xl, which is in the dl-th channel, and at spatial location (il, jl) (at the il-th row,
and jl-th column). In actual CNN learning, the mini-batch strategy is usually

used. In that case, xl becomes an order 4 tensor in RHl×W l×Dl×N where N is
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the mini-batch size. For simplicity we assume that N = 1 in this chapter. The
results in this chapter, however, are easy to adopt to mini-batch versions.

In order to simplify the notations which will appear later, we follow the
zero-based indexing convention, which specifies that 0 ≤ il < H l, 0 ≤ jl < W l,
and 0 ≤ dl < Dl.

In the l-th layer, a function will transform the input xl to an output y,
which is also the input to the next layer. Thus, we notice that y and xl+1 in
fact refers to the same object, and it is very helpful to keep this point in mind.
We assume the output has sizeH l+1×W l+1×Dl+1, and an element in the output
is indexed by a triplet (il+1, jl+1, dl+1), 0 ≤ il+1 < H l+1, 0 ≤ jl+1 < W l+1,
0 ≤ dl+1 < Dl+1.

4 The ReLU layer

A ReLU layer does not change the size of the input, that is, xl and y share the
same size. In fact, the Rectified Linear Unit (hence the name ReLU) can be
regarded as a truncation performed individually for every element in the input
tensor:

yi,j,d = max{0, xli,j,d} , (13)

with 0 ≤ i < H l = H l+1, 0 ≤ j < W l = W l+1, and 0 ≤ d < Dl = Dl+1.
There is no parameter inside a ReLU layer, hence no need for parameter

learning in this layer.
Based on Equation 13, it is obvious that

dyi,j,d
dxli,j,d

=
q
xli,j,d > 0

y
, (14)

where J·K is the indicator function, being 1 if its argument is true, and 0 other-
wise.

Hence, we have

[
∂z

∂xl

]
i,j,d

=


[
∂z

∂y

]
i,j,d

if xl
i,j,d > 0

0 otherwise

. (15)

Note that y is an alias for xl+1.
Strictly speaking, the function max(0, x) is not differentiable at x = 0, hence

Equation 14 is a little bit problematic in theory. In practice, it is not an issue
and ReLU is safe to use.

The purpose of ReLU is to increase the nonlinearity of the CNN. Since the
semantic information in an image (e.g., a person and a Husky dog sitting next
to each other on a bench in a garden) is obviously a highly nonlinear mapping
of pixel values in the input, we want the mapping from CNN input to its output
also be highly nonlinear. The ReLU function, although simple, is a nonlinear
function, as illustrated in Figure 2.
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Figure 2: The ReLU function.

We may treat xli,j,d as one of the H lW lDl features extracted by CNN layers

1 to l − 1, which can be positive, zero or negative. For example, xli,j,d may be
positive if a region inside the input image has certain patterns (like a dog’s head
or a cat’s head or some other patterns similar to that); and xli,j,d is negative
or zero when that region does not exhibit these patterns. The ReLU layer will
set all negative values to 0, which means that yli,j,d will be activated only for
images possessing these patterns at that particular region.

Intuitively, this property is useful for recognizing complex patterns and ob-
jects. For example, it is only a weak evidence to support “the input image
contains a cat” if a feature is activated and that feature’s pattern looks like
cat’s head. However, if we find many activated features after the ReLU layer
whose target patterns correspond to cat’s head, torso, fur, legs, etc., we have
higher confidence (at layer l + 1) to say that a cat probably exists in the input
image.

Other nonlinear transformations have been used in the neural network com-
munity to produce nonlinearity, for example, the logistic sigmoid function

y = σ(x) =
1

1 + exp(−x)
.

However, logistic sigmoid works significantly worse than ReLU in CNN learning.
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Note that 0 < y < 1 if a sigmoid function is used and

dy

dx
= y(1− y) ,

we have

0 <
dy

dx
≤ 1

4
.

Hence, in the error back propagation process, the gradient ∂z
∂x = ∂z

∂y
dy
dx will

have much smaller magnitude than ∂z
∂y (at most 1

4 ). In other words, a sigmoid
layer will cause the magnitude of the gradient to significantly reduce, and after
several sigmoid layers, the gradient will vanish (i.e., all its components will be
close to 0). A vanishing gradient makes gradient based learning (e.g., SGD)
very difficult. Another major drawback of sigmoid is that it is saturated. When
the magnitude of x is large, e.g., when x > 6 or x < −6, the corresponding
gradient is almost 0.

On the other hand, the ReLU layer sets the gradient of some features in the
l-th layer to 0, but these features are not activated (i.e., we are not interested
in them). For those activated features, the gradient is back propagated without
any change, which is beneficial for SGD learning. The introduction of ReLU to
replace sigmoid is an important change in CNN, which significantly reduces the
difficulty in learning CNN parameters and improves its accuracy. There are also
more complex variants of ReLU, for example, parametric ReLU and exponential
linear unit, which we do not touch in this chapter.

5 The convolution layer

Next, we turn to the convolution layer, which is the most involved one among
those we discuss in this chapter. It is also the most important layer in a CNN,
hence the name convolutional neural networks.

5.1 What is a convolution?

Let us start by convolving a matrix with one single convolution kernel. Suppose
the input image is 3 × 4 and the convolution kernel size is 2× 2, as illustrated
in Figure 3.

If we overlay the convolution kernel on top of the input image, we can com-
pute the product between the numbers at the same location in the kernel and
the input, and we get a single number by summing these products together.
For example, if we overlay the kernel with the top left region in the input, the
convolution result at that spatial location is

1× 1 + 1× 4 + 1× 2 + 1× 5 = 12 .

We then move the kernel down by one pixel and get the next convolution result
as

1× 4 + 1× 7 + 1× 5 + 1× 8 = 24 .
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(b) The convolution input and output

Figure 3: Illustration of the convolution operation.

We keep moving the kernel down till it reaches the bottom border of the input
matrix (image). Then, we return the kernel to the top, and move the kernel to
its right by one element (pixel). We repeat the convolution for every possible
pixel location until we have moved the kernel to the bottom right corner of the
input image, as shown in Figure 3.

For order 3 tensors, the convolution operation is defined similarly. Suppose
the input in the l-th layer is an order 3 tensor with size H l ×W l × Dl. One
convolution kernel is also an order 3 tensor with size H ×W × Dl. When we
overlay the kernel on top of the input tensor at the spatial location (0, 0, 0),
we compute the products of corresponding elements in all the Dl channels and
sum the HWDl products to get the convolution result at this spatial location.
Then, we move the kernel from top to bottom and from left to right to complete
the convolution.

