A Core Ontology of Knowledge Acquisition

José Iria

Department of Computer Science, The University of Sheffield, UK
jiria@dcs.shef.ac.uk

Abstract. Semantic descriptions of knowledge acquisition (KA) tools
and resources enable machine reasoning about KA systems and can be
used to automate the discovery and composition of KA services, thereby
increasing interoperability among systems and reducing system design
and maintenance costs. Whilst there are a few general-purpose ontologies
available that could be combined for describing knowledge acquisition,
albeit at an inadequate abstraction level, there is as yet no KA ontology
based on Semantic Web technologies available. In this paper, we present
OAK, a well-founded, modular, extensible and multimedia-aware ontol-
ogy of knowledge acquisition which extends existing foundational and
core Semantic Web ontologies. We start by using a KA tool development
scenario to illustrate the complexity of the problem, and identify a num-
ber of requirements for OAK. After we present the ontology in detail, we
evaluate it with respect to the identified requirements.

1 Introduction

The goal of Knowledge Acquisition (KA) is to develop methods and tools that
make the arduous task of capturing and validating an expert’s knowledge as
efficient and effective as possible. Of special relevance to the fulfillment of the
Semantic Web vision is automating KA from text and image resources. Auto-
mated KA systems take as input multimedia documents originally intended for
human consumption only and provide as output knowledge that machines can
reason about.

Despite the growing need for KA and recent advances in the field, the devel-
opment of KA systems remains a complex and costly affair. Previous research on
KA for the Semantic Web has followed three main directions: 1) increasing the
accuracy of the extracted knowledge [0], 2) scaling up KA systems to address
the knowledge acquisition bottleneck in populating large knowledge bases [12],
and 3) providing semantically rich and well-founded means of representing mul-
timedia data and annotations thereof [I]. Unfortunately, none of these research
directions addresses the core problem of reducing the complexity in developing
and maintaining these systems.

Research on Service-Oriented Architectures (SOA) addresses this problem.
Frequently realized through (semantic) Web services concepts and technologies,
SOA encourage following modularization principles for dealing with the com-
plexity of software systems. Ontological descriptions of services serve as a basis
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for interoperability between systems at various levels of abstraction, and this
enables important functionalities such as (automatic) semantic service discov-
ery and composition. In this context, ontologies like OWL-S [§] and the Core
Software Ontology [I1] provide generic top-level constructs to formally describe
software systems. However, to the best of our knowledge, there is currently no
specialized ontology available for semantically describing KA tasks and systems.

The advantages of an ontology of KA are threefold. Firstly, it provides an
agreed-upon means of referring to and describing KA tasks and KA systems,
their inputs and outputs and their internal constituents (components, subsys-
tems, auxiliary resources, and so on). Secondly, making such descriptions avail-
able greatly increases the interoperability between KA systems, by enabling both
humans and machines to search for and reason upon them. Lastly, it cuts down
system development and maintenance costs, and promotes optimal decisions
both at design time and at runtime, because systems, subsystems and compo-
nents of a KA system can more easily be found and put together.

Our contribution in this paper is thus to provide a core Ontology of Acquisi-
tion of Knowledge (OAK). In the design of OAK we have reused and extended
existing foundational and core Semantic Web ontologies. Concretely, we have
used DOLCE [5], the ontology of Descriptions & Situations, the Ontology of
Plans, and the Ontology of Information Objects; and the core ontologies of mul-
timedia (COMM) [I] and software (CSO) [LI]. The relationship between OAK
and these other ontologies is depicted in Figure[dl
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Fig. 1. Positioning the Ontology of Acquisition of Knowledge (OAK) in the framework
of existing foundational and core ontologies. OAK extends the Core Software Ontology
(CSO) and the Core Ontology of MultiMedia (COMM).

The rest of the paper is structured as follows. In the next section, we motivate
the need for semantically describing KA systems. We center our discussion on
a simple KA task to populate a knowledge base. In section Bl we review related
work. In section [, we identify a number of requirements that an ontology of
knowledge acquisition should satisfy. We then present OAK using a collection of
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UML diagrams and describe it in detail. In section[G we show how the simple KA
task is encoded with the proposed ontology. Finally, we present our conclusions
and outline future work.

