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Abst rac t .  Dynamic graph layout refers to the layout of graphs that 
change over time. These changes are due to user interaction, algorithms, 
or other underlying processes determining the graph. Typically, users 
spend a noteworthy amount of time to get familiar with a layout, i.e. 
they build a mental map [ELMS91]. To retain this map at least partially, 
consecutive layouts of similar graphs should not differ significantly. Still, 
each of these layouts should adhere to constraints and criteria that have 
been specified to improve meaning and readability of a drawing. 
In [BW97], we introduced random field models for graph layout. As a 
major advantage of this formulation, many different layout models can be 
represented uniformly by random variables. This uniformity enables us 
to now present a framework for dynamic layout of arbitrary random field 
models. Our approach is based on Bayesian decision theory and formal- 
izes common sense procedures. Example applications of our framework 
are dynamic versions of two well-known layout models: Eades' spring em- 
bedder lead84], and Tamassia's bend-minimum orthogonal layout model 
for plane graphs [Tam87]. 

1 I n t r o d u c t i o n  

A sequence of graphs that  arises from repeated modification of an initial graph is 
called a dynamic graph. Dynamic graphs occur in many settings, including user 
interaction, software visualization, animation of graph algorithms, and graph 
queries. When drawing graphs dynamically, updates shall be economic in the 
sense that  human as well as computer resources are used sparingly. With hu- 
man resources we mean the effort and time a user spents in order to follow an 
update and regain familiarity with the drawing. Despite of the large interest 
in automatic graph drawing, the important  extension to dynamic graphs has 
received little attention, yet. This may partially be due to the lack of a con- 
ceptual framework abstracting from issues inherent to specific models. Appar- 
ently, most approaches in the literature are tied to classes of admissible graphs 
[BP90,CDT+92,CDTT95,Nor96,PT96].  

A fairly general formulation of the dynamic graph drawing problem is given 
by North [Nor96]. We use his formalization with minor adjustments. For each 
graph in the sequence, prescriptions are given for its representation and render- 
ing, as well as a set of layout constraints and readability criteria. These define 
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a sequence of static graph drawing problems. Since the computation of a layout 
and its rendering can typically be separated, we neglect everything related to 
imaging, and focus on the layout problem. Consecutive layouts are subject to 
consistency, stability, and readability demands. These can be seen as additional 
constraints (for consistency) and criteria (for stability and readability of up- 
dates), respectively. Moreover, the actual update of a drawing might consist of 
a number of intermediate drawings (the physical update), e.g. to smooth transi- 
tions or to add visual update clues. Here, we are only concerned with the logical 
update, i.e. the final layout for each graph in the sequence. 

Our approach to dynamic graph drawing relies on the formulation of layout 
models in terms of random fields [BW97] (see [Guy94] for an introduction to ran- 
dom fields). In a random field model, feasible layouts are assigned probabilities 
reflecting their conformance to layout goals. A single random variable is sufficient 
to fully describe a layout model. Random fields are  used in many other areas, 
particularly including image processing [Win95]. In the introduction of [GM85], 
Geman and McClure explicitly stated their hope to achieve a unification of many 
image processing problems through a Bayesian framework, which was pioneered 
in [GG84]. To say the least, random fields and the Bayesian paradigm have in- 
fluenced a substantial part of the subsequent research [CJ93]. In this paper, we 
undertake an adaption to dynamic graph layout. We argue that dynamic graphs 
should be laid out according to an a-posteriori model, which forms a compromise 
between the given static, or a-priori, model and some stability criteria. 

The main interest of this paper is the derivation of a formal concept for 
dynamic graph layout. The advantage of an abstract, generic framework is that 
it provides a common foundation for dynamic versions of arbitrary layout models. 
Experimental results would be interesting for special cases, but we rather want 
to emphasize the conceptual elegance and broad applicability of our approach. 

This paper is organized as follows. In Section 2 we briefly recall the definition 
of a random field layout model. The Bayesian approach to dynamic graph layout 
is developed in Section 3, and applied to a spring model and to bend-minimum 
orthogonal drawings of embedded planar graphs in the succeeding sections. 

2 P r e l i m i n a r i e s  

A layout of a single graph G = (V, E) is computed by assigning values to certain 
layout variables. Straight-line embeddings, for example, are completely deter- 
mined by an assignment of coordinates to each vertex. More general, each ele- 
ment of a set L = { l l , . . . ,  lk} of layout elements is assigned a value from a set 
of allowable states 2dl, t 6 L. Clearly, L and X = X L = Xz1 x . . .  x Xl~ depend 
on the desired type of representation. Every vector x 6 X is called a layout. 

