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ABSTRACT 
 
In this paper, Legendre Ramanujan Sums transform(LRST) 
is proposed and derived by applying DFT to the complete 
generalized Legendre sequence (CGLS) matrices. The 
original matrix based Ramanujan Sums transform (RST) 
by truncating the  Ramanujan Sums series is non-
orthogonal and lack of fast algorithm, the proposed LRST 
has orthogonal property and O(Nlog2N) complexity fast 
algorithm. The LRST transform matrix is a sparse matrix 
and can be calculated with only additions and 
multiplications with more improvement in efficiency. It is 
suitable for image compression and transform coding. 
Meanwhile the LRST is useful to analyze to periodic 
signal especially for already known periodic sequences. 
 

Index Terms—Generalized Legendre sequence, 
Ramanujan sum, Image transform coding 
 

1. INTRODUCTION 
 
The Ramanujan Sums (RS) are useful to many research 
areas such as digital signal processing, image processing, 
time-frequency analysis, and so on. The important 
property of the RS is that the values of RS are all integers 
despite from the original definition that the RS are sums 
of primitive roots of unity which are usually complex 
irrational numbers.  
 

The Ramanujan Sums transform (RST) use the 
component of RS as basis to decompose the input signal. 
The transform is used to represent arithmetical functions 
by an infinite series expansion and are considered as the 
basic building blocks of number-theoretic functions. In 
addition to being integer valued, the coefficients possess 
orthogonal property, and this makes them even more 
attractive as a signal processing tool. In [1], it shows that 
the Fourier coefficients of RS are real-valued and can be 
calculated by weighted average of the signal values using 
integer-valued coefficients. In [2], RS is used to low 
frequency noise filtering. In [3], the Ramanujan Fourier 
Transform (RFT) based transform functions are 
introduced, constituted by RS basis. In [4][5], it shows 
that RS can be used to extract periodic components in 
discrete-time signals and the author develops this theory 
in detail. In [6], the odd-symmetric length-4N periodic 
signals are studied, and it is shown how the odd RS are 
used as weighting coefficients to compute their pure 
imaginary DFT integer-valued coefficients. In [7], it 

combines the wavelet transform with the RS transform in 
order to create a new representation of signals. In [8], RST 
is used for the assessment of T-Wave alternant (TWA). 

 
Since the RS are all integers, we can reduce 

quantization error on implementation. However, lack of 
closed form inverse RST representation makes it hard to 
realization. In [9], the authors truncate the Ramanujan 
Sums series into matrix form to construct RST. Using 
matrix-based transform representation, the inverse RST 
can be easily calculated by taking matrix inverse. 
Meanwhile, it is proved that the RST matrix is invertible 
for non-zero determinant. It is also applied to image 
transform coding and image recovering without errors. 
However, non-orthogonal and lack of fast algorithm 
makes it not suitable for signal processing applications. 
Meanwhile, when treating the input as periodic signal, the 
original RST transform results do not match the 
expectation. Therefore, in this paper we propose the 
Legendre Ramanujan sums transform (LRST) as a new 
definition to replace the original RST. We will use 
complete generalized Legendre sequence (CGLS) [10] as 
basis and take DFT to the CGLS matrix to get the LRST 
kernel. It is showed that the basis of LRST contain 
Ramanujan Sum sequences when the column index of the 
kernel matrix is divisor of N. Meanwhile, we will give an 
example using radix-2 fast algorithm to implement the 
LRST with complexity O(Nlog2N). 

 
The organization of this letter is as follows. In Section 

II we review the original matrix-based RST and state its 
drawbacks. In section III we review the properties of the 
CGLS and the relationship between the CGLS matrix and 
the RS. In section IV we propose LRST by taking DFT to 
the CGLS matrix and use signal flow graph to show its 
fast algorithm implementation. In section V, we apply the 
LRST to image transform coding. Finally, we give 
conclusion in section VI. 
 

2. ORIGINAL MATRIX-BASED RST 
 
Ramanujan Sums (RS) is a function of two positive 
integer variables q and n defined by the formula 
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where the greatest common divisor (p, q) = 1 means 
that p only takes on values co-prime to q. Note that cq(n) 
is a periodic sequence with period q. The orthogonal 

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 934



property of RS shows that for different q and q’, cq(n) and 
cq’(n) are orthogonal  by: 
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Note that the summation range of index n is from 1 to 
qq’ which is the least common multiple (lcm) of q and q’. 
From (2) we can realize that unlike the common 
orthogonal property which is defined by fixed sequence 
length inner product space, the summation range of the 
inner product between different RS is from 1 to infinity. 
Truncating the infinite RS sequence ruins the 
orthogonality of the RS sequence set. 