In a convolution layer, multiple convolution kernels are usually used. As-
suming D kernels are used and each kernel is of spatial span H ×W , we denote

all the kernels as f . f is an order 4 tensor in RH×W×Dl×D. Similarly, we use
index variables 0 ≤ i < H, 0 ≤ j < W , 0 ≤ dl < Dl and 0 ≤ d < D to pinpoint
a specific element in the kernels. Also note that the set of kernels f refer to
the same object as the notation wl in Equation 5. We change the notation a
bit to make the derivation a little bit simpler. It is also clear that even if the
mini-batch strategy is used, the kernels remain unchanged.

As shown in Figure 3, the spatial extent of the output is smaller than that

14



of the input so long as the convolution kernel is larger than 1 × 1. Sometimes
we need the input and output images to have the same height and width, and a
simple padding trick can be used. If the input is H l ×W l ×Dl and the kernel
size is H ×W ×Dl ×D, the convolution result has size

(H l −H + 1)× (W l −W + 1)×D .

For every channel of the input, if we pad (i.e., insert) bH−12 c rows above the first

row and bH2 c rows below the last row, and pad bW−12 c columns to the left of

the first column and bW2 c columns to the right of the last column of the input,
the convolution output will be H l×W l×D in size, i.e., having the same spatial
extent as the input. b·c is the floor functions. Elements of the padded rows and
columns are usually set to 0, but other values are also possible.

Stride is another important concept in convolution. In Figure 3, we convolve
the kernel with the input at every possible spatial location, which corresponds
to the stride s = 1. However, if s > 1, every movement of the kernel skip
s− 1 pixel locations (i.e., the convolution is performed once every s pixels both
horizontally and vertically). When s > 1, a convolution’s output will be much
smaller than that of the input—H l+1 and W l+1 will be roughly 1/s of H l and
W l, respectively.

In this section, we consider the simple case when the stride is 1 and no

padding is used. Hence, we have y (or xl+1) in RHl+1×W l+1×Dl+1

, with H l+1 =
H l −H + 1, W l+1 = W l −W + 1, and Dl+1 = D.

In precise mathematics, the convolution procedure can be expressed as an
equation:

yil+1,jl+1,d =

H−1∑
i=0

W−1∑
j=0

Dl−1∑
dl=0

fi,j,dl,d × xlil+1+i,jl+1+j,dl . (16)

Equation 16 is repeated for all 0 ≤ d < D = Dl+1, and for any spatial location
(il+1, jl+1) satisfying

0 ≤ il+1 < H l −H + 1 = H l+1 , (17)

0 ≤ jl+1 < W l −W + 1 = W l+1 . (18)

In this equation, xlil+1+i,jl+1+j,dl refers to the element of xl indexed by the

triplet (il+1 + i, jl+1 + j, dl).
A bias term bd is usually added to yil+1,jl+1,d. We omit this term in this

chapter for clearer presentation.

5.2 Why to convolve?

Figure 4 shows a color input image (4a) and its convolution results using two
different kernels (4b and 4c). A 3× 3 convolution matrix

K =

 1 2 1
0 0 0
−1 −2 −1
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is used. The convolution kernel should be of size 3×3×3, in which we set every
channel to K. When there is a horizontal edge at location (x, y) (i.e., when the
pixels at spatial location (x+ 1, y) and (x− 1, y) differ by a large amount), we
expect the convolution result to have high magnitude. As shown in Figure 4b,
the convolution results indeed highlight the horizontal edges. When we set every
channel of the convolution kernel to KT (the transpose of K), the convolution
result amplifies vertical edges, as shown in Figure 4c. The matrix (or filter) K
and KT are called the Sobel operators.1

If we add a bias term to the convolution operation, we can make the convo-
lution result positive at horizontal (vertical) edges in a certain direction (e.g.,
a horizontal edge with the pixels above it brighter than the pixels below it),
and negative at other locations. If the next layer is a ReLU layer, the output
of the next layer in fact defines many “edge detection features”, which activate
only at horizontal or vertical edges in certain directions. If we replace the Sobel
kernel by other kernels (e.g., those learned by SGD), we can learn features that
activate for edges with different angles.

When we move further down in the deep network, subsequent layers can
learn to activate only for specific (but more complex) patterns, e.g., groups of
edges that form a particular shape. This is because any feature in layer l + 1
considers the combined effect of many features in layer l. These more complex
patterns will be further assembled by deeper layers to activate for semantically
meaningful object parts or even a particular type of object, e.g., dog, cat, tree,
beach, etc.

One more benefit of the convolution layer is that all spatial locations share
the same convolution kernel, which greatly reduces the number of parameters
needed for a convolution layer. For example, if multiple dogs appear in an input
image, the same “dog-head-like pattern” feature might be activated at multiple
locations, corresponding to heads of different dogs.

In a deep neural network setup, convolution also encourages parameter shar-
ing. For example, suppose “dog-head-like pattern” and “cat-head-like pattern”
are two features learned by a deep convolutional network. The CNN does not
need to devote two sets of disjoint parameters (e.g., convolution kernels in mul-
tiple layers) for them. The CNN’s bottom layers can learn “eye-like pattern”
and “animal-fur-texture pattern”, which are shared by both these more abstract
features. In short, the combination of convolution kernels and deep and hier-
archical structures are very effective in learning good representations (features)
from images for visual recognition tasks.

We want to add a note here. Although we have used phrases such as “dog-
head-like pattern”, the representation or feature learned by a CNN may not
correspond exactly to semantic concepts such as “dog’s head”. A CNN feature
may activate frequently for dogs’ heads and often be deactivated for other types
of patterns. However, there are also possible false activations at other locations,
and possible deactivations at dogs’ heads.

1The Sobel operator is named after Irwin Sobel, an American researcher in digital image
processing.
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(a) Lenna

(b) Horizontal edge

(c) Vertical edge

Figure 4: The Lenna image and the effect of different convolution kernels.
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In fact, a key concept in CNN (or more generally deep learning) is distributed
representation. For example, suppose our task is to recognize N different types
of objects and a CNN extracts M features from any input image. It is most
likely that any one of the M features is useful for recognizing all N object
categories; and to recognize one object type requires the joint effort of all M
features.

5.3 Convolution as matrix product

Equation 16 seems pretty complex. There is a way to expand xl and simplify
the convolution as a matrix product.