In a random field model [BW97], layouts x 6 X are assigned probabilities 
reflecting their conformance to layout criteria. These probabilities are based on 
configurations of subsets of layout elements which mutually affect their states. 
This interaction of layout elements is modelled by an interaction graph G ~ = 
(L, E n) that is obtained from a neighborhood system ~ = U1EL l]l' where ~l C 
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L \ {I} is the set of layout elements for which the state assigned to 1 is relevant 
in terms of layout quality. Because of physical analogies, we assume that  inter- 
actions are symmetric. In particular 12 E ~/h ¢=~ 11 E ~12 for all 11,12 E L, so 
G ~ is undirected. The set of cliques in G v is denoted by C = g(~). Each clique 
in g corresponds to a set of pairwise interacting layout elements. By symmetry, 
the internal interactions are not visible from outside of the clique, but form a 
potential. We therefore define the interaction potential of clique C E g to be any 
function Uc : X ~ ]R for which 

x c  = y c  ~ Uc(x)  = U c ( y )  

holds for all x, y E X, where, for x = (Xl)lE L E ,~ and C E C, x c  = (xt)zE C. 
Moreover, x yc denotes a vector that  agrees with y E 2( on C E C and with 
x E X on L \ C. The energy U : X -~ ~ of a layout equals the sum of all interac- 
tion potentials, i.e. U(x) = ~ c ~ c  Uc(x) .  Motivated by results from statistical 
mechanics and thermodynamics, the probability of a layout x is set to 

1 
P ( x  = x) = ~ e -v(~),  

where Z is a normalizing constant. 1 Clearly, these probabilities depend on the 
energy only. For convenience, both the random variable X and its distribution 
P ( X  = x) are called a (random field) layout model for G. Consequently, a layout 
of low energy, i.e. little interaction of layout elements, is more likely than a 
layout of high energy. Many common layout models can be described within this 
framework [BW97]. 

3 D y n a m i c  L a y o u t  

In this section, we introduce a generic approach to dynamically layout a (fi- 
nite or infinite) sequence of graphs G1, G2, . . . ,  for which (static) layout models 
X 1 , X 2 , . . .  are given. The objective function of a random field layout model 
is its probability measure. Therefore, we would like to derive models, such 
that  the most desirable sequence of layouts maximizes the joint probability 
P(X1 = x l , X 2  = x2 , . . . ) .  In case the layout models are assumed to be in- 
dependent, we have 

P (X1 = xl ,  X2 = x2,-.-) = I I P  (X~ = x i ) ,  
i 

which is maximized by maximizing each P ( X i  = xi). Independent random fields 
correspond to a strategy that  layouts each individual graph according to its own 
model and does not care about the user's mental map (except for, possibly, in 
the physical update). Since smooth transitions between consecutive layouts are 
pursued, dependencies among the individual models must be introduced. In the 
remainder of this section, we develop a Bayesian approach. 

1 For  r e a d a b i l i t y ,  we  s o m e t i m e s  u s e  e x p { x )  t o  d e n o t e  e x. 
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The sequence of graphs to be drawn is typically assumed to be infinite when 
it is generated over an unknown period of time and the graphs change in an 
unpredictable manner. Hence, neither the next graph, nor the number of graphs 
to come is known at any time. Such situations occur in user interaction, network 
control, phone-call recording, and so on. For a finite sequence G1 , . . . ,  Gt, the 
joint probability can be rewritten into conditional (transition) probabilities 

t 

P (X1 = x l , . . . ,  X t  = xt)  = U P (Xi = xi I Z<i = x<~), (1) 
i = 1  

where X<i = x<i is shorthand for X1 = Xl , . . .  , X i - 1  = xi -1 .  However, knowl- 
edge of alt graphs and dependencies is still required to obtain any xi of a sequence 
X l , . . . ,  xt that  maximizes (1). Such knowledge is typically not provided. 2 

Throughout this paper we therefore assume that  each layout of the sequence 
has to be computed before anything about the next graph is known, i.e. no 
look-ahead is available. Thus, the following formalization of the dynamic layout 
problem is obtained: At time t > 1, we are given graphs G 1 , . . . ,  Gt, static layout 
models X I , . . .  , X t ,  and layouts x l , . . .  , x t -1 .  The goal is to compute a layout 
xt  E Xt that  forms a compromise between stability and readability. Obviously, 
the conditional probability P ( X t  = xt  I X<t  = x<t) must reflect this notion of 
compromise. It is hence called the dynamic layout model of Gt. 

