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Abstract Accurate fault detection and isolation requires

signal processing of measurement signals which are con-

taminated with noise. Typically, gas turbine faults are

revealed by sharp trend shifts in the signals and these trend

shifts should be preserved during signal processing. Linear

filters can smooth out the sharp trend shifts while removing

noise. However, nonlinear filters such as the weighted

recursive median (WRM) filters show good noise reduction

while preserving key signal features if their integer weights

are determined optimally. We propose the ant colony

optimization (ACO) method coupled with local search to

calculate the integer weights of WRM filters. It is found

that the filter weight optimization problem is mathemati-

cally equivalent to the quadratic assignment problem which

can be solved by ACO. Optimal parameters for the ACO

are found using numerical experiments. The WRM filter is

demonstrated for abrupt and gradual faults in gas turbines

and is found to yield noise reduction of 52–64% for sim-

ulated noisy signals considered in this paper.

Keywords Gas turbine diagnostics � Condition
monitoring � Ant colony optimization � Signal processing �
Nonlinear filters � Fault detection and isolation

Introduction

Gas turbine diagnostics typically uses measured data in

conjunction with identification, optimization or soft

computing algorithms to detect and isolate engine module

and sensor faults (Volponi et al. 2003; Lu et al. 2001;

Sampath and Singh 2006). There are two broad types of

engine faults: single faults and gradual faults. Single

faults are typically preceded by a sharp change in the

signal. Gradual faults lead to a slow change in the signal

which can be approximated with a linear variation. Typ-

ical signals used for gas turbine diagnostics are exhaust

gas temperature (EGT), fuel flow (WF), high rotor speed

(N1) and low rotor speed (N2). These four basic sensors

are present in almost all jet engines. The signals consid-

ered for gas turbine diagnostics are called ‘‘measurement

deltas’’ which are deviations between sensor measure-

ments of a ‘‘damaged’’ engine compared to a ‘‘good’’

engine. For an ideal undamaged engine, the measurement

deltas are zero. The measurement deltas obtained from

operational engines are typically non-zero and are also

contaminated with noise. Fault detection and isolation

(FDI) algorithms are used to detect and isolate the engine

fault. Here ‘‘detection’’ is the process of identifying if a

fault is present or not. Errors in detection can lead to false

alarms. Also, ‘‘isolation’’ is the process of identifying the

type of fault. Typically, fingerprint charts are used for

fault isolation and these relate the measurement deltas

produced to a given change in the engine state. For

example, Table 1 presents the fingerprint chart for a 2%

deterioration in the efficiency of the engine modules

(Uday and Ganguli 2010). Fingerprint charts represent a

linearized model evaluated at a selected engine operating

point. Such tables are obtained from thermodynamics and

are available with engine manufacturers.
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Figure 1 shows the engine modules and basic mea-

surements for a typical turbofan engine. At the most basic

level, fault isolation would indicate if the fault is present in

the fan, high pressure compressor, low pressure compres-

sor, high pressure turbine or low pressure turbine module.

These are coupled faults within the major modules of the

engine. Other system faults such as handling and ECS

bleed leaks and failures, variable stator vane malfunctions,

TCC malfunctions as well as certain instrumentation faults

can also be considered as single faults (Volponi et al.

2003). We will only consider module faults to create the

ideal signal for damaged engine in this study. Such faults

can emanate from different physical processes but the

signature is shown through the sensor measurement deltas.

Once the fault is isolated to the module level, the mainte-

nance engineer can then focus only on these modules for

repair work.

