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ABSTRACT

Gaussian Mixture Models (GMMs) are widely employed as
statistical models in biometric systems. In speaker identifi-
cation (SID) systems, GMMs have shown their effectiveness
for modeling speaker identities. However, an increase on
the number of enrolled speakers reduces the interspeaker
variability causing the degradation on the performance of the
recognizer. In this work, we propose a speaker super-GMM
which deals with the interspeaker distance by access to a
larger number of GMMs but maintaining the same complex-
ity as the baseline system. The super-GMM is constructed
by the concatenation of all the speaker GMMs enrolled
in the database and weighting each GMM component.
These weights contain discriminative information used to
determine each speaker model. To train the super-GMM,
we train the weights of each mixture component using a
variation of the expectation maximization (EM) algorithm
which only updates the weights of the super-GMMs. Then,
we apply a minimum classification error (MCE) approach
to enhance the discriminative properties of the weights.
Our approach has shown approximately 20% improvement
on the performance (probability of error) compared to the
baseline system.

Index Terms: Discriminative methods, speaker recognition,
Gaussian distributions, modeling, estimation.

1. INTRODUCTION

The development of technology has opened new perspectives
for the use of biometrics systems. Applications are countless
in daily life, from a personal ID-number to forensic analy-
ses [1]. Among the biometric systems, we will concentrate
on speaker recognition systems since they are easy to de-
ploy and are less invasive compared to other biometric au-
thentication techniques. Speaker recognition can be defined
as the process of automatically recognizing who is speaking
based on the statistical information provided by speech sig-
nals. The main technique is to find a set of features that best
represents a specific speaker voice. Speaker recognition sys-
tems can be divided depending on their tasks in speaker iden-
tification (SID) and speaker verification (SV). In this work,
we will focus on SID systems used to determine from a set
of predefined models to which of them belongs an input test
utterance from an unknown speaker.

The speaker recognition process is divided in two phases
independently of the task: enrollment and classification. In
the enrollment phase, the expectation maximization (EM)
algorithm [2] is used to estimate Gaussian Mixture Mod-
els (GMMs) for each speaker. The EM algorithm provides
maximum-likelihood (ML) estimates for the unknown model

parameter from a training database. In the classification
phase, we compute the likelihood of test speech samples
from an unknown voice belonging to a certain speaker GMM.
One of the main research areas in speaker recognition is the
speaker modeling wherein vector quantization (VQ) mod-
els [3], GMMs [2] and support vector machines (SVM) [4]
are usually used. This research aims at finding more dis-
criminative training methods and speakers models for closed-
set speaker recognition systems with limited training data.
Closed-set testing refers to that the unknown utterance/voice
comes from a fixed set of known speakers.

Traditionally in speaker recognition systems, the speak-
ers GMMs are trained using features extracted from the
speech trying to represent the whole space of features be-
longing to that specific speaker such that even unseen fea-
tures can be correctly classified. Moreover, these speaker
models must be able to handle intraspeaker and interspeaker
variations of the speech features [5]. Examples of GMM
modeling techniques for speaker recognition systems that
tackle these variations are the “flat” universal models [6, 7].
However, SID systems will always face a tradeoff between
performance and the number of speakers in the system. In
general as the number of speakers enrolled in the system
increases, the separability (interspeaker distance) between
speaker models decreases, thereby causing a degradation on
the identification/ recognition performance.

In this paper, we design a super-GMM which accesses a
large number of GMMs but maintains the same complexity
as the baseline system. This approach consists of a super-
GMM with common mixture components for all the speakers
enrolled in the database, but different discriminative weights
for each mixture component depending on the speaker. The
speaker super-GMM uses the information available from the
corresponding speaker and all the speakers enrolled in the
database to improve the performance of the recognizer re-
garding that the complexity of the classification phase re-
mains the similar. Moreover, we develop a method to train
the discriminative weights of this super-GMM to increase the
interspeaker variability in SID systems.

The rest of the paper is organized as follows: section 2
presents the baseline of the SID systems, section 3 defines
the super-GMM and describes the way to construct the super-
GMM, section 4 describes the training of the super-GMM,
section 5 presents the experimental evaluation and the re-
sults. Section 6 shows the conclusions of this work.