2 Developing a Simple Knowledge Acquisition System

Let us imagine that a team of developers is working on a new KA system. The
system’s goal is to extract facts about sports celebrities from online multimedia
documents. Available to the developers is a set of sample facts extracted from
a few hundred documents that can be used as training examples in a machine
learning-based approach to the problem. The system should make use of both
text and image features, as both are potentially valuable — for example, the
presence of images about sports increase the likelihood that the surrounding
text contains the facts of interest (expressed in natural language).

Developing a new KA system involves a number of decisions regarding sub-
systems and components to use. Even the development of a simple system that
works in the above scenario requires addressing at least the following concerns:

Decomposition: Both text and images need to be decomposed into finer-grained
media segments, which constitute the building blocks for deriving Information
Extraction (IE) patterns and models, be it manually or via induction algo-
rithms. Text is typically decomposed into sentences, noun phrases and tokens.
Images are typically segmented into regions of interest.

Tagging/Annotation: Media segments need to be tagged or annotated, that
is, extra information, obtained through some form of analysis and/or use of
external resources, is attached to the segment, with the purpose of enriching
IE patterns and models. Typical text tagging tools are part-of-speech and
orthography taggers, which attach tags at the token level. Typical image
analysis tools are color and texture analyzers, and edge detectors.

Data Modeling: A predictive model, capable of extracting facts from the de-
composed and tagged input media, needs to be constructed, either manu-
ally or through automatic induction methods. Manually built models consist
mainly of text patterns, carefully created, tested and maintained by domain
and linguistic experts. Induced models are created by machine learning-based
systems, which tap into a wealth of machine learning literature for a choice
of algorithms and meta-algorithms, and are able to work on both text and
images.

Semantic Annotation: Models need to be applied over unseen media to ex-
tract novel facts, typically expressed in the form of semantic annotations.
The application of predictive models may sometimes not directly yield the
facts of interest, but some form of validation, consistency checking, and merg-
ing of intermediate facts is required as a last step. This is typically achieved
through reasoning on the output of the models.
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2.1 Problems with Existing Solutions

State-of-the art middleware for the development of IE and KA systems do not
offer facilities for semantically describing the subsystems and components that
make a KA system, nor is there a specialized ontology of KA available that
can be used to do that (see Section B]). This means that the developers in our
example will find it hard to integrate the required tools and components obtained
from several parties. Furthermore, they will not be able to publish the semantic
descriptions of their system, to ease the effort by third parties in finding and
using them in the future. Given the sheer number and diversity of subsystems
involved, it would be desirable to automate service discovery and composition,
not only to speed up development, but also to improve systemic qualities such
as robustness to failure of one of the subsystems.

Our developers will use the XML plugin descriptor files or equivalent mech-
anisms (e.g., Java language annotations) which are offered by the current mid-
dleware solutions. Unfortunately, these descriptors present several problems:

Scope: The descriptors tend to mimic the native programming language, thus
describing the components in terms of their inputs and outputs, and design
time and runtime parameters. There is seldomly a way of describing aspects
of the KA subsystems and components that fall outside the scope of those
constructs. For instance, it would prove difficult to represent that the output
of the component is a relationship between a given decomposition of text and
images and a statement in the knowledge base.

Semantics: The descriptors lack formal semantics. While appropriate for de-
scribing the components within the context of their respective middleware, it
is not possible to guarantee that the descriptors generated by different agents
will be mutually understood — potentially, the same descriptor syntax can
be used to mean a number of semantically distinct things.

Web Interoperability: The descriptors are not interoperable with existing
(semantic) web standards. For example, there is no formal way of referring
to a concept in a domain-specific ontology. This limits the interoperability
with other web systems.

3 Related Work

In recent years, new directions in software engineering have started to be explored
to combat the increasing complexity and rapid rate of change in modern systems
development. Among these new paradigms is Semantic Web Enabled Software
Engineering (SWESE), which tries to apply Semantic Web technologies (such
as ontologies and reasoners) in mainstream software engineering [7]. SWESE
hopes to provide stronger logical foundations and precise semantics for software
models and other development artifacts. The work presented in this paper can
be viewed as a contribution to this goal, with applications in the domain of
knowledge acquisition systems engineering.



