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Hydrologic models use relatively simple mathematical equations to
conceptualize and aggregate the complex, spatially distributed, and
highly interrelated water, energy, and vegetation processes in a
watershed. A consequence of process aggregation is that the model
parameters often do not represent directly measurable entities and must,
therefore, be estimated using measurements of the system inputs and
outputs. During this process, known as model calibration, the
parameters are adjusted so that the behavior of the model approximates,
as closely and consistently as possible, the observed response of the
hydrologic system over some historical period of time. This Chapter
reviews the current state-of-the-art of model calibration in watershed
hydrology with special emphasis on our own contributions in the last
few decades. We discuss the historical background that has led to
current perspectives, and review different approaches for manual and
automatic single- and multi-objective parameter estimation. In
particular, we highlight the recent developments in the calibration of
distributed hydrologic models using parameter dimensionality
reduction sampling, parameter regularization and parallel computing.
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Finally, this chapter concludes with a short summary of methods for
assessment of parameter uncertainty, including recent advances in
Markov chain Monte Carlo sampling and sequential data assimilation
methods based on the Ensemble Kalman Filter.

1. Introduction

Hydrologic models serve as important tools for improving our
knowledge of watershed functioning (understanding), for providing
critical information in support of sustainable management of water
resources (decision making), and for prevention of water-related natural
hazards such as flooding (forecasting/prediction). Hydrologic models
consist of a general structure, which mathematically represents the
coupling of dominant hydrologic processes perceived to control
hydrologic behavior of “many (similar) watersheds”. Traditionally, this 	 q q 7UDGLWLRQI
general model structure is then used for simulation and/or prediction of
the hydrologic behavior of a “particular watershed”, simply by
estimating the unknown coefficients, known as “parameters”, of the 	 DV[] 3SDUDPHWHUV'[
mathematical expressions embodied within.

No matter how sophisticated and spatially explicit, all hydrologic
models aggregate (at some level of detail) the complex, spatially
distributed vegetation and subsurface properties into much simpler
homogeneous storages with transfer functions that describe the flow of
water within and between these different compartments. These
conceptual storages correspond to physically identifiable control
volumes in real space, even though the boundaries of these control
volumes are generally not known. A consequence of this aggregation
process is that most of the parameters in these models cannot be inferred
through direct observation in the field, but can only be meaningfully
derived by calibration against an input - output record of the watershed
response. In this process, the parameters are adjusted in such a way that
the model approximates, as closely and consistently as possible, the
response of the watershed over some historical period of time. The
parameters estimated in this manner are therefore effective conceptual
representations of spatially and temporally heterogeneous properties of
the watershed. Therefore, successful application of any hydrologic model
depends critically on the chosen values of the parameters.

In this chapter, we review the current state-of-the-art of model
calibration in watershed hydrology. We discuss manual and automatic
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parameter estimation techniques for calibration of lumped and spatially
distributed hydrologic models. Specific methods include the widely used
SCE-UA (Shuffled Complex Evolution - University of Arizona) and
MOCOM-UA (Multi Objective COMplex evolution - University of
Arizona) approaches for single- and multi-objective model calibration,
step-wise (MACS: Multi-step Automatic Calibration Scheme) and
sequential parameter estimation methods (DYNIA: DYNamic
Identifiability Analysis; and PIMLI: Parameter Identification Method
based on the Localization of Information), and emerging simultaneous
multi-method evolutionary search methods (AMALGAM: A Multi-
ALgorithm Genetically Adaptive Multiobjective). We highlight recent
developments in the calibration of distributed hydrologic models
containing spatially distributed parameter fields, using parameter
dimensionality reduction sampling, parameter regularization and parallel
computing. The chapter concludes with a short summary on
methodologies for parameter uncertainty assessment, including Markov
chain Monte Carlo sampling and sequential data assimilation using the
Ensemble Kalman Filter (EnKF); here we discuss the RWM (Random
Walk Metropolis), SCEM-UA (Shuffled Complex Evolution Metropolis-
University of Arizona), DREAM (DiffeRential Evolution Adaptive
Metropolis) and SODA (Simultaneous Optimization and Data
Assimilation) sampling algorithms. Note that, although our discussion is
limited to watershed models, the ideas and methods presented herein are
applicable to a wide range of modeling and parameter estimation
problems.

2. Approaches to Parameter Estimation for Watershed Models

There are two major appSoaDeKtVpaSam qeSDUDaHWH Ua priori 	 q
HVWtioDWLdQ a posteriori HVWtPDWLaQodY calibration. In a
priori estimation, values of the model parameters are specified without
recourse to the observed dynamic hydrologic response (e.g. streamflow)
of the watershed under study. Calibration, on the other hand, involves the
selection of a parameter set that generates model responses that
reproduce, as closely as possible, the historically observed hydrologic
response of a particular watershed. Therefore, calibration can only be
performed when long-term historical measurements of input-state-output
behavior of the watershed (including streamflow, precipitation and
potential evaporation) are available.
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Parameter estimation strategies are intimately tied to the degree of
hydrologic process representation embedded within the model.
Hydrologic models can be classified accordingly as conceptual or
physically-based. Most hydrologic models in use today are of the
conceptual type, that conceptualize and aggregate the complex, spatially
distributed, and highly interrelated water, energy, and vegetation
processes in a watershed into relatively simple mathematical equations
without exact treatment of the detailed underlying physics and basin-
scale heterogeneity. Typical examples of conceptual type models are the
SAC-SMA (SACramento Soil Moisture Accounting) model, 1,2 and the
HBV (Hydrologiska Byråns Vattenbalansmodell) model 3 . Due to
hydrologic process aggregation, the parameters in these models cannot
generally be measured directly in the field at the desired scale of interest.
Instead, when using conceptual type models, only the ranges of feasible
parameter values can generally be specified a priori (perhaps with the
combined knowledge of model structure and of dominant watershed
processes). Calibration is then employed to select parameter estimates
(from within the a priori defined ranges) that capture, as closely and
consistently as possible, the historical record of the measured (target)
hydrologic response of the watershed the model is intended to represent.

Spatially distributed physically-based hydrologic models contain a
series of partial differential equations describing physical principles
related to conservation of mass, momentum (and energy). Typical
examples of physically-based models are MIKE-SHE4 (Systeme
Hydrologique European) and KINEROS 5 (KINematic Runoff and
EROSion). Their spatially distributed physically-based structure provides
two potential strengths: 1) the ability to account for the spatial variability
of runoff producing mechanisms and 2) the ability to infer model
parameter values directly from spatio-temporal data by establishing
physical or conceptual relationships between observable watershed
characteristics (e.g., geology, topography, soils, land cover, etc.) and the
parameters for the hydrologic processes represented in the model. 6,5,7,8,9

The latter will be defined as the “local” a priori parameter estimation
approach and is particularly valuable for implementing hydrologic
models in poorly gauged and ungauged watersheds where local response
data is sparse or non-existent. In general, parameters estimated via the
local a priori approach will still require some degree of fine-tuning via a
calibration approach to obtain effective values that account for the
influencing factors, such as heterogeneity, emergent processes,
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differences in scale between model (larger scale) and the embedded
hydrologic theory (developed at point/small scale). This refinement
process ensures proper consistency between the model input-state-output
behavior and the available response data. 10,11, 12

Another parameter estimation strategy, developed mainly for the
implementation of conceptual type of models in ungauged basins, is
called the “regional” a priori approach. 13,14,15,16,17 The “regionalized”
approach involves the development of regional regression relationships
between the model parameter values estimated for a large number of
gauged basins (via calibration) and observable watershed characteristics
(i.e. landcover and soil properties) at those locations. The idea is that
these relationships can be used to infer parameter estimates for
“hydrologically similar” ungauged basins, given knowledge of their 	 NQRZOHGJH q RI q '
observable watershed characteristics. A major assumption of the regional
a priori approach is that the calibrated model parameters are uniquely
and clearly related to observable watershed properties. This assumption
can be difficult to justify when many combinations of parameters are
found to produce similar model responses due to parameter interaction, 18

measurement uncertainty19 and model structural uncertainty20, and can
therefore result in ambiguous and biased relationships between the
parameters and the watershed characteristics 17 . One way to improve the
efficiency of the regionalized approach is to impose conditions (via
watershed characteristics) on the calibrated parameters. 21 In an
alternative approach, Yadav et al.22 proposed regionalization of
streamflow indices. In this approach, relationships between streamflow
indices and physical watershed characteristics are established at the
gauged locations. The regionalized flow indices, providing dynamic
aspects of the ungauged watersheds, are then used to constrain
hydrologic model predictions (and parameters). One advantage of this
approach is that, the regionalized indices are independent of model
structure and therefore can be used to constrain any watershed model.

The paragraphs above provide a broad overview of approaches
commonly used by the hydrologic community to specify values of the
parameters in hydrologic models; namely “a priori” approach and DQG q

“calibration”. The specific focus of this chapter is on calibration of
hydrologic models, and in the following sections we therefore provide a
more detailed overview of various calibration strategies that have been
developed within the water resources context and have found widespread
use in the hydrologic community. We discuss these methods within the
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context of their historical development, including current and future
perspectives.