Suppose, A : 2dr x Xt --+ {0, 1} is the (imaginary) zero-one loss function of 
choosing xt,  when the best choice is x, i.e. 

~(xt,z)={O x t = x  
1 x t # x .  

With this loss function, the risk r(x t )  = ~ z e x ~  )t(xt, x ) P ( X t  = x 1X<t = x<t) = 
1 - P ( X t  = xt t X<t  = x<t) of selecting xt equals the average probability of error. 
It is minimized by choosing an xt  for which 

P ( X t  = xt ]X<t = x<t) 

is maximized. Observe that  other measures of loss yield other decision rules. 
As a uniform means to obtain suitable dynamic layout models, we propose 

a Bayesian approach which basically provides a formalization of common sense. 
Note that ,  by Bayes' rule, 

max P (Xt  = xt ]X<t = x<~) 
ztEXt 

= max P(X<t=x<t I Xt=xt).P(X,=xt) 
z ,ex ,  P(X<t=x<t) 

c¢ max P (X<t = x<t I Xt = x t ) .  P (Xt = x t ) ,  
ztEXt 

where c< means "proportional to". P ( X t  = xt)  is easily recognized to be the static 
layout model for Gt. It therefore reflects the notion of readability formalized in 

2 Observe that there are applications, like animation, where the complete sequence is 
indeed known in advance. 
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Xt ,  and is called the static model. P (X<t  ~- x<t [Xt  -- xt) is the likelihood of 
a sequence Xl, . . .  , x t -1  to result in a (given) layout xt of Gt. Consequently, it 
should express our notion of stability, and therefore is called the stability model. 

In summary, we have argued how dynamic layout models P ( X t  = xt ]X<t --= 
x<t) can be derived from a sequence of static layout models P ( X t  = xt) by 
introducing stability models P(X<t  --= x<t ]X,  = xt). By the very nature of a 
random field formulation, joint maximization of these two components results in 
a compromise between those criteria describing readability and those describing 
stability of layouts. We have thus developed an abstract formulation of a general 
principle for dynamic graph layout that incorporates given static models. 

The following two sections are devoted to examples providing evidence that 
this formulation results in a general method for uniform integration of stability 
criteria in a sequence of initially static layout problems. 

4 Dynamic Spring Layout 

The spring embedder lEad84] is one of the most well-known layout models for 
straight-line representations. A graph is modelled by a physical system of rings 
corresponding to the vertices, and springs corresponding to the edges. Rings of 
adjacent vertices are joined by springs, whereas rings of non-adjacent vertices are 
repelling. The spring embedder then aims to produce a layout that corresponds 
to a stable configuration of the system. 

The layout elements of a random field formulation of a spring embedder for 
a graph G = (V, E)  simply are the vertices, i.e. L = V. Sets of admissible states 
X,, v E V, are locations in two or three-dimensional space. In this section, we 
use attractive and repelling forces between vertices as introduced in the spring 
embedder variant of [DH96]. Each pair of vertices u ~ v E V is assigned an 
interaction potential 

{ ~---~----- d(xu, xv) 2 if {u, v} e E d(x~,x~)2 + c2 • 
U{u,v} (x) = ~ otherwise 

such that the static layout model for G is 

- ~_, u ~ , ~ ( x )  
1 

P ( X = x ) =  ~ e  u,oev 

with constant parameters Cl,C2 > 0 and normalizing constant Z. d(xu,xv)  de- 
notes the Euclidean distance of locations xu and xv. While cl controls the 
strength of repelling forces between each pair of vertices, c2 can be used to 
define the ideal edge tength. 3 

The above spring model is now extended to dynamic graphs. For stability, 
we use notions of change in vertex locations ("anchoring"), relative locations 
("stiffening"), and an accumulated version of the latter. These result in three 

Potentials ~ ,  ~ + c2. d(x~, x,)  2 are minimized for d(x~, xv) = ~/'-~.v c2 
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different dynamic models for Gt. In each case we obtain a new random field 
model that compromises between readability and stability as proposed in the 
preceding section. 

