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ABSTRACT 

 

Unwanted „spike noise‟ in a digital signal is a common 
problem in digital filtering. However, sometimes the spikes 

are wanted and other, superimposed, signals are unwanted, 

and linear, time invariant (LTI) filtering is ineffective 

because the spikes are wideband – overlapping with 

independent noise in the frequency domain. So, no LTI filter 

can separate them, necessitating nonlinear filtering. 

However, there are applications in which the „noise‟ 

includes drift or smooth signals for which LTI filters are 

ideal. We describe a nonlinear filter formulated as the 

solution to an elastic net regularization problem, which 

attenuates band-limited signals and independent noise, while 
enhancing superimposed spikes. Making use of known 

analytic solutions a novel, approximate path-following 

algorithm is given that provides a good, filtered output with 

reduced computational effort by comparison to standard 

convex optimization methods. Accurate performance is 

shown on real, noisy electrophysiological recordings of 

neural spikes. 

 

Index Terms— Filter, regularization, nonlinear, spike, 

noise 

 

1. INTRODUCTION 
 

Consider the digital signal processing problem of removing 

independent and identically distributed (i.i.d., white) 

Gaussian noise from a known, frequency band-limited 

signal. Linear, time-invariant (LTI) digital filters are often 

used in this application [1]. An appropriate filter can pass 

through only the band-limited, wanted signal, removing 

most of the unwanted noise. However, when the signal is 

not band-limited and/or the noise is non-Gaussian, LTI 

filters are ineffective, for example, for independent (non-

Gaussian) „spike noise‟: that is, noise where large deviations 
occur more frequently than the Gaussian noise model 

suggests [2]. It can be shown that LTI filtering, such as the 

moving average filter, is highly inefficient by comparison to 

a simple nonlinear alternative: the moving median filter [3, 

4]. 

In other cases, the spikes are the wanted signal and 

there may be i.i.d. Gaussian noise. Additionally, there may 

be other, band-limited components that need to be removed, 

for example: slow drift in equipment calibration, or power 

interference in electrical signals. This is an example of a 

spike detection, or spike enhancement, problem. 
Spike enhancement is critical to electrophysiological 

recordings of neural cell spiking [5]. Here, LTI filters 

cannot simultaneously remove the i.i.d. noise and the band-

limited components without corrupting the wanted spikes 

[2], so this problem is often addressed with specialized, 

heuristic algorithms. Unfortunately, many of these heuristics 

lack a principled mathematical framework in which to 

analyze their performance, and are often not robust to 

changing experimental conditions [7]. 

The purpose of this paper is to describe the use of 

elastic net regularization [8] in spike enhancement, and to 
introduce a novel algorithm for solving this convex 

regularization problem. The elastic net, which combines   - 

with   -norm regularization, is closely related to signal 

processing methods based on   -norm regularization alone, 

such as Lasso regression. Because of the very wide scope of 

such methods, it is not possible to do full justice to the 

concepts here, we will simply pick out some interesting 

examples in signal processing such as compressed sensing 

[9], sparse linear prediction of speech [10], and step filtering 

in biophysical experiments [3]. 
Path-following algorithms for convex regularization 

problems have been developed more recently in statistical 

machine learning [11] and nonlinear trend filtering [12] 

applications. These algorithms have the advantage over 

other numerical convex optimization methods, of allowing 

computation of the entire set of solutions for all values of 

the regularization parameters. The approximate path-

following algorithm introduced in this paper exploits 

analytical solutions which afford considerably reduced 

computational complexity by comparison to numerical 

optimization methods such as interior-point or active set 
methods commonly used in sparse signal processing and 

machine learning [13]. 

 

2. METHODS 

 

2.1. Spike-like signals with additive band-limited and 

i.i.d. noise 

 

In this study we refer to a digital signal as the  -vector 

  (        )  with each     . We are considering 



the situation in which the measured signal   is the sum of 

three components: the spike-like signal  , a band-limited 

noise component  , and i.i.d. Gaussian noise  , so that 

       . The goal of the filtering operation is to 

recover an accurate estimate for   given  . 