2.1. Model Calibration

For a model to be useful in prediction, the values of the parameters need
to accurately reflect the invariant properties of the components of the
underlying system they represent. Unfortunately, in watershed
hydrology, many of the parameters can generally not be measured
directly, but can only be meaningfully derived through calibration
against historical record of dynamic response (traditionally streamflow)
data. Calibration is an iterative process in which the model parameters
are adjusted so that the dynamic response of the model represents, as
closely as possible, the observed target response (e.g. outlet streamflow)
of the watershed. Figure 1 provides a schematic representation of the
resulting model calibration problem. In this figure, O represents
observations of the forcing (rainfall) and streamflow response that are
subject to measurement errors and uncertainty, and therefore may be
different from the true values. Similarly, 0 represents the hydrologic
model with functional response to indicate that the model is at best
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Fig. 1. A schematic representation of the general model calibration problem. The model
parameters are iteratively adjusted so that the predictions of the model, 0, (represented
with the solid line) approximate as closely and consistently as possible the observed
response (represented with dotted line).

Mathematically, the model calibration problem depicted in Figure 1
can be formulated as follows. Let	 denote the streamflow
predictions	 of the model 0 with observed forcing X (rainfall

× × 1,...,×

and potential evapotranspiration), state vector yr, and model parameters
. Let	 represent a vector with n observed streamflow
values. The difference between the model-predicted and measured
streamflow can be represented by the residual vector E as:

El"J={Tl^—Tl^
T

{Tlsl)—Tlsl)...^(Sn)-7'lSn)}={Bll"1i...^nl"JJ (1)( S )   T ( S)    T ( s 1 )   T

where T(.) allows for various monotonic (such as logarithmic)
transformations of the model outputs.

Traditionally, we seek values for the model parameters that result in a
minimal discrepancy between the model predictions and observations.
This can be done by minimizing an aggregate summary statistic of the
residuals:

i (0) =, {el(6 e2(6 ...A,(6)}	 (2)
    ( ) ( ) 	 (  ) 

where the function F() allows for various user-selected linear and non-
linear transformations of the residuals and is interchangeably called a
3cUYIWnE,P3mILsurIEPHP3obXIcYivIPRncYiR EPinPYhIPwLYIrsh IXmoWLng P q LQ q WKH q ZDWHUVKI
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literature. Note that in typical time series analysis the influence of the
initial condition, yr, on the model output diminishes with increasing
distance from the start of the simulation. In those situations, it is common
to use a spin-up period to reduce sensitivity to state-value initialization.

Boyle et al.23 classified the process of model calibration into three
levels of increasing sophistication. In level zero, approximate ranges for
the parameter estimates are specified by physical reasoning that
incorporates available data about static watershed characteristics (e.g.
geology, soil, land cover, slope, etc.), via lookup tables or by borrowing
values from similar watersheds. At this level, only crude a priori ranges
of the parameters are estimated without conditioning on the input-output
streamflow response data. In level one, the parameter ranges are refined
by identifying and analyzing the characteristics of specific segments of
the response data, that are thought to be controlled by a single or a group
of parameter(s). In this level, the effects of parameter interactions are
ignored. Finally, in level two, a detailed analysis of parameter
interactions and performance trade-offs is performed using a carefully
chosen representative period of historical data (i.e. calibration data) to
further refine the parameter ranges or select a representative parameter
set. This level involves a complex, iterative process of parameter
adjustments to bring the simulated response as closely and consistently
as possible to the observed watershed response.

Calibration can be further divided into two types, depending on
whether this iterative process is being guided manually by an expert
hydrologist or automatically by a computer following pre-defined
algorithmic rules. These approaches are called s mOWQOl cO q FOtOW” and
s automated calLrOtioW”,Respectively.

2.1.1. Overview of the Manual Calibration Approach

Manual calibration is a guided trial-and-error process performed by an
expert hydrologist, involving complex knowledge-based analyses to
match the perceived hydrologic processes in the watershed with their
conceptual equivalents represented in the model structure. This
interactive process can involve a variety of graphical interfaces and a
multitude of performance measures to transform the historical data into
information that will aid the hydrologist in decision-making. Although
progressive steps during manual calibration of a model are generally
established via pre-defined guidelines, the actual sequence of procedures
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will vary based on the experience and training of the modeler, the
properties of the data and characteristics of the watershed system being
modeled. 23 Successful manual calibration, therefore, requires a good
knowledge of the physical and response characteristics of the watershed,
as well as a good understanding of the structure and functioning of the
various model components and parameters. The major aim is to find
values for the parameters that are consistent with the hydrologic
processes they were designed to represent. 24 The consistency between
model simulations of hydrologic behaviors for which observations are
available is examined at various timescales and time-periods to try and
isolate individual effects of each parameter. Hydrologic behaviors
include, for example, annual averages to understand the long-term water
balance dynamics, seasonal and monthly averages to identify the trends
and low-high flow periods, extended recession periods to understand
watershed baseflow characteristics and event based measures to analyze
the shape and timing of floods. 2,25 Manual calibration is expected to
produce process-based (i.e. conceptually realistic) and reliable
predictions. The National Weather Service (NWS) of the United States,
for example, primarily uses a manual approach (assisted with automatic
techniques) to estimate the parameters of their lumped hydrologic
models used in operational streamflow forecasting. The manual
calibration, however, is a time- and labor-intensive process involving
many subjective decisions. Due to this subjectivity, different modelers
will most likely produce different model parameter values for the same
watershed. Another difficulty in manual calibration is the ever-increasing
complexity of watershed models. As more parameters are added, it
becomes more difficult to estimate them accurately; parameter
interaction and compensating effects on the modeled variables make it
difficult to estimate individual parameters. Note that Bayesian methods
(see Sec. 6) provide a general framework for explicit use of expert
knowledge/belief in the form of priors. An excellent and comprehensive
discussion of manual calibration is given by three recent reviews. 23,24,25

2.1.2. Overview of Automated Calibration Approaches

Automated parameter identification (calibration) methods rely on an a
priori model structure, optimization algorithm and one or more
mathematical measures of model performance (often called objective
function, criterion or measure) to estimate the model parameters using a



10	 K.K. Yilmaz et al.

historical record of observed response data. The advantages of the
automated calibration approach are not difficult to enumerate. Such
methods use objective, rather than visual and subjective, measures for
performance evaluation, and exploit the power and speed of computers to
efficiently and systematically search the feasible model parameter space.
Within this context, the goal has been to develop an objective strategy
for parameter estimation that provides consistent and reproducible results
independent of the user. 23 A potential disadvantage is that automatic
calibration algorithms can, if not properly designed, return values of the
model parameters that are deemed to be hydrologically unrealistic. It is,
therefore, WKmodeRGHOsponV'ilUHVFRamLeFthLW'usWRs HFDeF

	
WKH q UREXVWQM

optimized parameters. A traditional approach, accepted as a minimum
UqTXmeHFYoQWvaluaUon”FoYFpOamWLR'ustness, FDFto compare the 	 1111 LV q
modeled and observed response for an independent time period that is
not used for calibration. This can be done using a split-sample approach
and should cover a long enough time period so as to contain various
ranges of hydrologic conditions (e.g. dry and wet periods), and, if
possible, using multiple response data. 26,27

In the following sections, we will discuss single- and multi-objective
model calibration strategies. Single objective methods utilize a single
measure of closeness between the simulated and observed variables,
whereas multi-objective approaches attempt to emulate the strengths of
the manual calibration approach by simultaneously using multiple
different measures of performance.

3. Single Criterion Automatic Calibration Methods

Traditional automated approaches to model calibration utilize a single
mathematical criterion (sometimes defined as objective function or
measure)FtoFsea q hFYorFaFuniqueF“'eD”FXQmeXrFsetEAnFo'jeSDe F

	
VHW q q $Q q I

function (Eq. 2) can be defined as an aggregate statistical summary
qXntQWngFLeF“c WeH q ”FO “^of-YiM' q wHWZeFsQu WK F VLPXODWHG q
and observed hydrologic variable(s). The objective function largely
influences the outcome of the automated calibration procedure and,
hence, should be carefully selected based on the goal of the modeling.
Traditionally, automated calibration problems seek to minimize the
discrepancy between the model predictions and observations by
minimizing the following additive simple least square (SLS) objective
function (or its variations) with respect to :
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	Often, the square root form, such as “Root Mean Squared Error” 	 0HDQ1I 6TXDUHG q

(RMSE) criterion, is used because it has the same units as that of the
variable being estimated (e.g. streamflow discharge). An RMSE
objective function puts strong emphasis on simulating the high flow
events; to increase the emphasis on the low flows, it can be used after
performing a log-transformation of the output variables.

The popularity of the SLS function stems from its statistical
properties; the SLS is an unbiased estimator under strong assumptions
related to the distribution of the residuals -- i.e. the residuals are pair-
wise independent, have constant variance (homogenous) and normally
distributed with a mean value of zero (see also Sorooshian and Gupta, 28

and Gupta et al.29). However, the validity of these assumptions is
questionable within a hydrologic context, as most hydrograph
simulations published to date in the literature show significant non-
stationarity of error residuals. 30,31

3.1. A Historical Perspective

A powerful optimization algorithm is a major requirement to ensure
finding parameter sets that best fit the data. Optimization algorithms
iteratively explore the response surface (a surface mapped out by the
objective function values in the parameter space) to find the “best” or 3EHVW'11 RU 11

“optimum” parameter set. Automatic optimization algorithms developed
in the past to solve the nonlinear SLS optimization problem stated in Eq.
(3) may be classified as local search methodologies if they are designed
to seek a systematic improvement of the objective function using an
iterative search starting from a single arbitrary initial point in the
parameter space, or as stochastic global search methods if multiple
concurrent searches from different starting points are conducted within
the parameter space. Local optimization approaches can be classified into
two categories, based on the type of search procedure employed, namely
derivative-based (gradient) and derivative-free (direct) methods.