Anchoring. Let us assume stability is demanded only with respect to consecutive 
layouts. To simplify notation, we use a number of abbreviations. Let X = Xt 
be the static spring model for Gt, and Y = Xt-1 be the static spring model 
for Gt-1, t > 1. Furthermore, let Vx, Vy, and Vx,z denote the vertices of Gt, 
the vertices of Gt-1, and their intersection, respectively. U X and U y denote the 
energy function with respect to the edge set of Gt and Gt-1, respectively, and so 
on. According to the above dependency assumption, the dynamic model satisfies 
the Markov property 

P (Xt  = xt ] X < t  = x<t)  = P (Xt  = .x t  [Xt_  = Xt_l)  

=P(X=x IY:Y), 

such that our formal expression of stability reduces to P ( Y  = y ] X  = x). Since 
a straight-line embedding is completely determined by locations assigned to ver- 
tices, a very natural criterion of stability is the absence of excessive movement of 
vertices between consecutive layouts. More formally, let the likelihood of y C Y 
leading to x C A" be measured by independent two-dimensional Ganssian distri- 
butions with mean in the conditioning location Xv of each v E Vx,y: 

1 _ ~ II~v-~vll 2 
P ( Y = y  I X = x ) =  ~ e  veVx,y 

where a is a constant controlling the amplitude of deviation. Since this distri- 
bution is symmetric in x and y, the formula can also be read in a more intuitive 
way: The new location xv is distributed normally around the current location 
yr. Since llyv - xv l l  ~ = d(x~,Y~) 2, there is an obvious correspondence to the 
attracting forces of [DH96]. 

Combining the models for stability and readability in a dynamic model for 
Gt yields 

= x = = - -  U { ~ , , } ( x )  P ( X  I Y y) Zxtg exp - ~ 2a 2 ~ x 
vEVx,z u#vEVx 

with the appropriate normalizing constant Zxjy.  Clearly, this is also a random 
field, and even correspondent to a force directed placement model, yet with addi- 
tional forces attracting vertices to their previous locations in y. It is interesting to 
note that by choosing different functions for attracting and repelling forces one 
obtains the anchored spring model introduced by Lyons in the context of (static) 
graphs with geographic semantics (preferred locations for vertices) [Lyo92]. 
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Stiffening. Assume now, the criterion of stability between two consecutive lay- 
outs y and x is relative instead of absolute location, or structure instead of 
position. In other words, consecutive layouts should retain pairwise distances 
rather than single vertex locations. 

Let x E 2( be the conditioning layout of the stability model. We consider a 
layout y of Gt-1 likely to lead to layout x E X, if the forces of X are already 
apparent in y. Therefore, the likelihood of y, given x, is set to 

. . . . .  Z ub,,v (y ) ZYIX 
vEVx, Y ,.EVy 

where 2 = Xyx,r and ZyI X is a normalizing constant. In terms of forces, the 
stability model states tha t  each vertex contained in both Gt-1 and Gt contributes 
twice, once from its location in y, and once from its subsequent location in x. 
That  is, y is a layout with shadow forces of vertices that  remain in the graph, 
excerted from their location in the next layout. Combined with the static layout 
model X ,  this notion of stability yields the dynamic model 

P ( X = x  Iv :y)  
c<P(Y=y  I X = x ) . P ( X = x )  

= exp{- 

l u#vEVx 

- { ~,e~: U Y rye~_ z~l- ~ exp - ~ {~,~}~ j 
uEVx ,  Y ,vEVy 

uY ~ ~'~i u~v: 
u E V x , y , v E V y  

z 
u~vEVx 

with the obvious normalizing constants and ~: = XVx.Y. For the last equality, 
note that  the energy function of a random field is unique up to an additive 
constant. Just  like the axlchored dynamic model, the above represents a force 
directed placement model. First note tha t  vertices u E Vx contribute with their 
location in x E 2(, while vertices v E Vy \ Vx contribute with their location in 
y E Y. Each pair of vertices u, v E Vx,y contributes twice to the energy of the 

Y X dynamic model, once according to U ~  ~}, and once according to U~,v }. Using 
the spring analogy, the spring connecting u and v is stiffened, i.e. its length 
remains unchanged, while its strength is increased. Pairs of vertices with exactly 
one vertex in Vx,y contribute to the energy in the usual way, such that  the 
layout remembers deleted vertices. Unchanged parts of the graph are connected 
by a stiffer structure than new or altered ones. 

Cumulative stiffening. The stiffening stability model is extended to long range 
dependencies quite easily. Without  going into details, we note that  pa~rwise 
interactions may be accumulated over the sequence of graphs. The longer a 
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relation existed, the less should its displacement be likely to change. Evaluation 
of the resulting energy function is not quite as complex as it may seem, since 
time stamps for vertices and edges may be used to store the multiplicity of their 
contribution. 