A Core Ontology of Knowledge Acquisition 237

There are currently several state-of-the-art software frameworks available that
are suitable for developing tools for knowledge acquisition from text and/or mul-
timedia documents. The Unstructured Information Management Architecture
(UIMA) [4] is an open-source platform for integrating components that analyze
unstructured sources such as multimedia documents. UIMA-based systems de-
fine type systems (i.e., ontologies with extremely limited semantic commitments)
to specify the kinds of information that they manipulate [6]. UIMA type sys-
tems include no more than a single-inheritance type/subtype hierarchy, thus to
do substantive reasoning over the results of UIMA-based extraction, one needs to
convert results into a more expressive representation. GATE [2] is a framework
and graphical development environment for NLP tools and applications that has
been extended over the years to include support for ontologies, multimedia data,
and machine learning. Unlike UIMA, GATE does not provide a specialized data
layer, using instead native data structures (the current version of GATE is im-
plemented in Java). It features a plugin-based architecture in which components
are described using so-called CREOLE (XML) descriptor files, which suffer from
the problems identified in the previous section. In our survey of the state-of-the-
art, we found that several other frameworks, e.g. [I5], [I6], presented identical
limitations. In face of this, we believe that the formalization of the knowledge
acquisition domain presented here is an important first step in the direction of
interoperability between systems built on top of these middleware platforms.

Early research approaches to using ontologies to model the knowledge ac-
quisition problem, e.g. [I3], would focus on the interaction between a KA user
interface and the domain experts. The work in this paper belongs to the class of
more recent approaches that attempt to automate KA from documents written
by the experts.

Our work is targeted at the fields of Knowledge Acquisition and Ontology-
based Information Extraction [14]. The design of OAK was greatly inspired by
working with a number of systems in these fields and by designing our own sys-
tems. For example, the system in [3] takes the approach that a large class of
data sources on the web can be viewed as semantically related in the context of
a given knowledge acquisition task, and design a general strategy for learning
classifiers from those sources. This and other systems, such as those described
in [I0], [9] and [12], which at aim populating small ontologies from (sometimes
very large) repositories of text or multimedia data, are the kinds of systems that
would benefit from our work. None of these systems have been explicitly seman-
tically described, and therefore machine reasoning about their functionality is
not possible — and it is not uncommon for even humans to have difficulty in
replicating the systems from their natural language descriptions found in the
literature.

Other, more general, ontologies have been developed which could be used to-
gether to describe KA tasks and systems, albeit at an inadequate abstraction
level. The Core Ontology of MultiMedia [1] is a well-founded ontology and API
that provides constructs to semantically describe multimedia assets available on
the Web. The Core Ontology of Software [I1] formalizes the most fundamental



238 J. Iria

concepts which are required to model both software components and Web ser-
vices, including concepts such as software, data, users, access rights or interfaces.
Roughly speaking, COMM covers the data part of our ontology, while CSO cov-
ers the processing part. We have extended both ontologies and provided more
specialized semantic constructs for the domain of automated KA from multime-
dia data.

4 Requirements for the Knowledge Acquisition Ontology

Here we compile a list of requirements that an ontology of knowledge acquisition
should satisfy, given our discussion in the previous sections:

Multimedia: The proposed ontology should describe KA systems that work
with multimedia data. In particular, it should support text and images, and
be designed in such a way that it can be extended to other types of media
as well.

Semantic Interoperability: An ontology of KA, much like any other ontology,
must ensure that the intended meaning of the captured semantics can be
shared among different systems. Reasoning processes about concepts and
relations in different environments can only be guaranteed to yield identical
results if the semantics is sufficiently explicitly described. Only when the
captured semantics can be shared among multiple systems and applications
are the KA system descriptions truly re-usable.

Syntactic Interoperability: The semantics of the KA system descriptions are
only shareable among different systems if there is some agreed-upon syntax
in which to convey it. In our case, the descriptions should be expressed in a
semantic web language, such as OWL or RDF /XML, because our goal is to
take advantage of other Semantic Web technologies such as semantic service
discovery and composition.

Separation of Concerns: Domain knowledge should be kept separate from
knowledge about the KA system. Moreover, as indicated in section [, the
development of a KA system should address at least the concerns of decom-
position, tagging, data modeling, and semantic annotation. These should
also be kept separate, if possible, in the design of the ontology, in form of
patterns.