Gradient-based methods make use of the estimates of the local
downhill direction based on the first and/or second derivative of the
response surface with respect to each individual model parameter. 32 The
simplest gradient-based algorithm is that of steepest descent, which
searches along the first-derivative direction for iterative improvement of
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the objective function. Newton-type methods, such as the Gauss-Newton
family of algorithms, are examples of second derivative algorithms.
Gupta and Sorooshian33 and Hendrickson et al. 34 demonstrate how
analytical or numerical derivatives can be computed for conceptual
watershed models.

Derivative-based algorithms will evolve towards the global minimum
in the parameter space in situations where the objective function exhibits
a topographical convex shape in the entire parameter domain.
Unfortunately, numerous contributions to the hydrologic literature have
demonstrated that the response surface seldom satisfies these restrictive
conditions, and exhibits multiple optima in the parameter space. Local
gradient-based search algorithms are not designed to handle these
peculiarities, and therefore often prematurely terminate their search at a
final solution that is dependent on the starting point in the parameter
space. Another related problem is that many of the hydraulic parameters
typically demonstrate significant interactions, because of an inability of
the observed experimental data to properly constrain all of the calibration
parameters.

Direct search methods sample the value of the objective function in a
systematic manner without computing derivatives of the response surface
with respect to each parameter. Popular examples of direct search
methods include the Simplex Method, 35 the Pattern Search Method36 and
the Rotating Directions Method of Rosenbrock37. Many studies have
focused on comparative performance analysis of local search methods
for calibration of watershed models. 38,39,40 Their general conclusion was
that local search methods were not powerful enough to reliably find the
best (global optimum) values of the watershed model parameters. The
main limitation of local search methods is that, like gradient-based
algorithms, their outcome is highly dependent on their initial starting
point. For example, local search algorithms are prone to getting trapped
in local basins of attraction (local minima) and, as argued above, may
become confused in finding the preferred direction of improvement in
the presence of threshold structures and other undesirable irregularities
of the response surface.

Among others, Moore and Clarke 41 and Sorooshian and Gupta42

pointed out that the causes of the above difficulties were mainly
difficulties concerned with the underlying model structure and that local
search methods were not powerful to do the job. Gupta and Sorooshian 43 ,

for example, focused on model structural inadequacies in the SAC-SMA
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(Sacramento Soil Moisture Accounting) model and showed that
parameter identifiability can be improved by a careful re-
parameterization of the percolation function. Other seminal
contributions30,42 concluded that a properly chosen objective function,
which can better recognize the stochastic nature of the errors in the
calibration data (such as those derived using Maximum Likelihood
Theory), can result in smoother response surfaces for which the global
optimum is easier to identify. In later studies, 30,42 the authors pointed out
that streamflow measurements contain errors that are temporally auto-
correlated and heteroscedastic (having non-constant, magnitude
dependent variance) and also introduced a Heteroscedastic Maximum
Likelihood Estimator (HMLE) that accounts for non-stationary error
variance arising from various sources, including the rating curve used to
convert the stage measurements (in units of height) into runoff rate (in
units of discharge, e.g. cubic feet per day). In a parallel work, Kuczera 44

proposed a methodology based on Bayesian statistics to properly account
for the measurement error properties of the data while predicting the
confidence bounds for the parameter estimates. Recently, Kavetski et
al.45,46 and Vrugt et al.47,48 have extended that approach to account for
error in rainfall depths as well. Another commonly used methodology
applies a parameterized power transformation to the streamflow data to
stabilize the heteroscedastic measurement error: 49

Y°(Y+1)-l-1	 (4)
 A



where y and represent flows in the original and transformed spaces
respectively and X is the transformation parameter (a commonly used
value is X ~ 0.0 to 0.3).

Other researchers have investigated the requirements for calibration
data and pointed out that the quantity and quality of calibration data play
a critical role in controlling the success of the calibration procedure.
These studies concluded that the informativeness of the data is far more
important than the length and amount used for calibration. 50,51,52,53,54

The convergence problems encountered with local search algorithms
have inspired researchers to develop and test global search algorithms for
calibration of watershed models. While local optimization methods rely
on a single initial point within the feasible parameter space to start the
search, global optimization methods utilize multiple concurrent searches
from different starting points to reduce the chance of getting stuck in a
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single basin of attraction. Examples of global optimization algorithms
applied to watershed model calibration include the Random Search (RS)
method ,55 Adaptive Random Search (ARS), 56 ARS coupled with direct
local search methods,57 Controlled Random Search, 58,59 Simulated
Annealing, 60,61 the multi-start simplex, 62 and genetic algorithm .63,62,64 For
a detailed overview of global search algorithms, please see Duan 65 . With
the advent of computational power, Duan et al. 62 conducted a seminal
study; focusing first on a detailed analysis of the properties of the
response surface, they identified five major characteristics that
complicate the optimization problem in watershed models:
• It SWntaiR mWD tQn Wne mHn rWKn Wf attraStiWn. q UHJLRQ q RI q D W WUDFWLRQ q
qIqhW many lWSaDWptima wDhin RSWePWn Wf aWaStQa
qIqiWWugh with discontinuous derivatives.
q q is flaLVar Oe Wpq muDwqh pWWr anSWrying degLes of parameter 	 YDU\LQJq GHJUHH
sensitivities.
qIq Wape V nWSconvex and includes long and curved ridges.

In an effort to design an optimization strategy capable of dealing with
these difficulties in single-objective calibration problems, Duan et al. 62

introduced a novel procedure called the Shuffled Complex Evolution -
University of Arizona (SCE-UA).

3.2. The Shuffled Complex Evolution - University of Arizona (SCE-
UA) Algorithm

The Shuffled Complex Evolution Algorithm developed at the University
of Arizona (SCE-UA)62,66,67 is a global search strategy that synthesizes
the features of the simplex procedure, controlled random search 58 and
competitive evolution 68 with the newly introduced concept of complex
shuffling. The SCE-UA algorithm has since been employed in a number
of studies and proved to be consistent, effective, and efficient in locating
the global optimum to the parameter estimation problems for watershed
models. 67,69,70,71,72 . In brief, SCE-UA algorithmic steps can be listed as
follows: 62,66,73

(1) Generate initial population: sample s points randomly in the
feasible (a priori) parameter space (using uniform distribution,
unless prior information exists) and compute the objective
function value at each point.

(2) Ranking: sort the s points in order of increasing objective



Model Calibration in Watershed Hydrology	 15

function value so that the first point represents the smallest
criterion value and the last point represents the largest criterion
value (assuming that the goal is to minimize the criterion value).

(3) Partitioning into complexes: partition the s points into p
complexes, each containing m points. The complexes are
partitioned such that the first complex contains every p(k-1)+1
ranked point, the second complex contains every p(k-1)+2
ranked point, and so on, where k = 1,2 . . . . . m.

(4) Complex evolution: evolve each complex according to the
competitive complex evolution algorithm, which is based on the
Simplex downhill search scheme. 35 The evolution procedure
gUQHUs 3nUw 3poQH 3callUR 3QWV qng” 3tOt, 3on 3RUVgU, 3lQ q WKDW q q RQ q DYHUI3
within the improvement region.

(5) Complex shuffling: combine the points in the evolved complexes
into a single sample population; sort the sample population in
order of increasing criterion value; shuffle (i.e. re-partition) the
sample population into p complexes according to the procedure
specified in Step (3).

(6) Check for convergence: if any of the pre-specified termination
criteria are satisfied, stop; otherwise, continue. Termination
criteria can be specified as maximum number of iterations (or
maximum number of shuffling) or parameter convergence.

Experience with the method has indicated that the effectiveness and
efficiency of the SCE-UA algorithm is influenced by the choice of a few
algorithmic parameters. Duan et al. 66,73 performed sensitivity studies and
suggested practical guidelines for selecting these algorithmic parameters
according to the degree of difficulty of the optimization problem. The
primary parameter to be selected is the number of complexes, p. The
above studies showed that the dimension of the calibration problem (i.e.
number of parameters to be optimized), n, is the primary factor
determining the proper choice of p; practically (if no other information is
available) p is set to the greater value between 2 or n (see also
Kuczera72). The size of a complex, m, is generally chosen to be equal to
2n + 1. Accordingly, the sample (population) size, s, becomes the
product p • m. The number of offspring, , that can be generated by each
independently evolving complex between two consecutive shuffles is the
same as the complex size (2n + 1), the size of each sub-complex selected
for generation of an offspring (via Simplex scheme) is n + 1 and defines
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a first order approximation to the objective function space. The number
of consecutive offspring generated by each sub-complex, a, is equal to 1.
In selecting these algorithmic parameters, a balance between algorithm
effectiveness and efficiency should be sought. For instance, selecting a
large number of complexes increases the probability of converging to the
global optimum, however at the expense of a larger number of
simulations (and hence longer computational time). The SCE-UA code is
available free of charge from the following web address:
www.sahra.arizona.edu/software.