Let’s consider a special case with Dl = D = 1, H = W = 2, and H l = 3,
W l = 4. That is, we consider convolving a small single channel 3× 4 matrix (or
image) with one 2× 2 filter. Using the example in Figure 3, we have 1 2 3 1

4 5 6 1
7 8 9 1

 ∗ [ 1 1
1 1

]
=

[
12 16 11
24 28 17

]
, (19)

where the first matrix is denoted as A, and ∗ is the convolution operator.
Now let’s run a Matlab / Octave command B=im2col(A,[2 2]), we arrive

at a B matrix that is an expanded version of A:

B =


1 4 2 5 3 6
4 7 5 8 6 9
2 5 3 6 1 1
5 8 6 9 1 1

 .
It is obvious that the first column of B corresponds to the first 2× 2 region

in A, in a column-first order, corresponding to (il+1, jl+1) = (0, 0). Similarly,
the second to last column in B correspond to regions in A with (il+1, jl+1) being
(1, 0), (0, 1), (1, 1), (0, 2) and (1, 2), respectively. That is, the Matlab / Octave
im2col function explicitly expands the required elements for performing each
individual convolution into a column in the matrix B. The transpose of B, BT ,
is called the im2row expansion of A. Note that the parameter [2 2] specifies
the convolution kernel size.

Now, if we vectorize the convolution kernel itself into a vector (in the same
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column-first order) (1, 1, 1, 1)T , we find that2

BT


1
1
1
1

 =


12
24
16
28
11
17

 . (20)

If we reshape this resulting vector in Equation 20 properly, we get the exact
convolution result matrix in Equation 19.

That is, the convolution operator is a linear operator. We can multiply the
expanded input matrix and the vectorized filter to get a result vector, and by
reshaping this vector properly we get the correct convolution result.

We can generalize this idea to more complex situations and formalize them.
If Dl > 1 (that is, the input xl has more than one channels), the expansion
operator could first expand the first channel of xl, then the second, . . . , till all
Dl channels are expanded. The expanded channels will be stacked together,
that is, one row in the im2row expansion will have H×W ×Dl elements, rather
than H ×W .

More formally, suppose xl is a third order tensor in RHl×W l×Dl

, with one
element in xl being indexed by a triplet (il, jl, dl). We also consider a set of
convolution kernels f , whose spatial sizes are all H ×W . Then, the expansion
operator (im2row) converts xl into a matrix φ(xl). We use two indexes (p, q)
to index an element in this matrix. The expansion operator copies the element
at (il, jl, dl) in xl to the (p, q)-th entry in φ(xl).

From the description of the expansion process, it is clear that given a fixed
(p, q), we can calculate its corresponding (il, jl, dl) triplet, because obviously

p = il+1 + (H l −H + 1)× jl+1 , (21)

q = i+H × j +H ×W × dl , (22)

il = il+1 + i , (23)

jl = jl+1 + j . (24)

In Equation 22, dividing q by HW and take the integer part of the quotient,
we can determine which channel (dl) does it belong to. Similarly, we can get the
offsets inside the convolution kernel as (i, j), in which 0 ≤ i < H and 0 ≤ j < W .
q completely determines one specific location inside the convolution kernel by
the triplet (i, j, dl).

2The notation and presentation of this chapter is heavily affected by the MatConvNet
software package’s manual (http://arxiv.org/abs/1412.4564, which is Matlab based). The
transpose of an im2col expansion is equivalent to an im2row expansion, in which the numbers
involved in one convolution is one row in the im2row expanded matrix. The derivation in
this section uses im2row, complying with the implementation in MatConvNet. Caffe, a widely
used CNN software package (http://caffe.berkeleyvision.org/, which is C++ based) uses
im2col. These formulations are mathematically equivalent to each other.
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Note that the convolution result is xl+1, whose spatial extent is H l+1 =
H l − H + 1 and W l+1 = W l −W + 1. Thus, in Equation 21, the remainder
and quotient of dividing p by H l+1 = H l −H + 1 will give us the offset in the
convolved result (il+1, jl+1), or, the top-left spatial location of the region in xl

(which is to be convolved with the kernel).
Based on the definition of convolution, it is clear that we can use Equa-

tions 23 and 24 to find the offset in the input xl as il = il+1+i and jl = jl+1+j.
That is, the mapping from (p, q) to (il, jl, dl) is one-to-one. However, we want
to emphasize that the reverse mapping from (il, jl, dl) to (p, q) is one-to-many, a
fact that is useful in deriving the back propagation rules in a convolution layer.

Now we use the standard vec operator to convert the set of convolution
kernels f (order 4 tensor) into a matrix. Let’s start from one kernel, which

can be vectorized into a vector in RHWDl

. Thus, all convolution kernels can
be reshaped into a matrix with HWDl rows and D columns (remember that
Dl+1 = D.) Let’s call this matrix F .

Finally, with all these notations, we have a beautiful equation to calculate
convolution results (cf. Equation 20, in which φ(xl) is BT ):

vec(y) = vec(xl+1) = vec
(
φ(xl)F

)
. (25)

Note that vec(y) ∈ RHl+1W l+1D, φ(xl) ∈ R(Hl+1W l+1)×(HWDl), and F ∈
R(HWDl)×D. The matrix multiplication φ(xl)F results in a matrix of size
(H l+1W l+1)×D. The vectorization of this resultant matrix generates a vector

in RHl+1W l+1D, which matches the dimensionality of vec(y).

5.4 The Kronecker product

A short detour to the Kronecker product is needed to compute the derivatives.
Given two matrices A ∈ Rm×n and B ∈ Rp×q, the Kronecker product A⊗B

is a mp× nq matrix, defined as a block matrix

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (26)

The Kronecker product has the following properties that will be useful for
us:

(A⊗B)T = AT ⊗BT , (27)

vec(AXB) = (BT ⊗A) vec(X) , (28)

for matrices A, X, and B with proper dimensions (e.g., when the matrix mul-
tiplication AXB is defined.) Note that Equation 28 can be utilized from both
directions.

With the help of ⊗, we can write down

vec(y) = vec
(
φ(xl)FI

)
=
(
I ⊗ φ(xl)

)
vec(F ) , (29)
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Table 1: Variables, their sizes and meanings. Note that “alias” means a variable
has a different name or can be reshaped into another form.

Alias Size & Meaning

X xl HlW l ×Dl, the input tensor

F f , wl HWDl ×D, D kernels, each H ×W and Dl channels

Y y, xl+1 Hl+1W l+1 ×Dl+1, the output, Dl+1 = D

φ(xl) Hl+1W l+1 ×HWDl, the im2row expansion of xl

M Hl+1W l+1HWDl ×HlW lDl, the indicator matrix for φ(xl)
∂z
∂Y

∂z
∂ vec(y)

Hl+1W l+1 ×Dl+1, gradient for y
∂z
∂F

∂z
∂ vec(f)

HWDl ×D, gradient to update the convolution kernels
∂z
∂X

∂z
∂ vec(xl)

HlW l ×Dl, gradient for xl, useful for back propagation

vec(y) = vec
(
Iφ(xl)F

)
= (FT ⊗ I) vec(φ(xl)) , (30)

where I is an identity matrix of proper size. In Equation 29, the size of I is
determined by the number of columns in F , hence I ∈ RD×D in Equation 29.