The accuracy of FDI algorithms improve if noise is

removed from the gas path measurement signals while

preserving features indicating a single fault such as sharp

trend shifts (Ganguli 2002). Depold and Gass showed that

typical linear filters such as the moving average filter and

exponential average filter can work as good smoothers for

gas turbine signals (DePold and Gass 1999). The moving

average filter is a simple finite impulse response (FIR) filter

with equal weights and the exponential average is an infi-

nite impulse response (IIR) filter. While linear filters can

remove noise, they smooth out the sharp trend shifts which

can indicate a single fault event. Therefore, nonlinear filters

such as the median filter have been proposed for noise

removal from gas turbine signals (Ganguli 2002). Other

computational architectures for noise removal from jet

engine signals include the auto-associative neural network

(Lu and Hsu 2002), radial basis neural networks (Verma

et al. 2006), myriad filter (Surender and Ganguli 2004) and

recursive median filter (RM) (Ganguli and Dan 2004). The

RM filter is an efficient alternative to the median filter and

converges rapidly to the root signal when compared to the

simple median (SM) filter. The SM filter can take many

passes before converging to the root signal. However, the

RM filter can lead to a phenomenon called ‘‘streaking’’

which involves creation of artificial step like artifacts in the

signal. This problem can be removed by introducing

weights resulting in the weighted recursive median (WRM)

filter.

The WRM filters have integer weights and the optimal

calculation of these weights for a given application is an

important problem in filter design. The design space of the

weights of WRM filters is multimodal (shows the presence

of several local minima) and an exhaustive search of the

Fig. 1 Schematic

representation of jet engine and

its four key measurements

Table 1 Fingerprints for

selected gas turbine faults for

g = -2%

Module faults/measurement deltas DEGT (C) DWF% DN2% DN1%

High pressure compressor (HPC) 13.60 1.60 -0.11 0.10

High pressure turbine (HPT) 21.77 2.58 -1.13 0.15

Low pressure compressor (LPC) 9.09 1.32 0.57 0.28

Low pressure turbine (LPT) 2.38 -1.92 1.27 -1.96

Fan -7.72 -1.40 -0.59 1.35
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design space can be used to find the weights (Uday and

Ganguli 2010). However, this exhaustive search method is

very computationally intensive and there is a need for more

efficient algorithms for solving this filter weight opti-

mization problem. In this paper, ACO is used to design a

WRM filter for use as a data smoothing preprocessor in gas

turbine diagnostics. A schematic of this procedure is shown

in Fig. 2. We focus on the ‘‘noise reduction’’ aspect of gas

turbine diagnostics shown in Fig. 2.

Some researchers have addressed the problem of median

filter weight optimization. Algorithms for calculating the

integer weights of weighted median filters were proposed

(Yang et al. 1995). Both recursive and non-recursive filters

were considered but the study focused on center weights. A

numerical approach for the optimization of recursive

median filters was presented in Arce and Paredes (2000).

Uday and Ganguli (2010) searched over the low integer

space (1, 2 and 3) to find the optimal weights. They found

that higher integer weights led to duplication in the filter

and the low integer space was sufficient for the given

problem.

Filter design spaces can often be multimodal which

means that there can be more than one minimum point.

Therefore, gradient based numerical optimization can settle

into a local minimum point. To address this issue, the use

of global optimization methods in filter design has grown

substantially. Particle swarm optimization was used to

solve the parameter estimation problem of nonlinear

dynamic rational filters (Lin et al. 2008). Genetic algo-

rithms have also been used for optimizing stack filters

using a root mean square error approach (Zhao and Zhang

2005). Ant colony optimization was used for the design of

IIR filters (Karaboga et al. 2004). Since the error surface of

IIR filters is generally multimodal, global optimization

methods such as ACO are well suited for their design. ACO

is a relatively new approach for solving combinatorial

optimization problems. The main characteristics of ACO

are positive feedback, distributed computation, and the use

of a constructive greedy heuristic (Dorigo et al. 1996).

Note that a heuristic method is an approach to solving

problems that employs a practical method which is not

guaranteed to be optimal or perfect, but sufficient for the

immediate goals. Heuristics are often rules of thumb or

educated guesses. Since ACO is a heuristic method, is

gives satisfactory solutions but these solutions may not

prove to be optimal and the convergence of such methods

cannot be guaranteed.