While significant progress has been made in the use of global
optimization algorithms for parameter estimation, the current generation
of optimization algorithms typically implements a single operator (i.e.
Simplex search in the case of SCE-UA) for population evolution.
Reliance on a single model of natural selection and adaptation presumes
that a single method can efficiently evolve a population of potential
solutions through the parameter space and work well for a large range of
problems. However, existing theory and numerical benchmark
experiments have demonstrated that it is impossible to develop a single
universal algorithm for population evolution that is always efficient for a
diverse set of optimization problems. 74 This is because, the nature of the
response surface often varies considerably between different
optimization problems, and often dynamically changes en route to the
global optimal solution. It therefore seems productive to develop a search
strategy that adaptively updates the way it generates offspring based on
the local peculiarities of the response surface.

In light of these considerations, Vrugt and Robinson 75 and Vrugt et
al . 76 have recently introduced a new concept of self-adaptive multi-
method evolutionary search. This approach, termed as A Multi
Algorithm Genetically Adaptive Method (AMALGAM), runs a diverse
set of optimization algorithms simultaneously for population evolution
and adaptively favors individual algorithms that exhibit the highest
reproductive success during the search. By adaptively changing
preference to individual algorithms during the course of the optimization,
AMALGAM has the ability to quickly adapt to the specific peculiarities
and difficulties of the optimization problem at hand. A brief algorithmic
description of AMALGAM for solution of multi-objective optimization
problems is given in Section 4. Synthetic benchmark studies covering a
diverse set of problem features, including multimodality, ruggedness, ill-
conditioning, non-separability, interdependence (rotation) and high-
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dimensionality, have demonstrated that AMALGAM significantly
improves the efficiency of evolutionary search. 75,76 An additional
advantage of self-adaptive search is that the need for algorithmic
parameter tuning is reduced, thus increasing applicability to solving
search and optimization problems in many different fields of study. An
extensive algorithmic description of AMALGAM, including comparison
against other state-of-the-art optimization methods, can be found in
Vrugt and Robinson75 and Vrugt et al. 76. The AMALGAM code is
available from the second author upon request.

3.3. Limitations of Single Criterion Methods

Despite these algorithmic advances, automated model evaluation
strategies that rely on a single regression-based aggregate measure of
performance (e.g. RMSE) are, in general, weak and make it
unnecessarily difficult to isolate the effects of different parameters on the
model output. 10,77,78 Hence, two different parameter combinations might
give completely different streamflow responses, but result in very similar
values of the objective function. This is undesirable. A major reason for
this is the loss (or masking) of valuable information inherent in the
process of projecting from the high dimension of the data set (9,Data)

down to the single dimension of the residual-based summary statistic
(91 1), leading to an ill-posed parameter estimation problem (91 Parameter <

Data). 77 To avoid (or at least minimize) this problem, an optimization
strategy must necessarily make use of multiple, carefully selected,
measures of model performance, thereby more closely matching the
number of unknowns (the parameters) with the number of pieces of
information (the measures), resulting in a better-posed identification
problem. There is, therefore, an urgent need to develop mathematical
theory that more convincingly proves this line of thought and provides
ways forward to improve parameter inference. This is especially pressing
within the context of spatially distributed models that contain a manifold
of parameters for which little compelling a priori information is
available about appropriate values.

4. Multi-Criteria Automatic Calibration Methods

Multi-criteria analysis can be used to assimilate information from
multiple non-commensurable (i.e. not measurable by the same standard)
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sources. 10 The goal is to increase the extraction of information content
from the data (decrease the gap between measure and parameter
dimensions), by properly expressing the different important aspects of
model performance. For instance, a number of criteria can be formulated,
each of which is sensitized to a specific watershed output flux (e.g.
water, energy, chemical constituents) for which measurements are
available. 79,27 In principle, each criterion can also be designed to isolate a
different characteristic behavior of some component of the physical
system . 80 Note that the process of interactive manual-expert evaluation
and calibration of a model, following a process-guided set of rules,
actually follows a powerful (albeit somewhat subjective) multi-criteria
approach, wherein a variety of graphical and numerical tools are used to
highlight different aspects of model response. 23,25,27 A major advantage of
the automated multi-criteria approach is that various aspects of the
manual calibration strategy can be absorbed into the calibration process,
thus strengthening the physical basis of identified parameters. Many
automated (or semi-automated) multi-criteria calibration strategies have
been proposed for calibration of watershed models. These strategies can
be broadly classified into simultaneous, step-wise and constraining
approaches. These three approaches are discussed next.

4.1. Simultaneous Multi-criteria Calibration Approach

The simultaneous multi-criteria approach finds a set of solutions (so-
called “Pareto optimal” region) that simultaneously optimize (i. e. in one 	 RSWLPL]HC
optimization run) and trade-off the performance of several user-selected
criteria that measure different aspects of model performance. 10,81,82,11 In
general, the multi-criteria model constraining problem can be expressed
in the following form: 10

minFMc (0)= {F(0),F2(0),..F„(0)1 BE O	 (5)
w.r.t.Bi	        	       

where	 represent the different performance criteria), (), . . . ,Fn ()
summarizing information related to various components of the physical
system. To solve this multi-criteria problem, model parameter sets (0)
are systematically sampled from their a priori region (0) in search of
solutions that simultaneously minimize all of these criteria. As is well
known, it is generally not possible to satisfy all of the criteria
simultaneously. The solution to this minimization problem (Eq. 5) is
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generally not unique but takes the form of a Pareto surface that
characterizes the trade-offs in its ability to satisfy all of the competing
criteria. 10,81

As a commonplace illustration, consider the migration of birds from
Scandinavia to Africa and backwards that simultaneously considers flight
time and energy use (Figure 2). For this situation, there is no single
optimal solution. Rather, there is a family of tradeoff solutions along a
cXUe11H33ed11thO“GQeWoptWa311fQoH W11(RQWe11in11three and higher
dimensions) in which improvement in one objective (say, reduction in
flight time) comes only at the expense of increased energy use per day
(second objective). In other words, moving from one solution to another
along the Pareto surface will result in the improvement of at least one
criterion while deteriorating at least one other. Analysis of the size and
properties of the Pareto region can provide insights into possible model
improvements as well as degrees of confidence in different aspects of the
model predictions. 10,84

Many computational approaches to deriving efficient estimates of the
Pareto solution set have been proposed. 81,82,85,86 A pioneering algorithm
that provides an approximation to the Pareto optimal region in a single

Fig. 2. An illustration of the Pareto optimality. a) Map showing migration paths of birds
from Scandinavia to Africa and backwards. b) Birds trying to simultaneously optimize
flight time and energy use. There exists a family of trade-off solutions along a curve
cD3eOthG“PWKo -op9Pa311DWR(after Wrugt et al. 83)
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optimization run is called the MOCOM-UA (Multi-Objective COMplex
evolution algorithm) developed at the University of Arizona. 81 MOCOM-
UA is a general-purpose multi-objective global optimization strategy that
is based on an extension of the SCE-UA population evolution method. 62

It combines the strengths of the controlled random
search method , 58 Pareto ranking87 and a multi-objective downhill simplex
search method.

In brief, the MOCOM-UA method starts with an initial sampling of a
population of s points distributed randomly throughout the n-dimensional
feasible parameter space, . In the absence of prior information about
the location of the Pareto region, a uniform sampling distribution is used.
For each sampled point, the multi-criteria vector, FMC(), is calculated
and the population is ranked and sorted using the Pareto-ranking
procedure presented by Goldberg 87. Simplexes of n + 1 points are then
selected from the population according to a robust rank-based selection
method suggested by Whitley88 . A multi-objective extension of the
downhill simplex method is used to evolve each simplex in a multi-
criteria improvement direction and generate new (better) points. Iterative
application of the ranking and evolution procedures causes the entire
population to converge towards the Pareto optimum. The procedure
terminates automatically when the population converges to the Pareto
Region with all points mutually non-dominated. The final population
provides a fairly uniform approximation of the Pareto solution space
P(0). The details of the MOCOM-UA algorithm can be found in Yapo et
al . 81 The MOCOM-UA code is available from the following web
address: www.sahra.arizona.edu/software.

MOCOM-UA has been successfully applied to a number of multi-
criteria calibration studies of hydrologic 23,10 and land-surface models. 89,90

However, some studies reported that the MOCOM-UA algorithm has a
tendency to cluster the solutions in the center of Pareto region 91 and may
require a very large number of model runs for convergence. 90 The
MOSCEM-UA (Multiobjective Shuffled Complex Evolution Metropolis
- University of Arizona) method 82 is especially designed to overcome
some of these convergence problems, but its stochastic nature causes the
Pareto solution set to contain irregularities with bumpy fronts / surfaces
as a consequence.

The AMALGAM evolutionary search algorithm recently developed
by Vrugt and Robinson 75

, has shown to be the method of choice for
solving multi-objective optimization problems. This method utilizes self-
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adaptive multi-method evolutionary search and is more efficient and
robust than existing search approaches including the commonly used
Strength Pareto Evolutionary Algorithm (SPEA2) 92 and Non-Dominated
Sorting Genetic Algorithm (NSGA-II). 93 The AMALGAM algorithm is
initiated using a random initial population P0 of size N, generated using
Latin hypercube sampling. Then, each parent is assigned a rank using the
fast non-dominated sorting (FNS) algorithm 93

. A population of offspring
Qo, of size N, is subsequently created by using the multi-method search
concept that lies at the heart of the AMALGAM method. Instead of
implementing a single operator for reproduction, we simultaneously use

k individual algorithms to generate the offspring, 	 .{	 ,...,	 }1

0 	 0 	 0

These algorithms each create a pre-specified number of offspring points,

N = {N; ,...,1Vk } , from P0 using different adaptive procedures. After

creation of the offspring, a combined population R0 = P0 U Qo of size 2N
is created and R0 ranked using FNS. By comparing the current offspring
with the previous generation, elitism is ensured since all previous non-
dominated members will always be included in R

.93,94,95 Finally, members
for the next population P1 are chosen from subsequent non-dominated
fronts of R0 based on their rank and crowding distance. 93 The new
population P1 is then used to create offspring using the method described
below, and the aforementioned algorithmic steps are repeated until
convergence is achieved.