Modularity: Modularity is a key engineering principle which arises whenever
dealing with large systems, be it software systems or ontologies. Since the
ontology of knowledge acquisition can become very large, its design should
be made modular from its inception.

Extensibility: Just like we have extended COMM and CSO in designing our
KA ontology, we also expect OAK to be eventually extended and adapted to
specific domains and applications. As ontology development methodologies
show, ontologies are inherently incomplete, and for that reason extensibility
is a key and pervasive requirement in ontology engineering.
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5 The OAK Ontology

In this section we present OAK, a core ontology of knowledge acquisition from
multimedia data. The ontology is organized into several patterns, described be-
low with the aid of UML diagrams.

5.1 Foundational and Core Ontologies Used

The Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)
[5] is used as a modeling basis. DOLCE is a well-founded ontology which models
three ontological patterns which we require: the Descriptions & Situations (D&S)
ontology, the Ontology of Information Objects (OIO) and the Ontology of Plans
(OoP). The first pattern is used to formalize contextual knowledge. The sec-
ond pattern implements a semiotics model of communication theory. The third
pattern characterizes planning concepts.

As previously mentioned, we extend the COMM and CSO core ontologies.
Please consult Section [ for the references to the publications which describe
them, a reading of which may prove necessary to understand some of the concepts
discussed in this section[]

5.2 KA Task and KA System

We start by characterizing core KA concepts by answering the questions: What
is a knowledge acquisition task? What is a knowledge acquisition system? What
is a knowledge base (KB) statement? We define these concepts in terms of the
Descriptions & Situations pattern, which contextualizes an interplay of COMM
and CSO concepts. This is depicted in Figure 2

[_CSOSoiware | | DoF:Flan | [CSO:ComputationalTask |
| KASysiem | —-0i0:expressaa—] EARelRod |z detines— KATask ]
Oneatist DS el

I DS SHuaton ] [ Ol InformationCEject |
[ CONMM:SemaniicAnnotation  }—DnS:seting DOnS:plays

Fig. 2. Ontology pattern for describing a knowledge acquisition system

A KASystem is a CSO0:Software that expresses a OoP:Plan, namely that
of a KAMethod. A KATask is a CSO:ComputationalTask defined by the
method. A statement in a knowledge base, KBStatement, is a DnS:Role,

! Throughout the paper, concepts and associations are written in sans serif and
are labelled in a namespace-like manner. Namespace prefixes indicate the ontology
where those concepts and associations are defined. If no namespace is used, they are
assumed to be defined in OAK.
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namely the COMM: SemanticLabelRole, played by an 0I0:InformationObject.
In other words, the statement is an information object expressing a fact
that provides a semantic label to some media segment — the segment
which contributed to that fact being extracted or derived. A KAMethod is a
DnS:Descriptionof a situation. In the KA domain, the situation it describes is a
COMM: SemanticAnnotation. This provides a DnS:setting where the statements
and the CS0:ComputationalActivity sequenced by the KATask (not shown in
the figure) exist.

Additionally, the KAMethod defines the KASubsystemRole, the meaning of
which will become clear in the next section.

5.3 KA Subsystem

Knowledge acquisition systems are complex systems composed of many subsys-
tems. Our ontology should capture these as well. This is depicted in Figure [3]
for natural language processing (NLP) tools, arguably the most commonly used
type of KA subsystem.

[ CS0:Sofiware ] [ OcF:Flan | [CEC:-Compulaionallask |
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 — [ ]
HLF Tagging Tool | ’H NLF Tagging Algenthm — |— [ NLF Tagging Task |
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Text Segmentation
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[ COMRM SemanficAnnolalion | DnS:seting

Fig. 3. Ontology pattern for describing one of the possible types of KA subsystems:
NLP tools

A NLPTool is a software that 0I0:expresses a NLPAlgorithm which
DnS:defines an NLPTask. Following COMM patterns of decomposition and an-
notation, NLP tools can be specialized into segmentation and tagging tools.
Examples of the former include the sentence splitter, the chunker and the tok-
enizer, while examples of the latter include tools such as the part-of-speech tagger
or the orthography tagger. Both NLPTaggingTools and NLPSegmentationTools
play the KASubsystemRole in the setting of a COMM:SemanticAnnotation (de-
fined above). A NLPSegmentationTool expresses a NLPSegmentationAlgorithm
that defines a NLPSegmentationTask and the COMM:MaskRole, which is
played by some COMM:DigitalData in the setting of a TextSegmentation
situation satisfied by the algorithm. Conversely, a NLPTaggingTool ex-
presses a NLPTaggingAlgorithm which defines a NLPTaggingTask and the
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COMM: AnnotationRole, played by some COMM:DigitalData in the setting of a
TextTaggingsituation. The TextSegmentation and TextTagging situations are
specializations of the COMM: SegmentDecomposition and COMM: Annotation sit-
uations, respectively (see Figure []).