In this paper, we address the problem of finding the

integer weights of WRM filters using ACO. The algorithm

is demonstrated for signals simulating jet engine single

(abrupt) and gradual faults.

Median Filters

The SM (simple median) filter with length of window of

N = 2n ? 1 can be represented as (Brownrigg 1984),

yk ¼ medianðxk�n; xk�nþ1; . . .; xk; . . .; xkþn�1; xkþnÞ: ð1Þ

Here xk and yk are the kth sample of the input and output

sequences, respectively, and n represents integers ensuring

that the window length N is odd for easy calculation of the

median. The SM filter needs a large number of iterations to

converge to a desired output. A five-point SM filter can be

written as yk ¼ medianðxk�2; xk�1; xk; xkþ1; xkþ2Þ since

N ¼ 5 ) n ¼ 2. The five-point SM filter has a window

length of five and a two point time lag as it needs mea-

surements at the time points k þ 1 and k þ 2 to predict the

output at k. Since most current jet engines have many data

points available during the flight, a two point time lag for

signal processing is acceptable.

A recursive median (RM) filter for window length

N = 2n ? 1 can be represented as,

yk ¼ medianðyk�n; yk�nþ1; . . .; xk; . . .; xkþn�1; xkþnÞ: ð2Þ

RM filters require very few steps for convergence as

further application of the filter on a signal does not bring

any changes. A five-point RM filter can be written as yk ¼
medianðyk�2; yk�1; xk; xkþ1; xkþ2Þ where the use of previ-

ously filtered output values yk�1 and yk�2 point to the re-

cursive nature of this filter. Again, this filter has a two point

time delay.

The WRM filter is a modified version of RM filter,

where integer weights are assigned to each data point in the

Measurement 
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Fig. 2 Schematic

representation of gas turbine

diagnostics system
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filter window. The output of a weighted recursive median

filter with window length N = 2n ? 1 is given by,

yk ¼ medianðw�n � yk�n;w�nþ1 � yk�nþ1; . . .;w0

� xk; . . .;wn�1 � xn�1;wn � xkþnÞ: ð3Þ

Here 8 stands for duplication and w are the integer

weights. Duplication means that a particular sample xk is

repeated wk times before taking the median of the array.

For example, ð4 � x1Þ is the same as ðx1 x1 x1 x1Þ, i.e. the
value x1 is duplicated four times. As, an example, consider

a five-point WRM filter yk ¼ medianð2 � yk�2; yk�1; 3 �
xk; xkþ1; 2 � xkþ2Þ which is actually identical to yk ¼
medianðyk�2; yk�2; yk�1; xk; xk; xk; xkþ1; xkþ2; xkþ2Þ. Again,

this filter will have a two point time delay. The filter

weights are indicated by the set (w�n;w�nþ1; . . .;w0; . . .;

wn�1;wn) where there are N = 2n ? 1 weights. For a five-

point filter the weight set is (w�2;w�1;w0;w1;w2).

Gas Path Measurement Signals

A turbofan jet engine in general consists of five modules:

fan (FAN), low pressure compressor (LPC), high pressure

compressor (HPC), high pressure turbine (HPT) and low

pressure turbine (LPT), as shown in Fig. 1. Air coming into

the engine is compressed in the FAN, LPC, and HPC

modules; combusted in the burner; and then expanded

through the HPT and LPT modules to produce power. The

sensors N1, N2, WF, and EGT represent low rotor speed,

high rotor speed, fuel flow and exhaust gas temperature,

respectively. These signals provide information about the

condition of these modules and are used for engine con-

dition monitoring. In this study, an ideal root signal DEGT
with implanted HPC and/or HPT faults is used for testing

the filters. Similarly, root signals for DN1, DN2, DWF can

be derived. Here the delta ‘‘D’’ refers to the deviation from

the baseline ‘‘good’’ engine.