	

To ensure that the “best” algorithms are weighted so that they 	 VRq WKDWC
contribute the most offspring to the new population, we update

{ 1 l ,..., Nk } according to:

Nr = N—it ^k 1 


it 	 i =1,...,k	 (6)
k P 

NN
i

	 rJ i   1 iN	 Nt 1 	 1 	 t 

The term	 is the ratio of the number of offspring points an
i 	 i

P t N t

algorithm contributes to the new population, 	 , and the corresponding

number the algorithm created in the previous generation ( N^_, ). The rest

of the expression scales the reproductive success of an individual
algorithm to the combined success of all the algorithms.

Benchmark results using a set of well-known multi-objective test
problems show that AMALGAM is three to ten times more efficient than
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existing multi-objective optimization algorithms. Initial applications to
hydrologic parameter estimation problems have reported similar
efficiency improvements. 96,97

Notwithstanding this progress made, approximation of the entire
Pareto surface can be computationally too expensive. This is especially
true within the context of distributed hydrologic modeling, for which
approximate Pareto-optimal solutions can be obtained by lumping the
various individual performance criteria within a single aggregate
function through scalarization:

k

	

Fa8g (B) = E wi ZiFi(B)	 (7)
k

Fagg i    i Fi

i  1

where k denotes the number of criteria, and w’s and z’s are weights and 	 q DQG q
scaling transformations, respectively, applied to each criterion. Here, the
weights define the relative contributions of each criterion to the
aggregate function, Fagg, such that w1 + w2 +...+ wk = 1, and can be
subjectively assigned to place greater or lesser emphasis on some aspect
of the model. Further, they can also be formalized to reflect our
knowledge regarding the relative degree of uncertainty in the various
measurement data sources. 98 It can be shown theoretically that if the
Pareto region is convex, its shape can be well approximated by
systematically varying the weights wi assigned to each of the criteria
Fi(B) over all possible values. Note that the above formulation also
accounts for the fact that, in general, the various criteria Fi(B) may not be
directly commensurable and may, in fact, vary over very different orders
of magnitude; the multiplier zi is used to compensate for this difference
by transforming the criteria onto a commensurable scale. 85,11,99

4.2. Step-wise Multi-criteria Calibration Approach

The step-wise multi-criteria approach aims to reduce the dimension of
the optimization problem by breaking it into several sub-problems that
are handled in a step-by-step manner; each step considers different
aspects of hydrologic response by transforming the flows, 100,101 by

focusing on different time periods, 102,23,103,104 and/or different time
scales. 105,9,106 For example, the Multi-step Automatic Calibration
Scheme100,101 (MACS) uses the SCE-UA global search algorithm and a
step-by-step process to emulate some aspects of the progression of steps
followed by an expert hydrologist during manual calibration. The step-
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by-step process is as follows: (1) the lower zone parameters are
calibrated to match a logarithmic transformation of the flows, thereby
placing a strong emphasis on reproducing the properties of the low-flow
portions of the hydrograph; (2) the lower zone parameters are
subsequently fixed and the remaining parameters are optimized with the
RMSE objective function to provide a stronger emphasis on simulating
high-flow events; and (3) finally, a refinement of the lower zone
parameters is performed using the log-transformed flows while keeping
the upper zone parameters fixed at values derived during step two. The
method has been tested for a wide variety of hydro-climatic regimes in
the United States and has been shown to produce model simulations that
are comparable to traditional manual calibration techniques. 100,101

Other studies that utilize step-wise procedures in the calibration of
hydrologic model parameters also exist. Brazil 102 estimated parameters of
the SAC-SMA model using a combination of an interactive analysis of
observed streamflow time series, an automated global search algorithm
and a local search algorithm for fine-tuning. Similarly, Bingeman et al. 27

utilized a hybrid approach combining manual and automatic approaches
in a step-wise strategy to calibrate and evaluate the spatially distributed
WATFLOOD watershed model. Boyle et al.23 utilized a simultaneous
multi-criteria approach to generate a set of Pareto optimal solutions,
showing performance trade-off in fitting different segments of the
hydrograph, and then selected a parameter set from within the Pareto
region that best satisfies two long-time-scale statistical measures of fit
(mean and variance). In a more sophisticated approach, Pokhrel et al. 107

constructed the Pareto optimal solutions using traditional objective
functions (i.e. RMSE and log-RMSE) and then employed “signature
measures' of model performance 80 to select a parameter set from within
the solutions in close proximity to Pareto region. In an effort to improve
the performance of the United States Geological Survey (USGS)
Precipitation Runoff Modeling System, Leavesley et al. 9 performed a
step-wise approach which began by calibrating the parameters affecting
water balance, followed by the parameters related to hydrograph timing
and soils and vegetation, respectively. Harlin 108 and Zhang and
Lindstrom103 introduced process-oriented step-wise calibration strategies
for the HBV hydrological model. Their procedures partitioned the flow
time series into several periods, where specific hydrologic processes
dominate, and linked these periods to specific parameter(s) during
calibration. Turcotte et al. 105 developed a step-wise calibration strategy
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for the HYDROTEL distributed model. In the procedure, they first
calibrated the model parameters sensitive to objectives related to long
timescales and then calibrated those parameters sensitive to short
timescales. Their calibration steps included parameters related to large-
scale water balances, evapotranspiration, infiltration capacity and
routing, respectively. Shamir et al. 106 introduced a step-wise parameter
estimation approach based on a set of streamflow descriptors that
emphasize the dynamics of the streamflow record at different timescales.
Fenicia et al . 84 showed how simultaneous and step-wise multi-criteria
optimization strategies can help in understanding model deficiencies and
hence guide model development. Wagener et al. 109 (DYNIA) and Choi
and Beven104 developed process-based approaches based on Generalized
Sensitivity Analysis 110,111 (GSA) to incorporate the time-varying nature
of the hydrologic responses into model/parameter identification.
Specifically, the DYNIA approach adopts the GSA procedure within a
sequential Monte Carlo framework to locate periods of high
identifiability for individual parameters and to diagnose possible failures
of model structures. Vrugt et al. 112 presented a similar idea to assess the
information content of individual observations with respect to the various
model parameters. Their method, called PIMLI, merges the strength of
Bayesian Inference with Random Walk Metropolis sampling to resample
the parameter space each time the most informative measurement is
added to the objective function. Results showed that only a very small
number of streamflow measurements was actually needed for reliable
calibration of a parsimonious five-parameter rainfall-runoff model.
Specifically, about 95% of the discharge observations turned out to
contain redundant information. Similar conclusions were drawn for case
studies involving subsurface flow and transport models. The
development of PIMLI and DYNIA has been inspired by Sequential
Monte Carlo (SMC) schemes that provide a generalized treatment of
time-varying parameters and states, and are increasingly being used for
posterior tracking within the statistical and computational science
literature.

4.3. Multi-criteria Constraining Approach
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The basic concept of the constraining approach differs from automated
calibration strategies, described above, in the sense that it considers
“consistency' of model structure/parameters as the ultimate goal, while
the latter aims at optimality. In other words, the constraining approach
seeks parameter estimates that are consistent with some minimal
thresholds of performance on several criteria. Rooted in the concept of
the Generalized Sensitivity Analysis (GSA), 110,111 models/parameters are
separated into behavioral/non-behavioral groups by comparing their
performance with a subjectively selected threshold behavior. The
models/parameters that present better performance than the selected
WeUHd ReGc EUd as “bHaWHG' DV q EideDd R equaqyDQG q FRQVLGHUHG q D_

acceptable representation of the system. The remaining
models/parameters are rejected as non-behavioral. The Monte Carlo
simulation-based GSA approach is at the core of many model
identification and uncertainty estimation techniques (e.g. GLUE
methodology of Beven and Binley113 and DYNIA methodology of
Wagener et al. 109).