Similarly, in Equation 30, I ∈ R(Hl+1W l+1)×(Hl+1W l+1).
The derivation for gradient computation rules in a convolution layer involves

many variables and notations. We summarize the variables used in this deriva-
tion in Table 1. Note that some of these notations will soon be introduced in
later sections.

5.5 Backward propagation: updating the parameters

As previously mentioned, we need to compute two derivatives: ∂z
∂ vec(xl)

and
∂z

∂ vec(F ) , where the first term ∂z
∂ vec(xl)

will be used for backward propagation

to the previous ((l − 1)-th) layer, and the second term will determine how the
parameters of the current (l-th) layer will be updated. A friendly reminder
is to remember that f , F and wi refer to the same thing (modulo reshaping
of the vector or matrix or tensor). Similarly, we can reshape y into a matrix

Y ∈ R(Hl+1W l+1)×D, then y, Y and xl+1 refer to the same object (again modulo
reshaping).

From the chain rule (Equation 11), it is easy to compute ∂z
∂ vec(F ) as

∂z

∂(vec(F ))T
=

∂z

∂(vec(Y )T )

∂ vec(y)

∂(vec(F )T )
. (31)

The first term in the RHS is already computed in the (l+1)-th layer as (equiva-
lently) ∂z

∂(vec(xl+1))T
. The second term, based on Equation 29, is pretty straight-

forward:
∂ vec(y)

∂(vec(F )T )
=
∂
((
I ⊗ φ(xl)

)
vec(F )

)
∂(vec(F )T )

= I ⊗ φ(xl) . (32)

Note that we have used the fact ∂XaT

∂a = X or ∂Xa
∂aT = X so long as the matrix
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multiplications are well defined. This equation leads to

∂z

∂(vec(F ))T
=

∂z

∂(vec(y)T )
(I ⊗ φ(xl)) . (33)

Making a transpose, we get

∂z

∂ vec(F )
=
(
I ⊗ φ(xl)

)T ∂z

∂ vec(y)
(34)

=
(
I ⊗ φ(xl)T

)
vec

(
∂z

∂Y

)
(35)

= vec

(
φ(xl)T

∂z

∂Y
I

)
(36)

= vec

(
φ(xl)T

∂z

∂Y

)
. (37)

Note that both Equation 28 (from RHS to LHS) and Equation 27 are used in
the above derivation.

Thus, we conclude that

∂z

∂F
= φ(xl)T

∂z

∂Y
, (38)

which is a simple rule to update the parameters in the l-th layer: the gradient
with respect to the convolution parameters is the product between φ(xl)T (the
im2col expansion) and ∂z

∂Y (the supervision signal transferred from the (l+1)-th
layer).

5.6 Even higher dimensional indicator matrices

The function φ(·) has been very useful in our analysis. It is pretty high dimen-
sional, e.g., φ(xl) has H l+1W l+1HWDl elements. From the above, we know
that an element in φ(xl) is indexed by a pair p and q.

A quick recap about φ(xl): 1) from q we can determine dl, which channel
of the convolution kernel is used; and can also determine i and j, the spatial
offsets inside the kernel; 2) from p we can determine il+1 and jl+1, the spatial
offsets inside the convolved result xl+1; and, 3) the spatial offsets in the input
xl can be determined as il = il+1 + i and jl = jl+1 + j.

That is, the mapping m : (p, q) 7→ (il, jl, dl) is one-to-one, and thus is
a valid function. The inverse mapping, however, is one-to-many (thus not a
valid function). If we use m−1 to represent the inverse mapping, we know that
m−1(il, jl, dl) is a set S, where each (p, q) ∈ S satisfies that m(p, q) = (il, jl, dl).

Now we take a look at φ(xl) from a different perspective. In order to fully
specify φ(xl), what information is required? It is obvious that the following
three types of information are needed (and only those). For every element of
φ(xl), we need to know
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(A) Which region does it belong to, i.e., what is the value of p (0 ≤ p <
H l+1W l+1)?

(B) Which element is it inside the region (or equivalently inside the convolution
kernel), i.e., what is the value of q (0 ≤ q < HWDl)?

The above two types of information determines a location (p, q) inside φ(xl).
The only missing information is

(C) What is the value in that position, i.e.,
[
φ(xl)

]
pq

?

Since every element in φ(xl) is a verbatim copy of one element from xl, we
can turn [C] into a different but equivalent one:

(C.1) For
[
φ(xl)

]
pq

, where is this value copied from? Or, what is its original

location inside xl, i.e., an index u that satisfies 0 ≤ u < H lW lDl?

(C.2) The entire xl.

It is easy to see that the collective information in [A, B, C.1] (for the en-
tire range of p, q and u), and [C.2] (xl) contains exactly the same amount of
information as φ(xl).

Since 0 ≤ p < H l+1W l+1, 0 ≤ q < HWDl, and 0 ≤ u < H lW lDl, we can
use a a matrix

M ∈ R(Hl+1W l+1HWDl)×(HlW lDl)

to encode the information in [A, B, C.1]. One row index of this matrix cor-
responds to one location inside φ(xl) (i.e., a (p, q) pair). One row of M has
H lW lDl elements, and each element can be indexed by (il, jl, dl). Thus, each
element in this matrix is indexed by a 5-tuple: (p, q, il, jl, dl).

Then, we can use the “indicator” method to encode the function m(p, q) =
(il, jl, dl) into M . That is, for any possible element in M , its row index x
determines a (p, q) pair, and its column index y determines a (il, jl, dl) triplet,
and M is defined as

M(x, y) =

{
1 if m(p, q) = (il, jl, dl)

0 otherwise
. (39)

The M matrix has the following properties:

• It is very high dimensional;

• But it is also very sparse: there is only 1 non-zero entry in the H lW lDl

elements in one row, because m is a function;

• M , which uses information [A, B, C.1], only encodes the one-to-one cor-
respondence between any element in φ(xl) and any element in xl, it does
not encode any specific value in xl;

• Most importantly, putting together the one-to-one correspondence infor-
mation in M and the value information in xl, obviously we have

vec(φ(xl)) = M vec(xl) . (40)
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5.7 Backward propagation: preparing supervision signal
for the previous layer

In the l-th layer, we still need to compute ∂z
∂ vec(xl)

. For this purpose, we want to

reshape xl into a matrix X ∈ R(HlW l)×Dl

, and use these two equivalent forms
(modulo reshaping) interchangeably.

The chain rule states that (cf. Equation 12)

∂z

∂(vec(xl)T )
=

∂z

∂(vec(y)T )

∂ vec(y)

∂(vec(xl)T )
.