Most algorithms in force directed placement are designed to find a local 
minimum of the aesthetic cost function, and hence of the energy function in 
their corresponding random field model. In dynamic graph layout this is no 
drawback, but an advantage, since locations in y are suitable initial values for 
locations of vertices v E Vx,y. If consecutive graphs do not differ significantly, 
these algorithms should therefore be able to quickly find a satisfactory local 
optimum close to the initial layout. 

5 Dynamic Orthogonal Layout 

In this section, the Bayesian paradigm is applied to dynamic orthogonal drawings 
of 4-planar graphs with fixed planar embbeding. A planar graph is called 4- 
planar, if no vertex has degree larger than 4, and an embedding is given by a 
cyclic ordering of the edges incident to each vertex. In an orthogonal drawing, 
vertices are placed on grid points, while edges are drawn along the grid lines. 
Edges may overlap at grid points only. 

Tamassia describes an algorithm minimizing the number of bends among all 
planar orthogonal drawings that preserve the embedding [Tam87]. We review 
briefly his transformation to a minimum cost flow problem, and state it in terms 
of a random field model. The static model is then combined with a reasonable 
criterion for stability. Finally, the resulting dynamic model is re-stated in terms 
of a minimum cost flow problem. 

Orthogonal representation. Given a planar graph G = (V, E) with maximum 
vertex degree 4 and a planar embedding, the drawing is determined from an or- 
thogonal representation H ( G) of circular lists H/  = [(el, sl , al ) , . . . , ( er , st ,  at)] 
for each face f of G. Each tupel (ei, si, ai) of a list H I consists of an edge ei, a 
string s~ C {0, 1}*, and an integer a~ C {90, 180,270,360}, such that e l , . . . ,  er 
is a counterclockwise (clockwise, if f is the outer face) traversal of the edges 
incident to f (note that some edges may appear twice in this traversal), O's and 
l's in si represent 90 and 270 degree bends on the right side of ei, respectively, 
and ai is the angle between ei and its succeeding edge (/If is cyclic). 

Flow network. In [Tam87], a one-to-one correspondence of H ( G )  to a flow of 
specified value in some network N ( G )  = (U, A, s , t ,  cap, cost) is shown. 4 The 
vertex set U of N ( G )  consists of the vertices V of G, an additional vertex for 
each face of G, and new source and target vertices s and t, respectively. Let 
dG(v) denote the number of edges incident to vertex v, and dG( f )  denote the 
number of edges in the circular list of face f .  Arcs are introduced 

4 It should always be clear from context, whether t is used to denote an index, or the 
target vertex of a network, respectively. 
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- from s to each v E V (capacity 4 - de (v) and zero cost), 

- from each vertex to its incident faces (infinite capacity, zero cost), 

- from s to each internal face with less than 4 edges (capacity 4 - do (f), zero 
cost), 

- from each face to its neighboring faces (infinite capacity, unit cost), 

- from a face to itself, if some edge appears twice in the circular list (infinite 
capacity, unit cost), 

- from each internal face with more than 4 boundary edges to t (capacity 
d e ( f )  - 4, zero cost), 

- and from the external face to t (capacity de(f) + 4, zero cost). 

Then, each unit of flow represents an angle of 90 degrees, such that  the cost 
of an (s, t)-flow of value ~(s,~)eA cap(s, u) equals the number of bends in the 
corresponding layout. 

Random field model. Since a drawing is determined from an orthogonal represen- 
tation which is obtained from a minimum cost flow in N(G),  the layout elements 
of the above representation are the arcs of N(G), i.e. L = A. Admissible values 
for a C L are the integers x~ e X~ = { 0 , . . . ,  cap(a)} satisfying the capacity 
constraint. Since the number of bends is the only criterion of readability, the 
energy of a layout equals its total  cost 

U(x) = E cost(a).x~. 
acA 

Note that  the random field model does not incorporate flow constraints. It is 
therefore a relaxation of the original formulation. The relaxation is used to derive 
a relaxed dynamic model, on which the flow constraints are then imposed again. 

Dynamic model. To simplify presentation, we make a few reasonable assump- 
tions on the dynamic layout problem. Let the layout of Gt be independent of 
x l , . . . ,  xt-2. Moreover, let Gt-1 and Gt be connected, where Gt is obtained from 
G t - i  by insertion or deletion of a single edge. Since both graphs are connected, 
insertion or deletion of an edge may also require insertion or deletion of one 
vertex, respectively. 