 

2.2. Filtering by convex optimization 

 

The approach taken in this study is to pose the digital 

filtering operation as the solution to a convex optimization 

problem. The value of this approach is that we can exploit 

convex regularization as a tool to develop an efficient 

filtering method. The following objective functional is 

introduced: 
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where   is the filter output signal,  [   ]  ‖   ‖ 
  is the 

error term,   [ ]  ‖  ‖ 
  is the linear penalty, and 

  [ ]  ‖ ‖  is the nonlinear penalty, with corresponding 

scalar regularization parameters      . Here, ‖ ‖  refers 

to the   -norm. The     matrix   determines a linear 

filtering operation, as described below. The functional   is 

the sum of three terms: an error term   that is minimized 

(exactly zero) when    , and two penalty terms (  ,   ) 

that are minimized (and both zero) when    . The goal of 

the filter is to take as input, the noisy signal   and 

return       as the de-noised signal. 

Minimization of so-called elastic net functionals [8] 

such as (1), which involve a sum of   - and   -norm terms, 

are known as quadratic programs; state-of-the-art 

optimization methods include primal-dual interior-point and 

active sets [13]. In our experiments, we used the MATLAB 

tool CVX which automatically selects an appropriate 

minimization algorithm [14]. 

 

2.3. Linear filtering term in isolation 

 

To analyze the behaviour of the filtering operation, it is 

instructive to consider the effect of the linear and nonlinear 

penalty terms of (1) in isolation. By setting    , the 

choice of the matrix   is directly related to the LTI filtering 

operation applied to the signal  . Then (1) reduces to a sum 

of two   -norm terms, and the minimizer can be computed 
analytically: 

 

   (      )        (2) 
 

where   is the     identity matrix. Because we are only 

considering the time-invariant case, the rows of   will 

consist of copies of the same linear filtering row vector, 

time shifted by one place. As a result of this shift-invariant 

structure, the equivalent filtering operation    is also shift-

invariant. In fact, the rows of    can be understood as the 

coefficient sequence of a single FIR filter, and    as a 

convolution operator based upon this FIR filter [1]. 

In practice, we often want to design a specific set of 

FIR filter coefficients [1]. For example, we may know 

which frequencies in the input signal we wish to attenuate. 
We can then insert these FIR coefficients into the rows of 

  , and from this solve for  : 

 

    
 

    (3a) 

  [    
  ]

 

   (3b) 

where [ ]
 

  is any matrix square-root operation. Using (3a,b), 

we can utilize any given FIR filter design to calculate  . 

Note that   is simply a rescaling of  , so changing   just 

involves rescaling the elements of  . A very useful set of 

FIR coefficients are those that define a whitening filter that 

attempts to make the power spectrum of the signal constant  

[1]. These coefficients can be estimated from   using a 

variety of techniques including linear prediction analysis 

[1]. 

It is important to note the analysis of this section only 

holds if the nonlinear term    : if not, the relationship 

between the minimizer for (1) and the matrix    cannot be 

calculated analytically. 

 

2.4. Nonlinear filtering term in isolation 

 

We next consider the case when    , so that (1) reduces 

to a sum of   -norm error and   -norm penalty terms. As 

above, there is a simple analytical solution [11]: 
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for        , where ( )  indicates the positive part. This 

shrinkage operation independently reduces the absolute 

value of each element in the signal by    . Because the 

assumption is that each element of the signal is the sum of a 

spike and an independent noise term with small spread 

relative to the spike magnitude, this operation typically 

attenuates the noise leaving the spike (although the 

magnitude of the spike is also reduced). 

 

2.5. An approximate path-following minimization 

algorithm 

 
As explained above, the functional (1) can be minimized 

using numerical convex optimization methods. Such 

methods have good computational properties but they are 

complex. Here we propose a simple approach that makes 

use of the isolated linear and nonlinear analytical solutions 

discussed in the previous two sections. The basic idea is to 

take small „steps‟ towards the optimal filtering solution to 

(1) by alternately applying equation (2) followed by (4). 

This is related to so-called path-following (or homotopy) 

algorithms [11], which minimize the functional (1) by 



incrementally calculating the solution for increasing (or 

decreasing) values of the regularization parameters. 

To motivate this numerical method, we first denote the 

operation of equation (2) on   by   [ ], and of equation (4) 

by   [ ]. It is straightforward to show that   
 [ ]     [ ] 

and   
 [ ]     [ ], i.e. if we apply (2) or (4) repeatedly, 

this will be the same as applying each equation once but 

with   replaced by    (similarly for  ). It is also true that if 

  is small, then the minimizer for (1) will be very close to 

that with    , and similarly for   small. Putting these 

facts together, if, for example, we set               

and choose   sufficiently large, we can see that it is possible 

to come close to the minimizer for (1) by alternately 

assuming that      and      and iterating 

approximately   times. 