In [9], the authors proposed Ramanujan Sums 
transform matrix A by truncating the Ramanujan Sums 
series into M by M matrix as: 

 1
( , ) (mod( 1, ) 1)

( )
qA q j c j q

q M
    (3) 

Where q, j = 1,2,…,M and mod(.) represents modular 
operation and  is Euler’s totient function which means 
the number of integers smaller and co-prime to q. For 
example, let M = 10, we can get the Ramanujan Sums 
matrix A10 as in (4). The authors prove that the RST 
matrix is invertible by showing that the determinant of A 
is not zero. They also apply the RST to 2D image coding. 
Truncating the existing RS sequences seems intuitively to 
create RST matrix. However, there are two problems: 
First, the RS matrix A is not orthogonal which can be 
easily proved by directly computing the inverse matrix of 
A. Second, physically speaking, we usually treat input 
vector as periodic sequence. 
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For example, when we apply DFT to a specific length 

N sequence x(n), actually we regard x(n) as a periodic 
sequence with period N. Therefore, when we use matrix 
form to represent the RST, we should consider the fact 
that the input sequences are actually the periodic signals. 
That means, the projection from the input vector to the RS 
sequence period q co-prime to N should be 0.  We prove it 
by computing the length Nq inner product between x(n) 
and cq(n) in Eq. (5) 
 
However, using the original RST definition, the projection 

results do not match the expectation values as described 
before. Therefore, we will define a LRST by complete 
generalized Legendre sequence (CGLS) as basis to 
construct the LRST matrix and we will show that the 
LRST is orthogonal. 
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3. PAGE TITLE SECTION 

 
In [10], the authors use complete generalized Legendre 
sequences (CGLS) as building blocks to generate closed 
form orthogonal complete DFT eigenvectors and its finite 
field version is introduced in [11] to solve number 
theoretic transform (NTT) eigenvector problem. In this 
section, we briefly review the definition of the CGLS 
matrix. First the generalized Legendre Sequence (GLS) is 
defined where the sequence length N equals power of  
prime number, i.e., N = pl. 
1) If p > 2, 
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The symbol  denotes the Euler’s totient function defined 
in (3). The indg operator denotes the logarithm over the 
modulus operation, i.e., indg(n) = m if n = gm mod(pl). 
Note that the multiplication property of the logarithm 
operator that indgab = indga + indgb also holds. The index 
g is a primitive root modulo pl, that is, gq  1 mod(pl) for 0 
< q < ( (pl)). 
2) If p = 2, the GLS is defined as follows: 
 

l = 1, 0,1(n) = [0  1].      

        l = 2, 0,l(n) = [0  1  0  1], 1,l(n) = [0  1  0  –1]. (7) 

l > 2, we can find an integer b so that 
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for c = 0,1  a = 0, 1, …, 12 2 l ,where b is an 
integer that satisfies the following equation: 

 ( 1) / 2( 1) 5 mod(2 ) 0, 1n c b ln c    for odd n. (9) 

To get the complete set, we insert (p–1) zeros 
between each neighbor element to  a,(l–1)(n), then we 
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insert (p2–1) zeros between each neighbor element to a,(l–

2)(n), and so on. The CGLS is defined by adding 
parameter s to the GLS as follows: 
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where a = 0, 1, …,(pls)  1, s = 0, 1, ..., l  1. When s = l, 
a must be zero and 

 1)0(0,,0 l ,     0)(,,0 nll   when n  0. (11) 

In the case where p = 2 and s < l2, the equality a,l,s(n) = 
a,(l–s)(k) in (10) should be changed as a,c,l,s(n) = a,c,(l–

s)(k). Moreover, in this case, a = 0, 1, 2, … , 2ls21 and c 
= 0, 1. 

The CGLS for arbitrary length 1 2
1 2 .... kll l

kp p pN   is 

defined by multiplying the CGLS defined for each il
ip  as: 

 )()...()()( ,,,,,,...,,...,,..., 222111212121
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Note that, in (12), , , ( )i i ia l s n  is repeated 

( 1 2
1 2 .... /k il ll l

k ip p p p ) times. For example when N = 10, we 

can show the CGLS matrix content by 
 

 

10

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1

0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1

0 1 1 1 1 0 0 0 0 0
L

0 0 0 0 0 1 0 0 0 0

0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1

i i

i i

i i

i i

 
 
 

  
 

  
  

  
 
 
 

  
  
 

   

 (13) 

The properties of the CGLS are shown in [10], 
including orthogonality, conjugate DFT pairs, even or odd 
symmetric, and so on. Especially, let a = 0, the Legendre 
sequence degenerate to even function which only contains 
values 0 and 1 and we can show that 
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These Legendre sequences in (14) form DFT pairs 
with Ramanujan Sums sequences and we can prove it by 
applying DFT to these CGLS such that 
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where r1 = 0,1,…l1, r2 = 0,1,…l2, … rk = 0,1,…lk. 