Test signals for faults in jet engines are used to

demonstrate the algorithm (Uday and Ganguli 2010). For a

new undamaged engine, the measurement delta is zero. For

a typical engine which goes into service, the measurement

deltas slowly increase with time due to deterioration as the

number of flights increase. While deterioration increases

gradually as flight hours and cycles accumulate, single

faults lead to sudden, abrupt or step changes in the signal.

For this study, a step change in measurement deltas of 2%

or more is regarded as a large enough trend to be inter-

preted as a single fault event (Volponi et al. 2003). Gaus-

sian noise is added to the simulated measurement deltas

using the typical standard deviations for DEGT (deviation

in exhaust gas temperature from a good baseline engine) as

4.23 �C. These values are obtained by a study of typical

engine measurement deltas (Volponi et al. 2003).

Measurement deltas are created using: z ¼ z0 þ h where h
is the noise and z0 is the baseline measurement delta

without any fault (ideal signal). Thus, z is the simulated

noisy signal. Therefore, a filter u is required to eliminate

noise from data and return a filtered signal ẑ for accurate

condition monitoring:ẑ ¼ uðzÞ ¼ uðz0 þ hÞ.
We consider three different types of signals for

designing the WRM filter using ACO. Though these sig-

nals are outlined for gas turbine diagnostics, they are

applicable for any general FDI problem as the abrupt fault

and long term deterioration are characteristics of all signals

used for condition monitoring.

1. Step signal (abrupt fault or single fault)

2. Ramp signal (gradual fault)

3. Combination signal (comprising of both abrupt and

gradual fault)

Each of the signals contains 200 data points which

represents a time series of engine data available for signal

processing. The data comes in at each epoch k (Fig. 3) and

the filtered value is calculated using the N-point WRM

filter. The filter of window length N processes the data as it

comes in with a time lag of n (Eq. 3). We use a five-point

filter in this paper. So the WRM filter works on a stream of

200 data points (x1; x2; x3; . . .; x198; x199; x200) to yield filter

output (y1; y2; y3; . . .; y198; y199; y200Þ as given in Eq. 4

k ¼ 1; y1 ¼ x1

k ¼ 2; y2 ¼ x2

k ¼ 3; y3 ¼ medianðw�2 � y1;w�1 � y2;
w0 � x3;w1 � x4;w2 � x5Þ

k ¼ 4; y4 ¼ medianðw�2 � y2;w�1 � y3;
w0 � x4;w1 � x5;w2 � x6Þ

..

.

k ¼ 100; y100 ¼ medianðw�2 � y98;w�1 � y99;
w0 � x100;w1 � x101;w2 � x102Þ

..

.

k ¼ 198; y198 ¼ medianðw�2 � y196;w�1 � y197;
w0 � x198;w1 � x199;w2 � x200Þ

k ¼ 199; y199 ¼ x199

k ¼ 200; y200 ¼ x200:

ð4Þ

We see that at k = 3, to get y3 requires x4 and x5. So the

filter has a two point time delay. Also, for the last two

points in the time series we use the input value of the data.

However, in normal operation, the data points would

continue to stream in as the aircraft continues to accrue

flights. The data point to be processed for fault detection is

thus available with a two-point time delay. This data point

can be used by trend detection algorithms which are

136 INAE Lett (2017) 2:133–143

123



typically based on derivatives (Ganguli and Dan 2004). So

fault detection occurs with only a two-point time delay for

the five-point filter.

The ideal signal in Fig. 3 represents a single fault that

may be due to any damage. Data point k = 60 represents

the onset of this fault. The damage caused is identified as a

2% fall in HPC efficiency and the HPC module is repaired

at point k = 140. This signal is created based on the fin-

gerprint chart given in Table 1. In Fig. 4, the development

of the HPT fault is illustrated by use of the ramp signal.

This fault differs from the HPC fault in that it does not

occur suddenly as it develops due to engine deterioration.