We will start by studying the second term in the RHS (utilizing Equations 30
and 40):

∂ vec(y)

∂(vec(xl)T )
=
∂(FT ⊗ I) vec(φ(xl))

∂(vec(xl)T )
= (FT ⊗ I)M . (41)

Thus,
∂z

∂(vec(xl)T )
=

∂z

∂(vec(y)T )
(FT ⊗ I)M . (42)

Since (using Equation 28 from right to left)

∂z

∂(vec(y)T )
(FT ⊗ I) =

(
(F ⊗ I)

∂z

∂ vec(y)

)T

(43)

=

(
(F ⊗ I) vec

(
∂z

∂Y

))T

(44)

= vec

(
I
∂z

∂Y
FT

)T

(45)

= vec

(
∂z

∂Y
FT

)T

, (46)

we have
∂z

∂(vec(xl)T )
= vec

(
∂z

∂Y
FT

)T

M , (47)

or equivalently
∂z

∂(vec(xl))
= MT vec

(
∂z

∂Y
FT

)
. (48)

Let’s have a closer look at the RHS. ∂z
∂Y F

T ∈ R(Hl+1W l+1)×(HWDl), and

vec
(
∂z
∂Y F

T
)

is a vector in RHl+1W l+1HWDl

. On the other hand, MT is an

indicator matrix in R(HlW lDl)×(Hl+1W l+1HWDl).
In order to pinpoint one element in vec(xl) or one row in MT , we need an

index triplet (il, jl, dl), with 0 ≤ il < H l, 0 ≤ jl < W l, and 0 ≤ dl < Dl.
Similarly, to locate a column in MT or an element in ∂z

∂Y F
T , we need an index

pair (p, q), with 0 ≤ p < H l+1W l+1 and 0 ≤ q < HWDl.
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Figure 5: Illustration of how to compute ∂z
∂X .

Thus, the (il, jl, dl)-th entry of ∂z
∂(vec(xl))

equals the multiplication of two

vectors: the row in MT (or the column in M) that is indexed by (il, jl, dl), and
vec
(
∂z
∂Y F

T
)
.

Furthermore, since MT is an indicator matrix, in the row vector indexed
by (il, jl, dl), only those entries whose index (p, q) satisfies m(p, q) = (il, jl, dl)
have a value 1, all other entries are 0. Thus, the (il, jl, dl)-th entry of ∂z

∂(vec(xl))

equals the sum of these corresponding entries in vec
(
∂z
∂Y F

T
)
.

Transferring the above description into precise mathematical form, we get
the following succinct equation:[

∂z

∂X

]
(il,jl,dl)

=
∑

(p,q)∈m−1(il,jl,dl)

[
∂z

∂Y
FT

]
(p,q)

. (49)

In other words, to compute ∂z
∂X , we do not need to explicitly use the extremely

high dimensional matrix M . Instead, Equation 49 and Equations 21 to 24 can
be used to efficiently find ∂z

∂X .
We use the simple convolution example in Figure 3 to illustrate the inverse

mapping m−1, which is shown in Figure 5.
In the right half of Figure 5, the 6× 4 matrix is ∂z

∂Y F
T . In order to compute

the partial derivative of z with respect to one element in the input X, we need
to find which elements in ∂z

∂Y F
T is involved and add them. In the left half of

Figure 5, we show that the input element 5 (shown in larger font) is involved
in 4 convolution operations, shown by the red, green, blue and black boxes,
respectively. These 4 convolution operations correspond to p = 1, 2, 3, 4. For
example, when p = 2 (the green box), 5 is the third element in the convolution,
hence q = 3 when p = 2 and we put a green circle in the (2, 3)-th element of
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the ∂z
∂Y F

T matrix. After all 4 circles are put in the ∂z
∂Y F

T matrix, the partial

derivative is the sum of elements in these four locations of ∂z
∂Y F

T .
The setm−1(il, jl, dl) contains at mostHWDl elements. Hence, Equation 49

requires at most HWDl summations to compute one element of ∂z
∂X .3

5.8 Fully connected layer as a convolution layer

As aforementioned, one benefit of the convolution layer is that convolution is a
local operation. The spatial extent of a kernel is often small (e.g., 3× 3). One
element in xl+1 is usually computed using only a small number of elements in
its input xl.

A fully connected layer refers to a layer if the computation of any element in
the output xl+1 (or y) requires all elements in the input xl. A fully connected
layer is sometimes useful at the end of a deep CNN model. For example, if after
many convolution, ReLU and pooling (which will be discussed soon) layers, the
output of the current layer contain distributed representations for the input
image, we want to use all these features in the current layer to build features
with stronger capabilities in the next one. A fully connected layer is useful for
this purpose.

Suppose the input of a layer xl has size H l×W l×Dl. If we use convolution
kernels whose size is H l×W l×Dl, then D such kernels form an order 4 tensor
in H l×W l×Dl×D. The output is y ∈ RD. It is obvious that to compute any
element in y, we need to use all elements in the input xl. Hence, this layer is
a fully connected layer, but can be implemented as a convolution layer. Hence,
we do not need to derive learning rules for a fully connected layer separately.

6 The pooling layer

We will use the same notation inherited from the convolution layer to introduce
pooling layers.

Let xl ∈ RHl×W l×Dl

be the input to the l-th layer, which is now a pooling
layer. The pooling operation requires no parameter (i.e., wi is null, hence
parameter learning is not needed for this layer). The spatial extent of the
pooling (H × W ) is specified in the design of the CNN structure. Assume
that H divides H l and W divides W l and the stride equals the pooling spatial
extent,4 the output of pooling (y or equivalently xl+1) will be an order 3 tensor
of size H l+1 ×W l+1 ×Dl+1, with

H l+1 =
H l

H
, W l+1 =

W l

W
, Dl+1 = Dl . (50)

3In Caffe, this computation is implemented by a function called col2im. In MatConvNet,
this operation is operated in a row2im manner, although the name row2im is not explicitly
used.

4That is, the strides in the vertical and horizontal direction are H and W , respectively.
The most widely used pooling setup is H = W = 2 with a stride 2.
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A pooling layer operates upon xl channel by channel independently. Within
each channel, the matrix with H l ×W l elements are divided into H l+1 ×W l+1

nonoverlapping subregions, each subregion being H ×W in size. The pooling
operator then maps a subregion into a single number.