The main advantages of the constraining approach are its ease of
implementation and use and its flexibility in incorporating additional
performance criteria into the parameter estimation problem. Similar to
the step-wise multi-criteria calibration approach (Sec. 4.2) several
performance measures can be formulated and behavioral
models/parameter sets can be selected considering a single or a group of
performance measure(s). 80 The selected set (behavioral set) can be
further analyzed using the concept of Pareto optimality to identify a
VLQJOH q EHaXeter DU. 	 q VHW' q

We illustrate the constraining approach with an overview of the step-
wise semi-automated methodology, recently proposed by Yilmaz et al. 80

In Yilmaz et al . 80 , parameters of the spatially distributed SAC-SMA
model were constrained based on a set of hydrologically meaningful
“VgnQuW XeasurP'. These signature measures target and extract
hydrologically relevant (contextual) information from the outlet
streamflow observations in ways that correspond to the following
behavioral functions of a watershed system: (1) Maintain overall water
balance, (2) Vertically redistribute excess rainfall between fast and slow
runoff components, and (3) Redistribute the runoff in time (influencing
hydrograph timing and shape). The selected signature measures were
defined in terms of percent bias between the following hydrologically
meaningful indices (calculated using simulated and observed outlet
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streamflow): the percent bias in runoff ratio (%BiasRR), various
properties of the flow duration curve (high-flow volume, %BiasFHV;
slope of the mid-segment, %BiasFMS; low-flow volume, %BiasFLV;
and median flow, %BiasFMM) and a simple index of watershed lag-time
(%BiasTLag). One advantage of using signature-based measures in a
constraining approach is that they can take on both positive and negative
values, thereby indicating the direction of improvement. The procedure
starts with establishing relationships between signature measures and
parameters of the SAC-SMA model (via a procedure rooted in random
sampling). These relationships are then used to constrain the ranges of
parameters towards regions of signature measure improvement. In the
second step, additional random samples are generated from the
constrained parameter ranges and behavioral parameter sets are selected
by establishing thresholds on the signature measures. There are various
ways in which these thresholds can be defined. In Yilmaz et al. 80 the
performance of the SAC-SMA model with a priori parameter values was
used as benchmark. The procedure for selection of the behavioral
parameter sets is depicted in Figure 3; the names of the signature
measures are listed on the x-axis, and the y-axis shows their
corresponding values. Each line along the x-axis represents a parameter
set. The gray-dashed line represents the performance of the model using
a priori parameters and the shaded region envelops the signature
measure improvement region (i.e. behavioral region), defined as  1 times
the a priori model performance. The solid line-triangle parameter
combination falls entirely within the gray region, and therefore
represents a behavioral parameter set.

5. Automated Calibration of Spatially Distributed Watershed
Models

3DVWUtEHXDwHErsqEHDWHEls
4,114,115,116,117

 have the potential ability to
simulate the spatial distribution of hydrologic processes in the watershed
of interest, as well as to provide estimates of discharge volume along the
entire length of the channel network so that, for instance, the dynamic
evolution of flood inundation regions can be estimated.

Although their potential benefits are clear, the spatial complexity of
these processes is perceived to be an obstacle to the proper identification
of distributed model components and parameters, translating into
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Fig. 3. Illustration of the parameter constraining approach proposed by Yilmaz et al. 80

Thresholds are selected based on the signature measure values for the model using a
priori parameter sets (gray-dashed line). Behavioral region is defined as ±1 times the a
priori model performance (shaded region). Solid-line-triangle and solid-line-circle
represent a behavioral and a non-behavioral parameter set, respectively. (After Yilmaz et
al. 80)

significant predictive uncertainty in the model results. 118 Therefore,
controversy still persists regarding how such models should be
implemented. 1 19,120,121 For example, Phase One of the recent Distributed
Model Intercomparison Project 122 (DMIP-1) cRcFdX tHV q WKle aUd
objective procedures for parameter estimation, data assimilation, and
HUUcUre FRUUHilWLd to q VdeLOO ed. 	q WR q EH q GHYHORSHG q

An important strength of distributed watershed models is that their
parameters (and structure) can, in principle, be inferred from data about
watershed physical characteristics via a local a priori parameter
estimation approach (See Sec. 2 for details). However, in general,
parameters estimated using a local a priori approach continue to require
some degree of calibration (adjustment of the model parameter fields) to
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ensure that the input-state-output behavior of such models remains
consistent with the available data. 10,11,12,123

In calibration of watershed models having spatially distributed
parameter fields, the number of parameter values to be estimated can be
quite large, resulting in an ill-posed optimization problem. Note that the
watershed outlet streamflow time series, the most widely used hydrologic
variable in calibration of watershed models, represents the integrated
response of the catchment, and therefore the effects of sub-catchment
(local) scale variability in hydraulic properties has been averaged out to
some extent. Therefore, it will typically only contain information about
the watershed scale properties of the parameter fields (the mean values
and the broad scale spatial patterns), rather than the smaller scale patterns
of variation. As a consequence, the number of unknowns (parameters)
will be larger than the one that can be identified based on the information
content of the streamflow time series data, and hence the estimated
parameters will most likely be unrealistic.

Part of the solution to the stabilization of ill-posed problems of this
kind is to recognize that the spatially distributed elements of the model
parameter fields are not, in fact, independent entities that can take on
arbitrary values in the parameter space. Instead, their values are
somehow related to the spatial distributions of various hydrologically
relevant watershed characteristics, including, for example, geology, soil
type, vegetation, topography, etc. (e.g. Grayson and Blöschl 124).
Recognition of these dependencies can facilitate implementation of
regularization relationships that help to constrain the dimensionality of
the parameter estimation problem (e.g. Pokhrel et al. 125

; Doherty and
Skahill 126).

Regularization is a mathematical technique that allows stabilization
of the otherwise ill-posed (over-parameterized) parameter estimation
problems through introduction of additional information about the
parameters. 127,128,129,130 Two kinds of regularization techniques are in
common use and these help to: 1) improve conditioning of the
optimization problem through use of additional information and/or 2)
reduce the dimensionality of the parameter search space. 126,131,125 An
example of the former technique is called Tikhonov Regularization
(TR), 127 which employs a penalty function approach 132 wherein the
original parameter dimension is retained, while the shape of the global
objective function to be optimized, FG(B, a), is modified by a
regularization objective function, Fpar():
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I'G(OA =F(0) +p ' rpar(`) 	 (8)
(   ) 	 (  )

where Fpar() represents a penalty applied on the solutions that deviate
from satisfying the regularization constraints. The regularization (or
penalty) parameter, , is the weight assigned to the regularization
constraints; greater values assigned to p will result in improved
parameter reasonableness and stability, although possibly at the cost of a
poorer fit between model outputs and measurements (e.g. Yilmaz 133).

Sometimes, an appropriate value for p can be assigned through
knowledge of the underlying uncertainty associated with the various
components of Fpar(). Such information, however, is often unavailable
and thus alternative methods have been developed (e.g. Doherty 130 ;
Mertens et al. 98

; Yilmaz133). An example of a regularization technique
with the potential to significantly reduce the dimensionality of the
estimable parameter space is the Truncated Singular Value
Decomposition (TSVD). This technique only focuses on dominant
directions and excludes search directions that are associated with
negligible eigenvalues with little or no function sensitivity. 134,135,136

Either separately or together, Tikhonov regularization and TVSD have
been used to address high-dimensional inverse modeling problems in
hydrology. 137,138,139,126,140 Vrugt et al. 141 have recently completed the
development of a global optimization algorithm with self-adaptive
subspace learning that uses TVSD to continuously update the dominating
eigenvectors estimated from an evolving population of solutions. Initial
results demonstrate significant efficiency improvements in solving high-
dimensional parameter estimation problems (more than 200 parameters).
A beta version of this algorithm has been developed in MATLAB and
can be obtained from the second author upon request.

A simple and commonly used regularization technique to reduce the
dimensionality of the spatially distributed parameters of watershed
models seeks to characterize and preserve the pattern of relative spatial
variation provided by the (local) a priori parameter fields (or maps). In
its simplest form, one scalar multiplier per a priori parameter field is
used to vary only the mean level of the parameter field, while
constraining the values to remain within their pre-defined physical
ranges (see Bandaragoda et al. 142 and White et al. 143

, among others).
More sophisticated approaches utilize both additive and multiplicative
terms, 144,9 non-linear transformations via a single parameter, 80 or more
complex approaches 125 that are combinations of the above. These
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techniques simplify the calibration problem to that of finding the
parameters of a transformation function (e.g. multipliers) that modifies
the parameter fields in such a way that the model performance is
improved, while preserving, to some extent, the spatial patterns of the
parameters. As an example, Figure 4a shows a grid overlay of the
distributed version of the SAC-SMA model for Blue River Basin, near
Blue, Oklahoma. The grid shown is the a priori field for the upper zone
free water maximum (UZFWM) parameter (size of the upper layer free
water tank) estimated via Koren et al.' approach. The histogram in Figure
4b displays the distribution of a priori values of parameter UZFWM
within its feasible range (x-axis limits). Figure 4c shows the UZFWM
distributions upon transformation via scalar multiplier. It can be seen that
multiplication has a large impact on the variance of the distribution of
UZFWM in the form of expansion (multiplier > 1) and compression
(multiplier < 1). This approach creates problems when any of the
individual grid values in each parameter field exceeds its specified
(physically reasonable) bounds; either the parameter distribution must be
truncated so that any values exceeding the range are fixed at the
boundaries or the mean level must be prevented from varying over the
entire range. An alternative, and more flexible, approach that removes
these restrictions has been proposed by Yilmaz et al. 80, which utilizes a
non-linear transformation with one-parameter ( 3 -parameter) to vary the
entire parameter field. Notice in Figure 4d that as the (3 -parameter is
varied towards either of its limiting values, (0,2], the variance of the
parameter distribution is compressed so as to keep the entire distribution
within the feasible range, while preserving the monotonic relative
ordering of parameter values in the field.

Two recent approaches which have not been discussed so far, but
show great promise to solving the hydrologic model calibration problem
are the Dynamically Dimensioned Search Algorithm 145 and the
Constrained Optimization using Response Surfaces method 146,14'. These
two algorithms work well with a limited budget of function evaluations,
and are admirably suited for computationally demanding distributed
watershed models, which require between minutes and hours to run on a
single processor.