For example, when N = 10 = 2*5, we can see that the 
factors of N can be 1, 2, 5, 10 and exactly there are four 
sequences of the CGLS matrix whose DFT results map to 
RS sequences such that 

 L10(:,1) = [1 0 0 0 0 0 0 0 0 0]T (16) 

 F{ L10(:,1) } = c1(k) = [1 1 1 1 1 1 1 1 1 1]T (17) 

 L10(:,2) = [0 0 0 0 0 1 0 0 0 0]T (18) 

 F{ L10(:,2) } = c2(k)= [1 -1 1 -1 1 -1 1 -1 1 -1]T (19) 

 L10(:,5) = [0 1 0 1 0 0 0 1 0 1]T (20) 

 F{ L10(:,5) } = c5(k)= [4 -1 -1 -1 -1 4 -1 -1 -1 -1]T (21) 

 L10(:,10) = [0 0 1 0 1 0 1 0 1 0]T (22) 

 F{ L10(:,10) } = c10(k)= [4 1 -1 1 -1 -4 -1 1 -1 1]T (23) 

Therefore, we can realize that the CGLS are closed 
related to the RS sequences and it inspires us to define the 
LRST by the CGLS. 
 

4. DEFINITION of LRST 
 
In this section, we propose the Legendre Ramanujan sums 
transform (LRST) matrix by applying DFT to the CGLS 
matrices and show that it has good properties such as 
orthogonality. Let the DFT matrix F and the CGLS matrix 
L, the proposed LRST matrix AL is defined as follows: 

 AL = FL (24) 

For example, when N = 10, taking DFT to the 10 points 
CGLS matrix we can get that 

 
L,10 10 10A FL K D   (25) 

The matrix D is a diagonal matrix and K10 is similar to 
the CGLS matrix but it contains Ramanujun sums 
sequence in the specific columns shown by 

         D = Diag{1, 1,  w, 10 ,-w* , 1, 1, -w, 10 , w*} (26) 

   where w  = 1.9021 + 1.1756i 
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(27) 

Using the LRST definition, we can show that the 
LRST matrix is orthogonal since the CGLS and DFT 
matrices are all orthogonal matrix so that the LRST matrix 
is also orthogonal. Meanwhile, we can show that the 
LRST has fast algorithm by the fact that the CGLS and 
DFT matrices both have O(Nlog2N) fast algorithms, the 
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combination of these two matrices will also has O(Nlog2N) 
fast algorithm. Especially from the DFT conjugate pairs 
property of the CGLS shown in [10] we can realize that 
the LRST matrix can be implemented by CGLS matrix 
plus sparse linear combination. For example in (25), we 
can plot the signal flow graph as in Fig. 1 and we can 
calculate the LRST need only additions and 
multiplications. Compared with the original RST which 
has O(N2) complexity, the proposed LRST has far more 
improvement in efficiency. 

Finally, although the kernel elements of AL are not all 
integers, the proposed LRST is still suitable to analyze the 
periodic signals especially for already known period input 
sequences. 

 
Fig.1 10 points orthogonal LRST signal flow graph 

 

 
 

Fig. 2 The LRST spectrum of “Lena” Image 
 

5. IMAGE TRANSFORM CODING APPLICATION 
 
We propose the application of the LRST in image coding. 
We use the “Lena” image of size 256 by 256 pixels for 2-
D LRST in Fig. 2 and we show the LRST spectrum of 
“Lena” and realize that the LRST coefficients matrix is a 
sparse matrix and it is suitable for image compression. 
Meanwhile, it also has potential application on pattern 
recognition. 

 
6. CONCLUSION 

 
We propose Legendre Ramanujan sums transform (LRST) 
derived by applying DFT to complete generalized 
Legendre sequence (CGLS) matrix. The proposed RST 
has orthogonality and fast algorithm properties with 
O(Nlog2N) complexity. Compared with the original matrix 
based RST the LRST is suitable for periodic sequence 
analysis. 
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