Again, the maximum value of EGT here corresponds to a

2% fall in HPT efficiency. Here, the growth is gradual and

is approximated by a linear function from points

k = 40–120. From k = 120 the HPT fault remains steady

and is finally repaired at k = 140. The step and ramp sig-

nals represent the two types of faults considered individ-

ually. Now, Fig. 5 shows a combination signal, wherein,

both types of faults may occur one after the other. This is a

more practical case since any jet engine is susceptible to

both these faults.

A signal to noise ratio of 1.5 is used for the numerical

results. A five-point WRM filter is considered and this filter

processes the 200 point measurement delta signal with a

window of five points and a time delay of two point.

Objective Function

To get a quantitative idea of noise reduction, the mean

absolute error (MAE) is considered for each signal

( �N ¼ 200) and M = 1000 random realizations are used to

get an estimate of the error. These random realizations can

be considered to be simulated signals of noisy data. These

random signals are z ¼ z0 þ h and are obtained by adding a

different noisy sample to the ideal measurement for each

case. These noisy signals are generated via Matlab which is

also used for all the results in this paper. We illustrate the

ACO algorithm for a filter of window length equal to five.

For finding the optimum weights of this filter, we have to

minimize the objective function:

f ðwÞ ¼ f ðw�2;w�1;w0;w1;w2Þ ¼
1

M

XM

i¼1

1
�N

X�N

j¼1

ẑj � z0j

���
���:

ð5Þ

Since the weights w ¼ ðw�2;w�1;w0;w1;w2Þ are integer
design variables, the problem is a combinatorial opti-

mization problem. Also, in Eq. (5) ẑ is the WRM filtered

signal and z0 is the ideal or root signal. By minimizing the

Fig. 4 Ramp signal representing gradual fault followed by its repair

Fig. 5 Combination signal representing single fault and its repair

followed by gradual fault and its repair
Fig. 3 Step signal representing a single fault and its repair
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function in Eq. (5), we want to identify the weights which

minimize the difference between the ideal signal and the

noisy signal over a large number of noisy points. Note that

the objective function with the 1000 random samples is

only created to find the optimal filter weights. Once the

filter weights are found, the filter can be tested and used on

new random samples.

Ant Colony Optimization

Ant colony optimization (ACO) is a biologically inspired

stochastic method which is especially suited for combina-

torial optimization problems (Dorigo and Stutzle 2005).

Such problems have a finite number of solutions with

discrete design variables. Ants are able to find the shortest

paths needed to go from their nest to a food source by using

stigmergy, which is a form of indirect communication

conducted by modifications of the environment. Ants use

sign based stigmergy where an individual ant leaves

markers or messages. While these markers do not solve the

problems themselves, they influence the behavior of other

ants in a way that helps them in problem solution.

The inspiration for the ACO algorithm came from some

experiments performed on Argentine ants which revealed

the science behind their optimal path finding capabilities.

An innovative experiment was performed using a double

bridge between an ant nest and a food source. Here each

bridge is of the same length as shown in Fig. 6. If the

bridges are of the same length, after some time, the ants

tend to take one of the bridges to the food source. If the

experiment is repeated several times, it is found that the

probability of selection of any one bridge is about 0.5. The

biological explanation of the ant behavior is as follows.

Once the ants leave the nest, they will move randomly until

some find the bridge. Some ants will randomly start on

bridge A while others will randomly start on bridge B.

Now, ants deposit a chemical called pheromone when they

walk along a path. They prefer to follow a path with higher

pheromone deposits. Since, there is no pheromone initially

on either bridge A or B, the probability of ants taking either

bridge is equal at 0.5. Once the ants discover the food

source, they will take some food and return back to the

nest. This process will lead to ants traveling on both

bridges until through random chance; a few more ants take,

say, bridge A. After this point, the pheromone trail on

bridge A will strengthen making it more attractive for the

ants. Another important point to appreciate is that pher-

omone keeps evaporating and so the pheromone trail on

bridge B will weaken. After some time, almost all ants will

take bridge A.