The Dynamically Dimensioned Search (DDS) Algorithm 145 is a
stochastic, single-objective search algorithm designed to rapidly find
3gRRG 1u\OitDOgORb\OXsROutiRns.XIniti\OOD,XDDSX explores  the parameter 11 "6 11
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Fig. 4. The effect of using transformation functions on the distribution of UZFWM
parameter values. (a) Map showing the a priori field of the UZFWM parameter (size of
the upper layer free water tank) within the distributed version of the SAC-SMA model
setup for the Blue River Basin, near Blue, Oklahoma. Histograms showing the
distribution of parameter values within UZFWM parameter field: (b) a priori specified
values, (c) parameter values transformed using scalar multipliers, (d) parameter values
DtWHUngX-transformation function proposed by Yilmaz et al. 80

space globally, but when the search progresses the method settles down
with emphasis on local parameter refinements. The transition from global
to local search is achieved by dynamically and probabilistically reducing
the number of search dimensions (i.e. the number of model parameter
values being perturbed) in the neighborhood of the current best estimate.
The DDS algorithm has many elements in common with evolutionary
strategies, and has only one algorithmic parameter. This is the
neighborhood perturbation size, which is calculated from a multi-normal
distribution with standard deviation equal to some fraction of the initial
range of each decision variable. The user specified inputs are the initial
solution and the maximum number of model evaluations. The DDS
algorithm is very simple to implement, and has been used in calibration
of a rainfall runoff model 145

, and a land surface scheme. 148 The DDS
algorithm can also be used to assess parameter uncertainty by using
multiple trails with different starting points and analyze their joint
sampling paths. 149 Such an approach violates first-order Markovian
properties and can therefore only provide a rough estimate of parameter
uncertainty (see next Section). Recent work has compared the
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performance of DDS with SCE-UA for a range of studies. 145, 150,151

Behrangi et al. 150 has introduced an alternative SCE-UA algorithm that is
at least as efficient as DDS when a limited budget of function evaluations
is considered.

Constrained Optimization using Response Surfaces 146, 147 (CORS) is a
response surface approximation method. A response surface model is a
multivariate approximation of the black box objective function and used
as surrogate for optimization in situations where function evaluations are
computationally expensive. In the CORS method the next point
(parameter combination) is chosen to be the one that minimizes the
current response surface model subject to various constraints including
that the new point must be of some minimum distance from previously
evaluated points. This distance is sequentially reduced from a high value
(global search) at the start of the search to a low value (local search) at
termination. This method has shown to converge nicely to the global
optimum for a set of continuous functions.

6. Treatment of Parameter Uncertainty

One major weakness of the automated calibration methods discussed
earlier in this chapter is their underlying treatment of the uncertainty as
being primarily attributable to the model parameters, without explicit
treatment of input, output and model structural uncertainties. It is well
known, however, that the uncertainties in the watershed modeling
procedure stem not only from uncertainties in the parameter estimates,
but also from measurement errors associated with the system inputs and
outputs, and from model structural errors arising from the aggregation of
spatially distributed real-world processes into a relatively simple
mathematical model. Not properly accounting for these errors results in
residuals that exhibit considerable variation in bias (non-stationarity),
variance (heteroscedasticity) and correlation structures under different
hydrologic conditions and, hence, undermines our efforts to derive
meaningful parameter estimates that properly mimic the target
hydrologic processes.

One response to the treatment of uncertainty in the parameter
estimation problem is to abandon the search for a single “best” parameter 	 IRU q D q VLQJOH q 3 E
combination and adopt a Bayesian viewpoint, which allows the
identification of a distribution specifying the uncertainty regarding the
values of the model parameters. Bayesian statistics have recently found
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increasing use in the field of hydrology for statistical inference of
parameters, state variables and model output prediction. 1 52,153,154,155,156,157

For a recent review, see Liu and Gupta 157
. The Bayesian paradigm

provides a simple way to combine multiple probability distributions
using Bayes theorem. In a hydrologic context, this method is suited to
systematically address and quantify the various error sources within a
single cohesive, integrated and hierarchical method.

To successfully implement the Bayesian paradigm, sampling methods
that can efficiently summarize the posterior probability density function
(pdf) are needed. This distribution combines the data likelihood with a
prior distribution using Bayes theorem, and contains all the desired
information to make statistically sound inferences about the uncertainty
of the individual components in the model. Unfortunately, for most
practical hydrologic problems, this posterior distribution cannot be
obtained by analytical means or by analytical approximation. For this
reason, researchers commonly resort to iterative approximation methods,
such as Markov Chain Monte Carlo (MCMC) sampling, to generate a
sample from the posterior pdf.

6.1. Random Walk Metropolis (RWM) algorithm

The basis of the MCMC method is a Markov chain that generates a
random walk through the search space with stable frequencies stemming
from a fixed probability distribution. To visit configurations with a stable
frequency, an MCMC algorithm generates trial moves from the current
(“ old”) position of the Markov chain	 to a new state	 The earliest
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m'	 ,1	 if Z(O1_1 )> 0
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if ir(Ot_1 ) = 0
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hydrology is the Shuffled Complex Evolution Metropolis (SCEM-UA)
global optimization algorithm. 155 This method is a modified version of
the original SCE-UA global optimization algorithm, 62 and runs multiple
chains in parallel to provide a robust exploration of the search space.
These chains communicate with each other through an external
population of points, which are used to continuously update the size and
shape of the proposal distribution in each chain. The MCMC evolution is
repeated until the R statistic of Gelman and Rubin 159 indicates
convergence to a stationary posterior distribution. This statistic compares
the between- and within-variance of the different parallel chains.

Numerous studies have demonstrated the usefulness of the SCEM-
UA algorithm for estimating (nonlinear) parameter uncertainty.
However, the method does not maintain detailed balance at every single
step in the chain, casting doubt on whether the algorithm will
appropriately sample the underlying pdf. Although various benchmark
studies have reported very good sampling efficiencies and convergence
properties of the SCEM-UA algorithm, violating detailed balance is a
reason for at least some researchers and practitioners not to use this
method for posterior inference. An adaptive MCMC algorithm that is
efficient in hydrologic applications, and maintains detailed balance and
ergodicity therefore remains desirable.

6.2. DiffeRential Evolution Adaptive Metropolis (DREAM)

Vrugt et al. 160 recently introduced the DiffeRential Evolution Adaptive
Metropolis (DREAM) algorithm. This algorithm uses differential
evolution as genetic algorithm for population evolution, with a
Metropolis selection rule to decide whether candidate points should
replace their respective parents or not. DREAM is a follow up to the DE-
MC (Differential Evolution Markov Chain) method of ter Braak 161 , but
contains several extensions to increase search efficiency and acceptance
rate for complex and multimodal response surfaces with numerous local
optimal solutions. Such surfaces are frequently encountered in
hydrologic modeling. The method is presented below.

1. Draw an initial population
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FOR i F 1,..., N DO (CHAIN EVOLUTION)

3. Generate a candidate point,  
i in chain i,

where

(11)
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8. Compute the Gelman-Rubin	 convergence diagnostic 159 for

each dimension j = 1,... ,d using the last 50% of the samples in each
chain.

9. If < 1.2 for all j, stop, otherwise go to CHAIN EVOLUTION.

At every step, the points in
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6.3. Sequential Data Assimilation

In the past few years, ensemble-forecasting techniques based on
Sequential Data Assimilation (SDA) methods have become increasingly
popular due to their potential ability to explicitly handle the various
sources of uncertainty in environmental modeling. Techniques based on
the Ensemble Kalman Filter 163 (EnKF) have been suggested as having
the power and flexibility required for data assimilation using nonlinear
models. In particular, Vrugt et al. 164 recently presented the Simultaneous
Optimization and Data Assimilation (SODA) method, which uses the
EnKF to recursively update model states while estimating time-invariant
values for the model parameters using the SCEM-UA 155 optimization
algorithm. A novel feature of SODA is its explicit treatment of errors due
to parameter uncertainty, uncertainty in the initialization and propagation
of state variables, model structural error and output measurement errors.
The development below closely follows that of Vrugt et al. 164

To help facilitate the description of the classical Kalman Filter (KF),
we start by writing the model dynamics as a stochastic equation. In
keeping with Figure 1, consider a model (P in which the discrete time
evolution of the state vector is described with:

	

V/j,j  (D(1//j, 


), B)+ q;	 (14)
+ qi

where X represents the observed forcing (e.g. boundary conditions), B is
the vector of parameter values, i denotes time and q; is a dynamical noise
term representing errors in the conceptual model formulation. This
stochastic forcing term flattens the probability density function of the
states during the integration. We assume that the model predictions are
related to its internal state according to:

i; = H( 1Vi) +sa	 s, —N(0 ,6°)	 (15)
s i = H i + i	 ~ (0 ,  

0 )

where H() is the measurement operator, which maps the state space into
measurement or model output space, and also has a random additive
error s;, called the measurement error. Note that ;

0
 denotes the error

deviation of the measurements, and * represents the true model states.
At each measurement time, when an output observation becomes
available, the output forecast error z; is computed:

z== s1 —H(ylif)	 (16)
si H( i  

f

and the forecasted states, yrf , are updated using the standard KF analysis
equation:
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Vuu = V/ + Ki (si — H(Vl )) 	 (17)
= f + K 	 H f

where Vu is the updated or analyzed state, and Ki denotes the Kalman
gain. The size of the gain directly depends on the size of the
measurement and model error.