Summarizing, the algorithm is as follows: 

1. Initialization: set     , compute  [    ] and 

choose    . Set       ,        and    . 

Compute    (     
  )  . 

2. Set       
*   

[    ]+. 

3. Set      . 

4. Compute  [    ]. If | [    ]   [      ]|   , 
go to step 2. 

5. Otherwise, set       and finish. 

In step 4, we monitor the interim solution    for 

convergence: the tolerance   should be chosen to detect 

when the iteration has achieved sufficient accuracy. 

 

2.5. A simple peak-picking heuristic 

 

As a benchmark in testing the performance of the novel 

filter, we describe a peak-picking heuristic often used as a 

basis for more sophisticated spike detection algorithms: 

simply retain a fraction   of the largest magnitude elements 

of  , and set the rest to zero. This is related to simple 

thresholding methods which are ubiquitous in 

electrophysiological recordings, for example [7]. 

 

2.6. Measuring filtering accuracy 

 

In order to quantify the accuracy of these filtering 

algorithms, we compute the mean absolute error (MAE) at 

recovering the spike signal   given the filtered output   : 
 

   [    ]  
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This quantity cannot be negative and is zero only if the filter 

is perfect (i.e.     ), therefore, the smaller the MAE, the 

better the accuracy. 

 

 
Fig. 1. (a) A synthetic spike-like signal (     ), showing 

equal-magnitude positive and negative spikes. (b) The same 
signal with additive Gaussian i.i.d. noise, linear drift (from 0 

at     to 0.5 at    ), and sinusoidal noise (      [   
 ]). (c) The signal in (b) after linear filtering with equation 

(2),   is the first-order discrete integrator matrix,      , 

MAE = 0.095. (d) After nonlinear filtering with equation 

(4),      , MAE = 0.070. (e) After solving for the optimal 

solution to the convex problem posed in (1), regularization 

parameters as above, MAE = 0.066. (f)  After approximate 

path-following, MAE = 0.061. (g) After peak-picking 

heuristic algorithm,      , MAE = 0.064. 



 
Fig. 2. The signal space projected onto two dimensions, 

before and after filtering. Input signal   (black square) is the 

starting point for the approximate path-following algorithm, 

which comes close to the minimizer for (1) (red circle) 

obtained by solving the quadratic programming problem. 

The linear only (+) solution is obtained using (2), and 

nonlinear only (×) obtained using (4). Synthetic signal and 

algorithm parameters as in Fig. 1. 

 

3. EXPERIMENTAL DATA 

 

In order to test the filter on real-world spike-like data, neural 

signals were obtained from tetrodes (a cluster of four 12.5 

mm Ni-Cr wires twisted together) implanted and advanced 

towards the striatum of a freely-moving, awake rat. Signals 

were band-pass filtered in hardware (1Hz–9kHz) and 

sampled at a rate of 31.25kHz. Signals were downsampled 

offline using polyphase anti-alias filtering to 3kHz. One 

signal from one wire of a tetrode near a single neuron (a 

presumed Fast Spiking Interneuron [5]) was used for 

analysis. 

 
Table 1. Mean absolute error (MAE) of the peak-picking 

benchmark, minimizer for the functional (1) obtained by 

convex optimization, and approximate minimizer for (1). 

Synthetic signal and algorithm parameters as in Fig. 1. 

Gaussian 

i.i.d. noise 

standard 

deviation   

Peak-

picking 

MAE 

Optimal 

solution to 

(1), convex 

optimization 

MAE 

Path-

following 

algorithm  

MAE 

0.08 0.060 0.063 0.046 

0.20 0.062 0.064 0.049 

0.50 0.061 0.064 0.071 

1.00 0.073 0.064 0.048 

1.50 0.080 0.067 0.054 

 

 

4. RESULTS AND DISCUSSION 

 

Synthetic spike-like signals (Fig. 1a), with additive noise 

(Fig. 1b) are, as expected, clearly very difficult to 

reconstruct using purely linear (Fig. 1c) or purely nonlinear 
(Fig. 1d) filtering. Neither of these two filters alone can 

obtain good estimates of the real spike-like signal (Fig. 1a). 