Two types of pooling operators are widely used: max pooling and average
pooling. In max pooling, the pooling operator maps a subregion to its maximum
value, while the average pooling maps a subregion to its average value. In precise
mathematics,

max : yil+1,jl+1,d = max
0≤i<H,0≤j<W

xlil+1×H+i,jl+1×W+j,d , (51)

average : yil+1,jl+1,d =
1

HW

∑
0≤i<H,0≤j<W

xlil+1×H+i,jl+1×W+j,d , (52)

where 0 ≤ il+1 < H l+1, 0 ≤ jl+1 < W l+1, and 0 ≤ d < Dl+1 = Dl.
Pooling is a local operator, and its forward computation is pretty straight-

forward. Now we focus on the back propagation. Only max pooling is discussed
and we can resort to the indicator matrix again. Average pooling can be dealt
with using a similar idea.

All we need to encode in this indicator matrix is: for every element in y,
where does it come from in xl?

We need a triplet (il, jl, dl) to pinpoint one element in the input xl, and
another triplet (il+1, jl+1, dl+1) to locate one element in y. The pooling output
yil+1,jl+1,dl+1 comes from xlil,jl,dl , if and only if the following conditions are met:

• They are in the same channel;

• The (il, jl)-th spatial entry belongs to the (il+1, jl+1)-th subregion;

• The (il, jl)-th spatial entry is the largest one in that subregion.

Translating these conditions into equations, we get

dl+1 = dl , (53)⌊
il

H

⌋
= il+1,

⌊
jl

W

⌋
= jl+1 , (54)

xlil,jl,dl ≥ yi+il+1×H,j+jl+1×W,dl ,∀ 0 ≤ i < H, 0 ≤ j < W , (55)

where b·c is the floor function. If the stride is not H (W ) in the vertical (hori-
zontal) direction, Equation 54 must be changed accordingly.

Given a (il+1, jl+1, dl+1) triplet, there is only one (il, jl, dl) triplet that sat-
isfies all these conditions. Thus, we define an indicator matrix

S(xl) ∈ R(Hl+1W l+1Dl+1)×(HlW lDl) . (56)

One triplet of indexes (il+1, jl+1, dl+1) specifies a row in S, while (il, jl, dl)
specifies a column. These two triplets together pinpoint one element in S(xl).
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We set that element to 1 if Equations 53 to 55 are simultaneously satisfied, and
0 otherwise. One row of S(xl) corresponds to one element in y, and one column
corresponds to one element in xl.

With the help of this indicator matrix, we have

vec(y) = S(xl) vec(xl) . (57)

Then, it is obvious that

∂ vec(y)

∂(vec(xl)T )
= S(xl),

∂z

∂(vec(xl)T )
=

∂z

∂(vec(y)T )
S(xl) , (58)

and consequently
∂z

∂ vec(xl)
= S(xl)T

∂z

∂ vec(y)
. (59)

S(xl) is very sparse. It has exactly one nonzero entry in every row. Thus, we
do not need to use the entire matrix in the computation. Instead, we just need
to record the locations of those nonzero entries—there are only H l+1W l+1Dl+1

such entries in S(xl).
A simple example can explain the meaning of these equations. Let us con-

sider a 2× 2 max pooling with stride 2. For a given channel dl, the first spatial
subregion contains four elements in the input, with (i, j) = (0, 0), (1, 0), (0, 1)
and (1, 1), and let us suppose the element at spatial location (0, 1) is the largest
among them. In the forward pass, the value indexed by (0, 1, dl) in the input
(i.e., xl0,1,dl) will be assigned to the element in the (0, 0, dl)-th element in the

output (i.e., y0,0,dl).
One column in S(xl) contains at most one nonzero element if the strides are

H and W , respectively. In the above example, the column of S(xl) indexed by
(0, 0, dl), (1, 0, dl) and (1, 1, dl) are all zero vectors. The column corresponding
to (0, 1, dl) contains only one nonzero entry, whose row index is determined by
(0, 0, dl). Hence, in the back propagation, we have[

∂z

∂ vec(xl)

]
(0,1,dl)

=

[
∂z

∂ vec(y)

]
(0,0,dl)

,

and [
∂z

∂ vec(xl)

]
(0,0,dl)

=

[
∂z

∂ vec(xl)

]
(1,0,dl)

=

[
∂z

∂ vec(xl)

]
(1,1,dl)

= 0 .

However, if the pooling strides are smaller than H and W in the vertical
and horizontal directions, respectively, one element in the input tensor may be
the largest element in several pooling subregions. Hence, there can have more
than one nonzero entries in one column of S(xl). Let us consider the example
input in Figure 5. If a 2× 2 max pooling is applied to it and the stride is 1 in
both directions, the element 9 is the largest in two pooling regions: [ 5 6

8 9 ] and
[ 6 1
9 1 ]. Hence, in the column of S(xl) corresponding to the element 9 (indexed by
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Table 2: The VGG-Verydeep-16 architecture and receptive field

type description r. size type description r. size
1 Conv 64;3x3;p=1,st=1 212 20 Conv 512;3x3;p=1,st=1 20
2 ReLU 210 21 ReLU 18
3 Conv 64;3x3;p=1,st=1 210 22 Conv 512;3x3;p=1,st=1 18
4 ReLU 208 23 ReLU 16
5 Pool 2x2;st=2 208 24 Pool 2x2;st=2 16
6 Conv 128;3x3;p=1,st=1 104 25 Conv 512;3x3;p=1,st=1 8
7 ReLU 102 26 ReLU 6
8 Conv 128;3x3;p=1,st=1 102 27 Conv 512;3x3;p=1,st=1 6
9 ReLU 100 28 ReLU 4

10 Pool 2x2;st=2 100 29 Conv 512;3x3;p=1,st=1 4
11 Conv 256;3x3;p=1,st=1 50 30 ReLU 2
12 ReLU 48 31 Pool 2
13 Conv 256;3x3;p=1,st=1 48 32 FC (7x7x512)x4096 1
14 ReLU 46 33 ReLU
15 Conv 256;3x3;p=1,st=1 46 34 Drop 0.5
16 ReLU 44 35 FC 4096x4096
17 Pool 2x2;st=2 44 36 ReLU
18 Conv 512;3x3;p=1,st=1 22 37 Drop 0.5
19 ReLU 20 38 FC 4096x1000

39 σ (softmax layer)

(2, 2, dl) in the input tensor), there are two nonzero entries whose row indexes
correspond to (il+1, jl+1, dl+1) = (1, 1, dl) and (1, 2, dl). Thus, in this example,
we have [

∂z

∂ vec(xl)

]
(2,2,dl)

=

[
∂z

∂ vec(y)

]
(1,1,dl)

+

[
∂z

∂ vec(y)

]
(1,2,dl)

.

7 A case study: the VGG-16 net

We have introduced the convolution, pooling, ReLU and fully connected layers
till now, and have briefly mentioned the softmax layer. With these layers, we
can build many powerful deep CNN models.