Of course, taking only one bridge to the food source

when two bridges of equal length are available is not a

smart thing to do. However, ants are prisoners of their

swarm intelligence which becomes very useful in the sit-

uation where two paths of different lengths are present, as

shown for the two bridges in Fig. 7. In this case, the ants

again set out initially in a random manner and take both the

bridges with equal probability assuming that the lengths are

too large for their field of vision. The ants which choose the

shorter bridge B reach the food source first. When the ant

wants to return to its nest, it comes to point 2 and finds that

bridge B has a higher level of pheromone due to less

evaporation. The probability of choosing bridge B there-

fore becomes higher. As this process continues, the positive

feedback effect means that more pheromone is put on

bridge B and less evaporation of pheromone takes place on

bridge B. A positive feedback loop is thus created and after

some time, most ants will take bridge B to the food source.

We can see that ants are capable of a high degree of self-

organization using the stigmergy principle. By modifying

the environment via pheromones, they can collectively

perform complex functions despite their poor vision. In

fact, some species of ants are completely blind but are still

able to find the shortest path.

We can see that the behavior of ants could be used

for optimization algorithms which involve finding good

paths through graphs Boryczka and Kozak (2015), Dor-

igo et al. (1996). In ACO, several generations of artifi-

cial ants search for good solutions. We use the word

‘‘ant’’ to refer to the ‘‘artificial ant’’ in the ACO algo-

rithm in further discussions. Every ant of a generation

builds up a solution in a step by step manner while

going through several probabilistic decisions. In general,

Fig. 6 Two-bridge experiment

with ants for bridges of equal

length
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ants that find a good solution mark their paths through

the decision space by putting some amount of pher-

omone on the edges of the path. The ants of the next

generation are attracted by the pheromone trail left

behind by the previous ants so they search the solution

space near good solutions. In addition to the pheromone

values, the ants are also guided by some problem

specific heuristic (a rule of thumb specific to the problem

being solved). The ACO combines a priori information

about a promising solution with a posteriori information

about previously obtained good solutions.

ACO has been used to solve combinatorial optimization

problems (Gambardella et al. 1999; Dorigo and Stutzle

2005). As assignment problem is a combinatorial opti-

mization problem were a set of items or objects is assigned

to a set of resources or locations. Such assignments can be

represented as a mapping from a set I to a set J. The

objective function to be minimized is a function of the

assignment done. Consider the pair (i, j) where i is an item

and j is a resource. The pheromone trail sij is the desir-

ability of assigning i to j.

We can see that the WRM filter optimization is an

assignment problem,wherein integer weights are assigned to

a particular data point of a WRM filter with the objective of

minimizing the mean absolute error over M samples. We

seek to find the weight vector w which minimizes Eq. 5.

Consider the five-point WRM filter with weights

w ¼ ðw�2;w�1;w0;w1;w2Þ.Wewant to assignweights from

set of integers (1, 2, 3, 4) to minimize the error in Eq. 5.

Ant Colony Algorithm

This section describes the various components of ACO.

Set of initial solutions this set is made such that solu-

tions are not repeated and no two solutions in this set can

be converted into each other by swapping of elements.

Pheromone trail matrix an important feature of ACO is

the pheromone trail management. Along with the objective

function, pheromone trail values are used to construct new

solutions from the existing ones. Pheromone trail values

measure the desirability of having an element in the solu-

tion. These are maintained in a pheromone matrix T with

elements sij.

Filter Weight Optimization

This section discusses about the application of ACO to

WRM filter optimization problem.

Initialization of solution initially, every ant k is allotted a

randomly chosen solution wk such that no two ants have the

same initial solution. A total of m ants are used. Each initial

ant solution is optimized using a local search procedure and

the best solution is labelled as w�.