The approximate path-following solution (Fig. 1e) comes 

very close to the optimal solution (Fig. 1e), although it 

overshoots somewhat (Fig. 2). This close approximation of 

the approximate algorithm to the optimal solution can also 

be seen in the signal space (Fig. 2). While the peak-picking 

estimate (Fig. 1g) removes most of the i.i.d. noise, it is 

unable to effectively handle the drift and sinusoidal noise. 

As the spread of Gaussian i.i.d. noise increases, the 

approximate solver achieves the smallest MAE in 

reconstructing the spike signal   (Table 1). Although the 

optimal solution to (1) has higher MAE than the iterative 

solver, among the three filtering algorithms, it is the most 

resistant to increasing i.i.d. noise spread. The peak-picking 

benchmark achieves good performance at low noise spread, 

but deteriorates rapidly as this spread increases. 

Here, the algorithm parameters (           ) have 

been chosen to achieve good performance at low i.i.d. noise 

spread, and kept constant as the noise spread increases; in 

practice these parameters might be adapted to the increasing 
noise. This could be achieved with appropriate cross-

validation methods, for example. Nonetheless, this 

investigation shows that the minimizer for (1) is quite robust 

to changing i.i.d. noise spread, whereas, the naïve peak-

picking benchmark can only function effectively if the 

parameters are chosen carefully. This occurs because the 

peak-picking algorithm cannot effectively distinguish 

between false spikes caused by high noise spread and 

genuine spikes. Similarly, although the approximate 

algorithm can achieve good performance at low noise 

spread, because it only approximately minimizes (1), it has 

variable performance that might require controlled 
adaptation. 

The novel filter in (1) is very effective at removing 

band-limited noise from the experimental neural spike data 

(Fig. 3a,c), using linear prediction analysis to estimate a 

whitening filter in   . Most of the i.i.d. noise is also 

removed while retaining all of the largest spikes (together 

with some smaller fluctuations that are probably spurious). 

The iterative solver is also similarly effective (Fig. 3d), 

converging in 19 iterations. The simple peak-picking 

heuristic, however, fails to identify most of the major spikes 
and also introduces a large number of spurious spikes (Fig. 

3b). 

Experimentation shows that by comparison to the „gold 

standard‟ primal-dual interior point method, the 

approximate algorithm presented here achieves useful 

convergence with a similar number of iterations, but each 

iteration is extremely simple. 



 
Fig. 3. Nonlinear filtering of experimental tetrode 

recordings of neural spikes. (a) Recorded signal: spikes 

visibly obscured by low-frequency drift and i.i.d. noise. (b) 

Recorded signal after applying peak-picking heuristic 

algorithm,      . (c) Signal after solving for optimal 
solution to the convex problem (1), regularization 

parameters            . Here    is a whitening filter 

of length 256 estimated using linear prediction analysis from 

the recorded signal,   derived from    using (3). (d) After 

applying the path-following algorithm, parameters as above, 

with      and        . 

 

5. SUMMARY AND CONCLUSIONS 
 

In this study we introduced a novel, linear-nonlinear digital 

filter for recovering spike-like signals corrupted by band-

limited and i.i.d. Gaussian noise. The filter is posed as a 

convex optimization problem, minimized by an approximate 

path-following algorithm. By comparison to a widely-used 

benchmark peak-picking heuristic, this new filter is robust 

to a wide range of i.i.d. noise spread. The filter also 

demonstrates good performance at recovering neural firing 

spikes from noisy electrophysiological recordings obtained 

from tetrodes implanted in a rat brain. 

One of the advantages of this elastic net filter 
formulation, is the availability of a computationally simple, 

approximate path-following approach based upon known 

analytical solutions. This allows us to efficiently process 

very long signals, whereas, more general techniques from 

convex optimization such as primal-dual interior point 

(applied to, for example, dictionary-based sparse recovery 

which might be attempted in this application [9]) would 

typically require far heavier computational resources. 

Therefore, we anticipate this technique being useful in the 

common experimental circumstances where getting a quick, 

approximate result for large databases of very long signals is 

required. 

Further comparisons against the performance of other 

spike-enhancement techniques [7,15] applied to databases of 

very long signals would be valuable to explore the practical 

trade-offs between accuracy and computational effort for 
this problem of spike enhancement. 
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