Many other tools may form part of a KA system. Of particular relevance to
the simple KA system described in Section [2] are image analysis tools, which,
together with NLP tools, enable handling multimedia documents. Due to space
constraints, we do not show figures about these tools, but it should be men-
tioned that their characterization follows a similar pattern. Thus, a IATool is
a software that 0I0:expresses a IAAlgorithm which DnS:defines an IATask.
We define two kinds of image analysis tools, the IADecompositionTool, e.g.,
a region of interest classifier, and the IAAnnotationTool, e.g., an edge de-
tector . Like NLP tools, both play a KASubsystemRole in the setting of a
COMM:SemanticAnnotation.

5.4 Decomposition

The subsystems of a KA system are typically regarded as blackboxes, and this
lack of detail makes it impossible for machines to reason about them. Hence, we
need semantic constructs to declaratively specify the data resources and internal
processes used by these subsystems. Here, we specialize a number of generic
COMM constructs to the KA domain. This is depicted in Figure [l
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Fig. 4. Specializing the COMM decomposition pattern to the KA domain

Text is a type of COMM:Media that realizes TextData (a specialization of
COMM:MultimediaData). A NLPAlgorithm defines a TextSegmentRole which
TextData can play in the setting of some situation. In the case of the
TextSegmentation situation depicted, TextData also plays the InputTextRole
and OutputTextRole roles defined by the NLPSegmentationAlgorithm. In other
words, the segmentation algorithm can, for example, take a document and
split it into sentences (sentence splitter), or it can take a sentence and split
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it into tokens (sentence-level tokenizer), or it can take a document and split
it into tokens (document-level tokenizer), and so on. Two other types of out-
puts are defined by a segmentation algorithm: the OutputTextMaskRole and the
OutputTextSequenceRole. The former is played by a COMM:DigitalData object
that expresses a TextLocatorDescriptor and is about some TextRegion, e.g.
a descriptor about a sentence that provides a means of locating it in the doc-
ument. The latter is played by a COMM:DigitalData object that expresses a
TextSequenceDescriptor, e.g. a descriptor about the order in which tokens
appear in the document.

[ TexiLocalorDescriptor "= COMW:LocahzalionDescriplor |

Oin®defines,
[ COMM StruciuredDalaFarameter | DOLCE AbsiracRegion
| TextiRegonParameter EK{EEélm I:
Q COAInS
[ DocumentRegionParameter | OnSwaluedSy— D Feq

[_SentenceRegionFarameter  |—OnSwalundsy—]

|_NounPhraseReguonFarameter |—0nswvaluedsy— MounFhraseRegion

ErTEns

i

[ TokenRegionFarameler —Dnswaluedsy eq

Fig. 5. Specializing COMM locators for text data

Figure [0 shows the TextLocatorDescriptor and the TextRegion. The for-
mer is a specialization of COMM:LocalizationDescriptor for text data. This
descriptor enables specifying regions in the TextData manipulated by the algo-
rithm. It defines a number of types of TextRegionParameters valued by their
respective TextRegions. This is by no means an exhaustive list of possible sub-
classes, but merely illustrative of a pattern that suits a number of different
concrete implementations and can easily be extended.

For the decomposition of image data, the constructs introduced in [I] by the
authors of COMM are sufficient for the purposes of OAK, and thus do not need
to be extended.

5.5 Annotation

Addressing the annotation concern requires a very similar pattern to the de-
composition pattern. Hence, we just outline the differences with respect to the
semantic constructs depicted in Figure @

2 In practice, this descriptor is often expressed implicitly in the native programming
language. For example, returning a List of Token objects in Java implicitly encodes
the sequence information, since lists are ordered collections.