7.1 VGG-Verydeep-16

The VGG-Verydeep-16 CNN model is a pretrained CNN model released by the
Oxford VGG group.5 We use it as an example to study the detailed structure
of CNN networks. The VGG-16 model architecture is listed in Table 2.

There are six types of layers in this model.

Convolution A convolution layer is abbreviated as “Conv”. Its description
includes three parts: number of channels; kernel spatial extent (kernel
size); padding (‘p’) and stride (‘st’) size.

5http://www.robots.ox.ac.uk/~vgg/research/very_deep/
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ReLU No description is needed for a ReLU layer.

Pool A pooling layer is abbreviated as “Pool”. Only max pooling is used in
VGG-16. The pooling kernel size is always 2× 2 and the stride is always
2 in VGG-16.

Fully connected A fully connected layer is abbreviated as “FC”. Fully con-
nected layers are implemented using convolution in VGG-16. Its size is
shown in the format n1×n2, where n1 is the size of the input tensor, and
n2 is the size of the output tensor. Although n1 can be a triplet (such as
7× 7× 512), n2 is always an integer.

Dropout A dropout layer is abbreviated as “Drop”. Dropout is a technique to
improve the generalization of deep learning methods. It sets the weights
connected to a certain percentage of nodes in the network to 0 (and VGG-
16 set the percentage to 0.5 in the two dropout layers).

Softmax It is abbreviated as “σ”.

We want to add a few notes about this example deep CNN architecture.

• A convolution layer is always followed by a ReLU layer in VGG-16. The
ReLU layers increase the nonlinearity of the CNN model.

• The convolution layers between two pooling layers have the same number
of channels, kernel size and stride. In fact, stacking two 3× 3 convolution
layers is equivalent to one 5×5 convolution layer; and stacking three 3×3
convolution kernels replaces a 7 × 7 convolution layer. Stacking a few (2
or 3) smaller convolution kernels, however, computes faster than a large
convolution kernel. In addition, the number of parameters is also reduced,
e.g., 2 × 3 × 3 = 18 < 25 = 5 × 5. The ReLU layers inserted in between
small convolution layers are also helpful.

• The input to VGG-16 is an image with size 224 × 224 × 3. Because the
padding is one in the convolution kernels (meaning one row or column is
added outside of the four edges of the input), convolution will not change
the spatial extent. The pooling layers will reduce the input size by a factor
of 2. Hence, the output after the last (5th) pooling layer has spatial extent
7× 7 (and 512 channels). We may interpret this tensor as 7× 7× 512 =
25088 “features”. The first fully connected layer converts them into 4096
features. The number of features remains at 4096 after the second fully
connected layer.

• The VGG-16 is trained for the ImageNet classification challenge, which is
an object recognition problem with 1000 classes. The last fully connected
layer (4096 × 1000) output a length 1000 vector for every input image,
and the softmax layer converts this length 1000 vector into the estimated
posterior probability for the 1000 classes.
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7.2 Receptive field

Another important concept in CNN is the receptive field size (abbreviated as
“r. size” in Table 2). Let us look at one element in the input to the first fully
connected layer (32|FC). Because it is the output of a max pooling, we need
values in a 2 × 2 spatial extent in the input to the max pool layer to compute
this element (and we only need elements in this spatial extent). This 2 × 2
spatial extent is called the receptive field for this element. In Table 2, we listed
the spatial extent for any element in the output of the last pooling layer. Note
that because the receptive field is square, we only use one number (e.g., 48 for
48× 48). The receptive field size listed for one layer is the spatial extent in the
input to that layer.

A 3× 3 convolution layer will increase the receptive field by 2 and a pooling
layer will double the spatial extent. As shown in Table 2, receptive field size in
the input to the first layer is 212×212. In other words, in order to compute any
single element in the 7 × 7 × 512 output of the last pooling layer, a 212 × 212
image patch is required (including the padded pixels in all convolution layers).

It is obvious that the receptive field size increases when the network becomes
deeper, especially when a pooling layer is added to the deep net. Unlike tra-
ditional computer vision and image processing features which depend only on
a small receptive field (e.g., 16 × 16), deep CNN computes its representation
(or features) using large receptive fields. The larger receptive field characteris-
tic is an important reason why CNN has achieved higher accuracy than classic
methods in image recognition.

8 Hands-on CNN experiences

We hope this introductory chapter on CNN is clear, self-contained, and easy to
understand to our readers.

Once a reader is confident in his/her understanding of CNN at the math-
ematical level, in the next step it is very helpful to get some hands-on CNN
experiences. For example, one can validate what has been talked about in this
chapter using the MatConvNet software package if you prefer the Matlab envi-
ronment.6 For C++ lovers, Caffe is a widely used tool.7 The Theano package
is a python package for deep learning.8 Many more resources for deep learning
(not only CNN) are available, e.g., Torch,9 PyTorch,10 MXNet,11 Keras,12 Ten-
sorFlow,13 and more. The exercise problems in this chapter may turn out to be
an appropriate first-time CNN programming practice.

6http://www.vlfeat.org/matconvnet/
7http://caffe.berkeleyvision.org/
8http://deeplearning.net/software/theano/
9http://torch.ch/

10http://pytorch.org/
11https://mxnet.incubator.apache.org/
12https://keras.io/
13https://www.tensorflow.org/
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Exercises

1. Dropout is a very useful technique in training neural networks, which is
proposed by Srivastava et al. in a paper titled “Dropout: A Simple Way
to Prevent Neural Networks from Overfitting” in JMLR .14 Carefully read
this paper and answer the following questions (please organize your answer
to every question in one brief sentence).

(a) How does dropout operate during training?

(b) How does dropout operate during testing?

(c) What is the benefit of dropout?

(d) Why dropout can achieve this benefit?

2. The VGG16 CNN model (also called VGG-Verydeep-16) was publicized
by Karen Simonyan and Andrew Zisserman in a paper titled “Very Deep
Convolutional Networks for Large-Scale Image Recognition” in the arXiv
preprint server .15 And, the GoogLeNet model was publicized by Szegedy
et al. in a paper titled “Going Deeper with Convolutions” in the arXiv
preprint server .16 These two papers were publicized around the same time
and share some similar ideas. Carefully read both papers and answer the
following questions (please organize your answer to every question in one
brief sentence).

(a) Why do they use small convolution kernels (mainly 3× 3) rather than
larger ones?

(b) Why both networks are quite deep (i.e., with many layers, around 20)?

(c) Which difficulty is caused by the large depth? How are they solved in
these two networks?

3. Batch Normalization (BN) is another very useful technique in training
deep neural networks, which is proposed by Sergey Ioffe and Christian
Szegedy, in a paper titled “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift” in ICML 2015 .17

Carefully read this paper and answer the following questions (please or-
ganize your answer to every question in one brief sentence).