The analyzed state then recursively feeds the next state propagation
step into the model:

Vi+1 = (D( 1V;` ,  
Xi, 

B ) 	 (18)
i+ 1f = i u , X i ,

The virtue of the KF method is that it offers a very general framework
for segregating and quantifying the effects of input, output, and model
structural error in watershed modeling. Specifically, uncertainty in the
model formulation and observational data are specified through the
stochastic forcing terms q and s, whereas errors in the input data are
quantified by stochastically perturbing the elements of X.

The SODA method is an extension of traditional techniques in that it
uses the Ensemble Kalman Filter (EnKF) to solve for equations (14) f
(18). The EnKF uses a Monte Carlo (MC) method to generate an
ensemble of model trajectories from which the time evolution of the
probability density of the model states and related error covariances are
estimated. 165 The EnKF avoids many of the problems associated with the
traditional extended Kalman Filter (EKF) method. For example, there is
no closure problem as is introduced in the EKF by neglecting
contributions from higher-order statistical moments in the error
covariance evolution. Moreover, the conceptual simplicity, relative ease
of implementation and computational efficiency of the EnKF make the
method an attractive option for data assimilation in the meteorologic,
oceanographic and hydrologic sciences.

In summary, the EnKF propagates an ensemble of state vector
trajectories in parallel, such that each trajectory represents one realization
of generated model replicates. When an output measurement is available,
each forecasted ensemble state vector yr i is updated by means of a
linear updating rule in a manner analogous to the Kalman Filter. A
detailed description of the EnKF method, including the algorithmic
details, is found in Evensen 163 and so will not be repeated here.

7. Parallel Computing
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The traditional implementation and application of the local and global
optimization methods, discussed herein, involves sequential execution of
the algorithm using the computational power of a single Central
Processing Unit (CPU). Such an implementation works acceptably well
for relatively simple optimization problems, and those optimization
problems with models that do not require much computational time to
execute. However, for high-dimensional optimization problems
involving complex spatially distributed models, such as the ones
frequently used in the field of environmental science, this sequential
implementation needs to be revisited. Most computational time required
for calibrating parameters in watershed models is spent running the
model code and generating the desired output. Thus, there should be
large computational efficiency gains from parallelizing the algorithm so
that independent model simulations are run on different nodes in a
distributed computer system. General-purpose parallel versions of SCE-
UA, MOCOM, MOSCEM-UA, AMALGAM and DREAM have been
developed in Octave and can be obtained from the second author upon
request.

8. Summary and Conclusions

This chapter reviewed the current state-of-the-art of model calibration in
watershed hydrology. The current status in watershed modeling is that,
regardless of their type (i.e. conceptual/physically-based) and structural
complexity (e.g. spatially lumped/distributed), watershed models still
need to be calibrated to improve the reliability of their
simulation/prediction performance. In calibration, model parameters are
systematically adjusted in such a way that the behavior of the model
approximates, as closely and consistently as possible, the historical
observed response of the watershed system under study. In parallel with
advances in computing resources and measurement techniques,
hydrologic models are becoming increasingly complex, not only
representing the spatial heterogeneity of a watershed but also simulating
various internal states and fluxes. This increase in complexity is typically
accompanied by a decrease in identifiability (or justification) of the
components and parameters in these models due to problems with direct
observation and noisy data. This leads to highly uncertain model
predictions. There is, therefore, a pressing need for better approaches to
model calibration.
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We discussed manual and automatic parameter estimation techniques
for calibration of lumped and spatially distributed watershed models.
Historically, manual calibration has been the common practice for model
calibration. Its main strength is the use of expert knowledge to match the
perceived hydrologic processes in the watershed with their equivalents in
the model, and thus they help to prescribe consistent values for the
parameters. However, manual calibration is time and labor intensive,
involving many subjective decisions. The era of digital computing and
advances in hardware power and speed has led to the development of
automated procedures that are more objective to implement and use, and
more efficient in systematically searching IR 3th 3“K st” 3values of the
model parameters. We have discussed the historical development of
single criterion methods and provided details of the widely used SCE-
UA global optimization algorithm. The major limitation of automated
algorithms is that they rely on a single regression-based aggregate
measure of model performance, which often leads to an ill-posed
parameter estimation problem. This is due to a loss of information when
projecting from the high-dimensional data space down to the single
dimension of the residual-based summary statistic. For highly complex
models with many interacting parameters, this approach is often poor at
discriminating between the effects of individual parameters on the
simulated model output. This, therefore, unnecessarily introduces non-
uniqueness and equifinality in parameter estimation.

More sophisticated automated (or semi-automated) methods for
parameter adjustment have been developed within the framework of
multi-criteria theory, thereby more closely matching the number of
unknowns (the parameters) with the number of pieces of information (the
measures). A major advantage of the multi-criteria approach is that
various aspects of the manual calibration strategy can be absorbed into
the calibration process, thus strengthening the physical basis of the
identified parameters. Although multi-criteria methods are widely used
in the calibration of watershed models and powerful algorithms have
been developed (among these we discussed MOCOM-UA, MACS,
DYNIA, PIMLI, AMALGAM and MOSCEM) in the past decade or so,
how to properly incorporate expert knowledge into automatic parameter
estimation still remains difficult, and an active area of research. To better
realize the strengths of multi-criteria optimization requires a shift from
statistical regression-based performance measures towards more
powerful and hydrologically relevant (contextual) measures of
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information .77,80 One possible way to develop these signature-based
PeDVeURHthe dV ecWn o q GHWHFRWc oF “sRgna FFeD pDFFnHRn the q RU q 3 VLJQDWXUH' C

spatio-temporal data and by relating these to their causal mechanisms.
Signature measures that quantitatively summarize these signature
patterns can be used to estimate plausible model parameters and further
point towards possible causes of model failure and guide model
improvement strategies. More research is warranted on how to 1)
properly construct different and complementary signature measures of
model performance that are diagnostic, 77,80 while being representative of
the watershed response behaviors that are deemed important to reproduce
with the model; and 2) integrate these signature measures into automated
calibration techniques while keeping the resulting multi-criteria
optimization problem computationally tractable.

We have also discussed the calibration of spatially distributed
watershed models. Calibration of such models is complicated by their
large number of parameters. Part of the solution to the stabilization of ill-
posed problems of this kind is to recognize that the spatially distributed
elements of the model parameter fields are not, in fact, independent
entities that can take on arbitrary values in the parameter space. Instead,
their values are somehow related to the spatial distributions of various
hydrologically relevant watershed characteristics including, for example,
geology, soil type, vegetation, topography, etc. Recognition of these
dependencies can facilitate implementation of regularization
relationships that help to constrain the dimensionality of the parameter
estimation problem. We would like to emphasize that although
application of regularization techniques in calibration of complex
watershed models is in its infancy (e.g. Pokhrel et al. 125), considerable
progress has already been reported in adjacent fields, such as
groundwater and subsurface hydrology. Methods and approaches
developed therein might be of great use and inspiration to solve
parameter estimation problems in watershed hydrology. Particularly
appealing are approaches that attempt to 1) improve conditioning of the
optimization problem through use of additional information (penalty
functions; e.g. Tikonov and Arsenin 127); 2) reduce the dimensionality of
the optimization problem using concepts of sensitivity and principle
component analysis (e.g. Tonkin and Doherty 139), as discussed briefly
herein; and 3) representer-based calibration methods. 166 Further, the
availability of parallel computing and powerful optimization algorithms
that can efficiently handle a high number of parameters in complex
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distributed hydrologic models is of particular importance for developing
rigorous model calibration strategies for such models. 75

Finally, this chapter has discussed emerging methods for parameter
uncertainty estimation. Uncertainty quantification is currently receiving a
surge in attention in hydrology, as researchers try to better understand
what is well and what is not well understood about the watersheds that
are being studied and as decision makers push to better quantify accuracy
and precision of model predictions. Various methodologies have been
developed in the past decade to better treat uncertainty. We have
highlighted the standard RWM for posterior exploration, and have
discussed recent advances in MCMC sampling by combining multi-chain
population evolution with the genetic algorithm Differential Evolution
and subspace sampling. We have also summarized emerging state-space
filtering methods that rely on the Ensemble Kalman Filter to specifically
treat forcing (input), output, parameter and state error, within a recursive
estimation framework.

Among emerging approaches for uncertainty estimation not discussed
in this chapter include methods such as Bayesian Estimation of Structure
(BESt), 167 Bayesian Model Averaging (BMA),168,169,170,171 and its
maximum likelihood (ML) variant, LBMAI'z,l'3,1'aM	 Such methods
seem particularly appealing because they help to account for model
structural uncertainty. BMA and MLBMA, in particular, are relatively
easy to implement, accounting jointly for conceptual model and
parameter uncertainty by considering a set of alternative models that may
be very different from each other while being based on a common set of
data.
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SUMMARY

Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the
complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a
watershed. A consequence of process aggregation is that the model parameters often do not represent
directly measurable entities and must, therefore, be estimated using measurements of the system inputs and
outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior
of the model approximates, as closely and consistently as possible, the observed response of the hydrologic
system over some historical period of time. This Chapter reviews the current state-of-the-art of model
calibration in watershed hydrology with special emphasis on our own contributions in the last few decades.
We discuss the historical background that has led to current perspectives, and review different approaches
for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the
recent developments in the calibration of distributed hydrologic models using parameter dimensionality
reduction sampling, parameter regularization and parallel computing. Finally, this chapter concludes with a
short summary of methods for assessment of parameter uncertainty, including recent advances in Markov
chain Monte Carlo sampling and sequential data assimilation methods based on the Ensemble Kalman
Filter.