A Core Ontology of Knowledge Acquisition 243

In a TextTagging situation satisfying a NLPTaggingAlgorithm, the lat-
ter can take as input and return as output TextData that play differ-
ent TextSegmentRoles. For instance, a part-of-speech tagger tags tokens,
while a sentiment classifier may tag sentences. A tagging algorithm defines a
InputTextRole and a OutputTextTagRole. The latter is played by a struc-
tured COMM:DigitalData object that 0I0:expresses a TextTagDescriptor (a
subclass of COMM:StructuredDataDescription). The COMM:DigitalData ob-
ject mentioned is 0I0:about a DOLCE:Particular.

As with the decomposition pattern, we found that there was no need to extend
the constructs introduced in [I] for the annotation of image data, as they are
sufficient for the purposes of OAK. Moreover, for the same reasons we also
directly adopt the semantic annotation pattern of COMM, as we find it requires
no specialization in order to address the semantic annotation concern mentioned
in Section 21

5.6 Data Modeling

Another identified concern was that of managing models of the data. An ontology
pattern that addresses this concern is depicted in Figure [6l
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Fig. 6. Ontology pattern for describing building and applying data models

There are two situations to describe in data modeling: ModelBuilding
and ModelApplication. A Learner is a CS0:Software that expresses
a LearningAlgorithm, which defines a LearningTask and satisfies the
ModelBuilding situation. Conversely, a Classifier is a CSO:Software that
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expresses a ClassificationAlgorithm, which defines a ClassificationTask
and satisfies the ModelApplication situation.

For the purposes of KA from multimedia documents, a LearningAlgorithm
takes COMM:MultimediaData as input and outputs a DataModel (expressed by
some COMM:DigitalData). Data models are often automatically induced via
machine learning methods, resulting in StatisticalModels, or often manu-
ally crafted by domain experts in the form of a set of rules, resulting in
RuleSetModels. Learning algorithms tend to be highly configurable, and we tried
to capture that by defining a number of roles for well-known basic functions in
the machine learning literature (here semantically described by a CS0:Method).
The KernelRole is played by a similarity metric or kernel function, e.g. cosine
similarity, radial kernel. The OptimizerRole is played by an optimization algo-
rithm, e.g. quasi-Newton method. The RegularizerRole is played by a regular-
ization function used to keep model complexity low and prevent over-fitting. The
LossRole is played by a loss function that defines the penalty of miss-prediction,
e.g. hinge loss. The FeatureSensorRole is played by a function that extracts
features from the data, while the TargetSensorRole is played by a function that
determines the class which the data belongs to by consulting some oracle, e.g.
manually annotated data.

A ClassificationAlgorithm takes COMM:MultimediaData and a DataModel
as input, and outputs COMM:DigitalData that expresses a structured description
of the classified object, a ClassifiedObjectDescriptor.

5.7 Fulfillment of the Requirements

We now discuss how the requirements outlined in Section [ are satisfied by our
proposed modeling of the knowledge acquisition ontology.

By carefully choosing to model OAK on top of COMM, we ensure that OAK
supports multimedia data. We have shown how to specialize the core COMM
constructs to support text. OAK can easily be extended to accommodate more
types of media in the same way.

All the ontologies chosen — DOLCE, COMM and CSO — provide a rich axiom-
atization of each pattern using first order logic. Moreover, through the semantic
annotation pattern, our ontology can be linked to any Web-based domain on-
tology. These fulfill the semantic and syntactic interoperability requirements,
respectively.

The use of ontology patterns ensures a clear separation of concerns. The KA
system and subsystem patterns define the core concepts. The decomposition
pattern, the annotation pattern and the data modeling pattern each address the
homonymous concerns mentioned in Section 2l

The modularity requirement is satisfied, since these patterns form modules in
the core of the architecture of the KA ontology. The extensibility requirement
is fulfilled in several ways. First, OAK allows accommodating further media
types as mentioned above. Second, it is also straightforward to define new types
of KA subsystems. Third, it is equally easy to define new types of segment
roles and regions. Finally, new types of learning and classification algorithms
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can also be added without much effort. The modularity and extensibility of
OAK is in great part due to our patterns being grounded in the D&S pattern,
which enables adding further contextual knowledge in such a way that will not
change the patterns (mainly by defining new roles or parameters), so that legacy
descriptions remain valid.