Pheromone trail initialization pheromonematrix component

sij measures the desirability of assigning weight wi to a jth

data point in the N point filter. In the weight assignment

problem, Tmatrix size isN 9 MaxwhereN is the number of

points in the WRM filter and Max is the maximum positive

integral value that a weight can be assigned. Here Max = 4

and N = 5 are considered. The pheromone matrix T is

formed by setting all the pheromone trails sij to the same

initial value s0. The pheromone trails determine the quality

of the solution obtained, hence s0 must take a value that

depends on value of the solution. Hence we chose to set

s0 ¼ Q=f ðw�Þwhere w� is the best initial solution andQ is a

constant to be found from numerical experiments.

Solution construction pheromone trail based modification

is applied by every ant to its own solution wk. It consists of

the following steps. Any arbitrary filter data point r of the

N-point filter is chosen and then a second point s is chosen

Fig. 7 Two bridge experiment

with ants for bridges of unequal

length
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such that s 6¼ r and the weights wr and ws are swapped in

the current solution w. The second index s is chosen in such

a way that the value of srws
þ sswr

is maximum. Thus, by

exploiting the pheromone trail, a new solution ŵk is

obtained for each ant which gives the most desirable path

with the highest pheromone value.

Local search modification local search involves exploring

of neighborhood of current solution ŵk. It involves

changing weights wr while keeping the other weights

constant to produce ~wk. The improvement is recorded as

Dðŵk; r; sÞ which is the difference in objective function

f(w) when weight wr is changed with s, where s can be any

integral weight excluding wr. This procedure is repeated

for all the data points of the filter. Using the objective

function as a measure, we find the optimum solution ~wk. If

no improvement is found, then no change is made to the

earlier solution ŵk obtained by the ants.

Pheromone trail modification there are several different

pheromone update formulas. For the current problem, we

use the ant colony system (ACS) pheromone update for-

mula. Each ant applies this update as follows:

sij ¼ ð1� aÞsij þ as0: ð6Þ

Here, a is a parameter that controls pheromone evapo-

ration and is called the pheromone evaporation rate

(0\a\1).

Terminating condition the termination condition is reached

when a predefined number of ant generations (niter) have

completed their search in the solution space.

The different steps of algorithm are given as pseudocode

in the ‘‘Appendix’’. The parameters Q, niter, m and a are

found from numerical experiments.

Results and Discussion

The ACO was tested for different parameter setting of Q,

number of iterations niter, number of ant’s m, and pher-

omone evaporation rate a for 100 noisy ramp input signals.

The number of ants m was varied from 2 to 10 while

number of iterations niter was varied from 1 to 10. The

evaporation rate was varied from 0.1 to 0.9 and a rate of 0.4

was found to be good.

It was found that the number of ants was the key driving

force for a good quality solution. The solutions were found

to improve with increasing number of ants as seen from

Table 2 for one case with three iterations. The optimum

number of ants was found to be 8–10. Therefore, we use

ten ants for finding out best value of number of iteration.

The optimum number of iterations was found to be three

on the basis of solution quality and simulation time as seen

from Table 3. The final parameter settings are selected to

be: a ¼ 0:4, Q ¼ 0:1, niter = 3 and m = 10. Numerical

experimentation showed that the parameters obtained are

not dependent on the type of noisy signal used. The ACO

algorithm is finally applied on the three different types of

noisy test signals.

The optimal filter weights obtained using ACO are

shown in Table 4. The performance of WRM filter is

compared with the performance of SM and RM filters in

Table 5. These comparisons are for a different set of 1000

noisy data points compared to those used for finding the

filter optimal weights.

To quantify the advantage of using the optimal WRM

filter for noisy data, we define a noise reduction measure as

follows,

q ¼ MAEðnoisyÞ �MAEðfilteredÞ

MAEðnoisyÞ � 100: ð7Þ

Table 5 clearly illustrates the improvement shown by the

WRM filters. The WRM filter with weights given in Table 4

Table 2 Change in objective function with number of ants

(niter = 3)

No. of ants MAE value Best weight

1 0.3209 [1 4 3 1 3]

2 0.2899 [3 3 2 2 4]

3 0.3206 [3 1 3 4 1]

4 0.2854 [3 1 2 1 3]