(a) What is internal covariate shift?

(b) How does BN deal with this?

(c) How does BN operate in a convolution layer?

(d) What is the benefit of using BN?

14Available at http://jmlr.org/papers/v15/srivastava14a.html
15Available at https://arxiv.org/abs/1409.1556, later published in ICLR 2015 as a con-

ference track paper.
16Available at https://arxiv.org/abs/1409.4842, later published in CVPR 2015.
17Available at http://jmlr.org/proceedings/papers/v37/ioffe15.pdf
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4. ResNet is a very deep neural network learning technique proposed by He
et al. in a paper titled “Deep Residual Learning for Image Recognition”
in CVPR 2016 .18 Carefully read this paper and answer the following
questions (please organize your answer to every question in one brief sen-
tence).

(a) Although VGG16 and GoogLeNet have encountered difficulties in
training networks around 20–30 layers, what enables ResNet to train net-
works as deep as 1000 layers?

(b) VGG16 is a feed-forward network, where each layer has only one input
and only one output. While GoogLeNet and ResNet are DAGs (directed
acyclic graph), where one layer can have multiple inputs and multiple
outputs, so long as the data flow in the network structure does not form
a cycle. What is the benefit of DAG vs. feed-forward?

(c) VGG16 has two fully connected layers (fc6 and fc7), while ResNet and
GoogLeNet do not have fully connected layers (except the last layer for
classification). What is used to replace FC in them? What is the benefit?

5. AlexNet refers to the deep convolutional neural network trained on the
ILSVRC challenge data, which is a groundbreaking work of deep CNN
for computer vision tasks. The technical details of AlexNet is reported
in the paper “ImageNet Classification with Deep Convolutional Neural
Networks”, by Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton
in NIPS 25 .19 It proposed the ReLU activation function and creatively
used GPUs to accelerate the computations. Carefully read this paper
and answer the following questions (please organize your answer to every
question in one brief sentence).

(a) Describe your understanding of how ReLU helps its success? And,
how do the GPUs help out?

(b) Using the average of predictions from several networks help reduce the
error rates. Why?

(c) Where is the dropout technique applied? How does it help? And what
is the cost of using dropout?

(d) How many parameters are there in AlexNet? Why the dataset size
(1.2 million) is important for the success of AlexNet?

6. We will try different CNN structures on the MNIST dataset. We denote
the “baseline” network in the MNIST example in MatConvNet as BASE
in this question.20 In this question, a convolution layer is denoted as
“x× y×nIn×nOut”, whose kernel size is x× y, with nIn input and nOut

18Available at https://arxiv.org/pdf/1512.03385.pdf
19This paper is available at http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks
20MatConvNet version 1.0-beta20. Please refer to MatConvNet for all the details of BASE,

such as parameter initialization and learning rate.
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output channels, with stride equal 1 and pad equal 0. The pooling layers
are 2 × 2 max pooling with stride equal 2. The BASE network has four
blocks. The first consists of a 5×5×1×20 convolution and a max pooling;
the second block is composed of a 5× 5× 20× 50 convolution and a max
pooling; the third block is a 4 × 4 × 50 × 500 convolution (FC) plus a
ReLU layer; and the final block is the classification layer (1× 1× 500× 10
convolution).

(a) The MNIST dataset is available at http://yann.lecun.com/exdb/

mnist/. Read the instructions in that page, and write a program to trans-
form the data to formats that suit your favorite deep learning software.

(b) Learning deep learning models often involve random numbers. Before
the training starts, set the random number generator’s seed to 0. Then,
use the BASE network structure and the first 10000 training examples
to learn its parameters. What is test set error rate (on the 10000 test
examples) after 20 training epochs?

(c) From now on, if not otherwise specified, we assume the first 10000
training examples and 20 epochs are used. Now we define the BN network
structure, which adds a batch normalization layer after every convolution
layer in the first three blocks. What is its error rate? What will you say
about BN vs. BASE?

(d) If you add a dropout layer after the classification layer in the 4th block.
What is the new error rate of BASE and BN? What you will comment on
dropout?

(e) Now we define the SK network structure, which refers to small kernel
size. SK is based on BN. The first block (5× 5 convolution plus pooling)
now is changed to two 3×3 convolutions, and BN + ReLU is applied after
every convolution. For example, block 1 is now 3× 3× 1× 20 convolution
+ BN + ReLU + 3×3×20×20 convolution + BN + ReLU + pool. What
is SK’s error rate? How will you comment on that (e.g., how and why the
error rate changes?)

(f) Now we define the SK-s networks structure. The notation ‘s’ refers to
a multiplier that changes the number of channels in convolution layers.
For example, SK is the same as SK-1. And, SK-2 means the number of
channels in all convolution layers (except the one in block 4) are multiplied
by 2. Train networks for SK-2, SK-1.5, SK-1, SK-0.5 and SK-0.2. Report
their error rates and comment on them.

(g) Now we experiment with different training set sizes using the SK-0.2
network structure. Using the first 500, 1000, 2000, 5000, 10000, 20000, and
60000 (all) training examples, what error rates do you achieve? Comment
on your observations.

(h) Using the SK-0.2 network structure, study how different training sets
affect its performance. Train 6 networks, and use the (10000× (i−1)+1)-
th to (i × 10000)-th training examples in training the i-th network. Are
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CNNs stable in terms of different training sets?

(i) Now we study how randomness affects CNN learning. Instead of set
the random number generator’s seed to 0, use 1, 12, 123, 1234, 12345 and
123456 as the seed to train 6 different SK-0.2 networks. What are their
error rates? Comment on your observations.

(j) Finally, in SK-0.2, change all ReLU layers to sigmoid layers. How do
you comment on the comparison on error rates of using ReLU and sigmoid
activation functions?
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back propagation, 10
batch normalization, 32
batch processing, 9
BN, see also batch normalization

chain rule, 4
CNN, see also convolutional neural net-

work
convolution, 13
convolution kernel, 13
convolution stride, 15
convolutional neural network, 2

backward run, 5
forward run, 5, 6

DAG, see also directed acyclic graph
deep learning, 18
directed acyclic graph, 33
distributed representation, 18

epoch, 7

gradient, 7
gradient descent, 7

Kronecker product, 20

layers, CNN, 5
ReLU layer, 11
softmax layer, 6
average pooling layer, 27
convolution layer, 13
dropout layer, 30, 32
fully connected layer, 26
loss layer, 6
max pooling layer, 27

learning rate, 7

mini-batch, 9

pad an image, 15

receptive field, 31
rectified linear unit, 11
ReLU, see also rectified linear unit
ResNet, 33

saturated function, 13

SGD, see also stochastic gradient descent
Sobel operator, 16
stochastic gradient descent, 7, 9
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