Now, we are given networks N(Gt-I) : (Ut-1, At-l ,  s,t, capt-1, cost) and 
N(Gt) = (Ut,At,s,t, capt,cost), and a layout xt-1 corresponding to a flow of 
value )-~.(s,~)eA,-1 capt_l(s, u) in N(Gt-I). Since the criterion of readability is 
the number of bends, the most natural criterion for stability between consecutive 
layouts is the difference in the number of bends on edges present in both layouts, 

cost(a), l(x -l)o - (x )ol • 

aEAtMAt-1 
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This criterion is taken to be the energy function of a random field model for 
stability. The dynamic model becomes 

P ( X t  : x t  t X t -1  : x t - 1 )  
P (x ,_~  = ~,_~ I x~ = z~)- P (x~ = x~) 

_lz,_~,, e x p { -  aeA, nA,_~E cost(a)''(Xt-1)a--(Xt)a'} 

"A-exp { - E z ,  aeA, cost(a)'(xt)a} 

-- Ztlt-ll exp { -  aEAtnAt-lE cost(a). I(Xt-1)a -- (Xt)al -- E cost(a). (xt)a},  
aEAt 

such that reducing the number of bends of a remaining edge is just as costly as 
bends on a new edge, whereas new bends on remaining edges are counted twice. 

Implementation. What is probably most appealing about this model is that 
it can be re-translated into a minimum cost flow problem. Due to space limp 
tations we do not go into details, but note that inserting or deleting an edge 
in Gt-1 results in a graph Gt with an associated network N(Gt) that differs 
from N(Gt-1) by a small number of vertices and arcs. Let xt-1 be a feasi- 
ble flow of N(Gt-1) with value ~-~(8,u)eA,_l capt_l(s,u). Moreover, let xt-1 
have the property that, for each (u,v) E At n At-l,  at most one of (u,v) 
and (v,u) does carry positive flow (which is certainly true for a minimum 
cost flow). Then, minimization of the energy function of the dynamic model 
can be performed by solving a new minimum cost flow problem in a modi- 
fied network N'(Gt). For each arc (u,v) E At, for which (v,u) ¢_ At, we in- 
sert a new arc (v, u) with zero capacity and cost(v, u) = cost(u, v). Now, costs 
and capacities are modified according to xt-1, where (xt-1)(v,u) equals 0, if 
(v, u) ~ At-1. For each arc (u, v), {u, v} ~ {s, t} = O, in the symmetric hull of 
At A At- 1, let cap~ (u, v) = capt (u, v) - (xt- 1) (u,v) + (xt- 1 ) (v,~). Furthermore, let 
cost'(u, v) = cost(u, v) + cost(v, u). Because of the flow network's special struc- 
ture, these changes reflect the additional cost of changing flow xt-1. A small 
number of minimum cost augmenting flow computations in the modified net- 
work yields a flow that can be used to transform xt-1 into a feasible flow xt 
of N(Gt) that is optimal with respect to the dynamic model. Moreover, xt also 
satisfies the above property that there are no circulations of length two. It can 
hence be used in a dynamic model for Gt+l. Details will be given in a more gem 
eral presentation of a Bayesian approach for dynamic orthogonal layouts with 
few bends, which is in preparation. 

6 D i s c u s s i o n  

We have presented a general principle for dynamic graph layout that exploits the 
uniformity of random field modelling. The logical update of a layout is formalized 
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by means of a stochastic estimator composed of the static layout model and an 
additional stability model. If the stability model is also a random field, it is 
easy to see that It is possible to bias the inherent compromise between stability 
and readability by multiplication of a constant factor to the respective energy 
functions. 

Our approach is neither specific to a certain layout model, nor to a set of up- 
date operations. Its underlying formalism is based on common sense, yet sound, 
mature and widely applied. In particular, it cleanly separates the modelling of 
readability and stability demands. Moreover, it does not imply the use of par- 
ticular algorithms, even though, in general, algorithms used for static models 
require only slight modification to apply to the dynamic case as well. Moreover, 
the flexibility of random fields allows the easy experimentation with different 
stability models within the same environment. There is no need to implement a 
new algorithm every time the model is modified. It is still recommended, though, 
after a suitable model has been identified, since a general optimization procedure 
is almost certainly inefficient. 

For particular layout models, experimental results are needed to identify suit- 
able stability models. It will be interesting to see, how different criteria compare 
(and perform) in practice. However, the formal value of the framework lies in its 
generality, simplicity and uniformity. It should not be judged by some good or 
bad usage. 
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