6 Describing the Simple KA System with OAK

Let us revisit the scenario described in Section 21 The developers have decided
to throw away any documents that do not contain sports pictures as a prior fil-
tering step. On the remaining documents, a sentence splitter and a named entity
recognizer are run to split each document into sentences and tag occurrences of
people and location names. Each sentence is then passed to a classifier which
generates statements of the type born in(person, location) as output. Figure [1]
shows how to semantically describe such a simple KA system.

a1 RASyslem |00 axpressas—{ Kam 1. RAMEBINOd f-Ons satisie=—|_5a1. SemanicAannotaton |
o kasri: KASubsysiemRole | T &lr: Samant alFole
L_iri: InputimageRole | o —
e | [(BomST:RB St

[c T:Gnlnrl-llst;qamﬁ.nalysar [ chaT: ColorHistogramAlgonthm | [ adri: AnnolaledDataFole |

— kasrZ: KASubsysiemBole |
[NPSegmentationToal | [ drT: DocumentRole | [ &r1: SentenceRole |

il  ——

| 551: Sentencespllier - ssal: SentencaSplittingAlgondthim E|—{ ol T Oufput TexdHole |

—{Fasrd: RASubsyslemRole [T Trput TextRoke | I
NLFTagging [T TexiDala |

I L {Tir1: nput TextRote | 2 TexiDala
[ neT: NamedEnityTagger |- neal: NETaggingAigontm J OO exprosses

L [T RS ubeysiemiols | A cldrT: ClassednputDataRole |
[ Classifier | [(odmri: OutputCataModelRole | codl: ClassifiedObjeciDescripior |
4 /I\
er

Cl0exprasses

idmr1: InputDataModelRole || ddi: DigiaData |—{ remi: Ruleseidode

'I'I"
[ rci: RelationClass

Fig. 7. Semantic description of a simple KA system that populates the KB with born in
relations. All the DnS:plays, DnS:defines and some DnS:setting and 0I0:expresses
labels were omitted for clarity. Due to space limitations, the outputs of the color his-
togram analyser and the named entity tagger were also omitted.

The system defines four subsystem roles, played by a color histogram analyser
(an image analysis tagging tool), a sentence splitter (a nlp segmentation tool),
a named entity tagger (a nlp tagging tool) and a relation classifier (a classifier).
The image analyser takes the image data from the multimedia document and
outputs a color histogram, which is used to decide whether the document should
be discarded. The input to both the sentence splitter and the named entity tagger
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is the text from the whole document (hence playing a DocumentRole), whereas
the output of the sentence splitter is the text from a sentence (hence playing
a SentenceRole). The sentence text also plays the ClassifierInputDataRole
defined by the relation classifier. The latter also takes a set of manually built
text extraction rules as input (via the InputDataModelRole). The generated KB
statements express the ClassifiedObjectDescriptor output by the classifier.
Finally, the sentence text plays the COMM: AnnotatedDataRole and the KB state-
ment the COMM: SemanticLabelRole in this COMM: SemanticAnnotation setting,
which satisfies the KA method expressed by the system.

7 Conclusion and Future Work

In this paper we presented OAK, a well-founded, modular, extensible and
multimedia-aware ontology of knowledge acquisition which extends existing
foundational and core Semantic Web ontologies. The ontology addresses concrete
problems with current state-of-the-art middleware for KA systems development.
The advantages of its use include enhanced interoperability among systems, en-
abling machine reasoning on what the KA system does and how it does it, and
enabling semantic discovery and composition of KA services.

The work presented in this paper just scratches the surface on what is possible
to represent about KA systems. Nevertheless, as future work, we intend to keep
on focusing on those semantic constructs and ontology patterns which are generic
enough to constitute the core of KA. One particular pattern that we found
lacking in the current version of OAK is that of knowledge fusion, i.e., to be
able to describe the situation in which a KB statement is not directly related
to a media segment (because it was extracted from it), but rather receives a
indirect contribution from the segment towards its existence and validity (e.g.,
via merging of several extracted facts). We also intend to work on a more detailed
characterization of the data modelling pattern, by including constructs such as
dataset, instance and pattern that are missing in the current version.
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