5 0.2854 [4 1 2 1 4]

6 0.2854 [3 1 2 1 3]

7 0.3206 [3 1 3 4 1]

8 0.2817 [4 1 2 2 3]

9 0.2854 [4 1 2 1 4]

10 0.2771 [4 1 2 2 3]

Table 3 Change in objective function with number of iterations

(m = 10)

Iteration MAE value Weight

2 0.2795 [3 1 2 1 3]

3 0.2771 [4 1 2 2 3]

4 0.2771 [4 1 2 2 3]

5 0.2795 [3 1 2 1 3]

Table 4 Optimal WRM filter weights

Signal type w�2 w�1 w0 w1 w2

Step 4 2 3 1 4

Ramp 4 1 2 2 3

Combination 3 1 2 1 3
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provides a noise reduction of about 52–64%. In contrast, the

RM filter yields noise reduction of 41–55% and the SM filter

shows a noise reduction of only 40–46%. Note that the RM

filter could be considered as a WRM filter with unit weights.

The improvement between SM and RM filter results is due

to recursion. The improvement between the RM and WRM

results are due to optimal weights obtained using ACO. The

values of these parameters in Table 6 clearly justify the

improved performance of WRM filters over SM and RM

filters as illustrated by the simulated signals from gas turbine

diagnostics.

The WRM filter obtained provides a noise reduction of

about 52–64%. In particular, compared to the noisy signal,

the noise reduction is 64, 55 and 52% for the step signal,

ramp signal and the combination signal, respectively. It is

clear that ACO represents an effective approach for the

development of WRM filters.

We should mention that we have not considered sensor

faults in this paper as other algorithms such as those based

on Kalman filters can address such issues.

Conclusions

Removing noise from gas turbine measurement signals

before subjecting them to fault detection and isolation

algorithms is an important aspect of gas turbine diagnos-

tics. Nonlinear filters such as the WRM filter are attractive

for these problems as they do not smooth out the step

changes in signals which typically indicate the onset of a

single fault. However, filters such as the WRM filter pro-

posed for gas turbine diagnostics need to be optimized for

the specific application.

The problem of finding optimal integer weights of

WRM filters using ACO is addressed. An analogy between

the WRM filter weight optimization problem and the

quadratic assignment problem is found. Test signals sim-

ulating abrupt and gradual faults are contaminated with

noise and then used to find the WRM filter weights which

minimize the noise. Numerical experiments are used to find

the best parameters required for the ACO application. The

WRM filters obtained in this study show noise reductions

of 52–64% relative to the noisy signal compared to

41–55% for the RM filter, which uses unit weights. For the

step, ramp and combination signals considered, noise

reduction gains of about 9, 11 and 10% are obtained

through filter optimization due to the use of weights

obtained by ACO.

Table 5 Mean absolute error for the filters

Signal type SM filter RM filter WRM filter

Step signal 0.3638 0.3031 0.2426

Ramp signal 0.3856 0.3739 0.2773

Combination signal 0.3999 0.3930 0.3027

Table 6 Performance comparison of median filters

Signal type qSM qRM qWRM

Step signal 45.87 54.90 63.90

Ramp signal 42.49 44.23 55.13

Combination signal 40.04 41.07 51.94
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Appendix

Generate m ants with each ant being given different weight permutation kw .

/*Initialization*/

Generate all possible different non-arranged permutations and randomly assign them to m

ants.

Improve the weights mwwww ,,,, 321 L by the local search procedure. Let *w be the best 

solution.

Initialize the pheromone matrix T

/* main loop */

For i = 1 to niter

/* solution construction */

For each permutation kw (i)  (1 k m≤ ≤ ) do

Apply r pheromone trail swaps to ( )kw i to obtain  ˆ ( )kw i

Apply the local search procedure to ˆ ( )kw i to obtain ( )kw i%

End For

/* pheromone trail updating */

Update the pheromone trail matrix

End for if  /* terminating condition */
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