2. BASELINE SYSTEM
2.1 Design Phase

In many text-independent speaker identification systems,
GMMs are used as a statistical model of each speaker. The
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ie., N(x,,u,is),C,((s)) is a weighted sum of Gaussian dis-

tributions, where /.L,Es) is the mean and C,(:) is the covari-

ance matrix of the k-th Gaussian distribution for speaker
s. The GMM can also be defined by a set of parameters
Al = Wz({s)a%?)vcl(:)- To determine these parameters, the
EM algorithm can be used. The EM algorithm is an itera-
tive algorithm that uses a training database to find ML esti-
mates of the weights, means and covariances in the GMM (or
at least approximations to the ML estimates). Each speaker
GMM is a unique model and describes the particular features
of his/her voice.

2.2 Classification Phase

The extracted features from an unknown speaker utterance
{x,}szl are compared against the speaker GMM stored in the
database. The speaker recognizer calculates a score for each
speaker model in the database giving an estimate of the like-
lihood of the utterance belonging to a given speaker model
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Then, based on the score the speaker recognizer will decide
to which model the utterance belong. The speaker with the
highest log-likelihood is declared as the winner,

§=argmax L (xM(S)) ) 3)

1<s<S

The goal of a speaker recognizer is to minimize the proba-
bility of error given by P. = Pr[s # §] [8]. We will use it as
a baseline system, against which the proposed schemes are
compared.

The performance evaluation of speaker recognition sys-
tems is usually measured by the probability of error (P¢)
attained. To calculate this probability of error, we run the
baseline system (i.e., enrollment and classification phases) N
number of times using independent sets of speech files and
then computing the average number of errors occurred.

3. SUPER-GMM

A speaker super-GMM can be defined as a high order GMM
which have access to greater knowledge of the speakers en-
rolled in the database,

M
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ie, N (x,, [L,ES),C,({S)) is a weighted sum of Gaussian distri-

butions where W,((S) is the weight, fi; is the mean and Cy is the

covariance matrix for the k-th mixture components. We must

denote that a super-GMM sets /.L,Es) = fix and C,(:) = Cy forall

the speakers (s = 1,2,...,5), yielding the mixture component
(s)

weight (Wk ) as the only way to discriminate between the

speaker models.
Moreover, the weights of the new super-GMM must fulfill

M
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The purpose of creating a speaker super-GMM is to handle
the interspeaker variabilities in SID systems without in-
creasing the complexity of the classification phase usually
performed in real time.

3.1 Creation of the Super-GMM

To create a super-GMM based on the closed-set speakers
GMMs, we assume that the speakers GMMs are known and
we can concatenate the GMMs of all the speakers in the
database such that each speaker model contains the same pa-
rameters for each mixture component (i.e., means and vari-
ances).

Concatenating the means of all the speakers models en-
rolled in the system, we attain that the means of the super-
GMM are defined as
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Following the same concatenation procedure, we attain that
the covariance matrix for the super-GMM is defined as

C= {C’(‘S) }Vk,Vs' 7

In this work, we will use speakers GMMs with diagonal co-
variance matrices, i.e.,
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where 0',3 Ej) (d =1,...,D) is the variance for speaker s, k-th

Gaussian distribution, and d-th dimension [2].

The weights of the new super-GMM should be rearranged
to fulfill (5), and will contain M values which is the total
number of GMM components after the concatenation of the
speakers GMMs. In the next sections, we will present the
way to attain the speaker models weights.

3.2 Complexity Comparison

The complexity involved in the classification phase (i.e., the
computation of log-likelihoods) is mainly due to the calcula-
tion of exponentials functions. Moreover, the number of op-
erations is proportional to the number of speakers enrolled in
the database (S), the size of the test utterance (T), and the to-
tal number of mixture components for the baseline (K) or the
super-GMM (M). The main characteristic of the super-GMM
is that it contains the same number of exponential operations
as the baseline system.

Defining the complexity ratio as the ratio between the num-
ber of operations of the super-GMM and the baseline, we
attain
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where ¢.,, 1S @ common number of operations for both sys-
tems including the computation of the exponential functions,
AQgyper = 2MST = 2KS?T is the remained number of oper-
ations proper for the super-GMM and A@pgserine = 2KST is
the remained number of operations proper for the baseline
system. The average complexity ratio for our test utterance
set is approximately 1.4, this increase on the complexity ratio
is due to the operations (multiplications and sums) with the
discriminative weights for the super-GMM case.

4. WEIGHTS TRAINING

A main requirement for a sum of Gaussian distributions to
be considered a GMM is to fulfill (5). On the next sections,
we will present a systematic approach to obtain the mixture
component weight for each speaker model.

4.1 EM Training of Weights

After the creation of the super-GMM, we could retrain each
speaker model using the EM algorithm. The reason for this
retraining is to exploit the information acquired from know-
ing all the mixture components of all the speakers GMMs in
the set. We used a variant of the EM algorithm for retraining
the mixture component weights and the training data of the
correspondent s-th speaker .

The algorithm is shown in Table 1, holding as inputs
the super-GMM and the training database for each speaker.
Our initialization procedure consists on assigning 50% of
the probability to the mixture components corresponding to
the s-th real speaker and 50% to the mixtures components
of all the other speakers. The EM algorithm will run
until convergence on the log-likelihood is achieved. For
simplicity, we drop the s corresponding to the speaker since
the algorithm is applied similarly to all the speakers.

1. Using the training database {x,}"_.
Compute the total likelihood LL;

M ~
LL, =k§1wkN(x,,ﬂk,Ck), {r=1.T}

2. Normalize the likelihood.

W (x, i, C
Compute 1y, = W
1

{k=1.M}; {r=1..T}.
3. Compute the sum of weights, Wy

T
we=Y My {k=1,2,..M}.
t=1

4. Compute the new parameter values
for each GMM component.
o Wk
Wi = —.
T

Table 1: Variation of EM Algorithm.

This training approach still fulfills the requirements of
GMMs presented in (5).

4.2 Discriminative Training

In the previous section the ML estimate was used to optimize
the weights of the speaker GMMs. This approach only con-
siders the data from the s-th speaker to model the speaker.

In a discriminative training approach MCE [9-11], we
create the speakers models considering the competing speak-
ers and a training criterion used to directly minimize the er-
rors of the training data.

The simplest form of misclassification measure is the
Bayes classifier defined for a two class problem as

d(x) = Pr[A;|x] — Pr[Az]x], (10)

where Pr[A;|x] and Pr[A;|x] are the posterior probabilities
of belonging to class A; or Ay and assumed known. This
classifier will rely on the difference between the classes to
emit a decision having a boundary when d(x) = 0.

For SID systems, a misclassification measure using the
log-likelihoods of a group of tests can be defined. Assuming
that a stochastic model (GMM) and a group of tests' are avail-
able for each speaker, we can compute the log-likelihood

L (xM(S)) of each test with respect to the actual GMMs

or the super-GMM, such that the number of log-likelihood
values obtained for each test is equal to the total number of
speakers.

For analysis purposes, we define a real speaker as the
speaker to which a predetermined test belongs i.e., the cor-
rect identified speaker.

Letting {v(?) (n)}i:]:1 be a set of N log-likelihood values for

the i-th real speaker, and {z) (n)}flvzl be a set of the differ-
ence between the log-likelihood of the i-th real speaker and
the log-likelihood of the maximum of other speakers,

(n) = v (n) — max(w) (), (n) an
D (), v D (), S ().

Defining {y(’) (n)}i:]:1 as the set of the N log-likelihood val-
ues of the maximum of other speakers i.e.,

) =m0 )20 ) ) )
Substituting y) (r) in (11), we attain

&) =0 (n) =y (n), (13)
which is similar to the simple Bayes classifier mentioned

above.

After defining a misclassification measure, we require to
define a cost function associated to an error occurrence. In
general, a cost function is defined as

[(x,A)=T(d(x)), (14)

which is a function of the misclassification measure.

For SID systems, the common cost function is the prob-
ability of error for the i-th speaker, defined as

Lone test is a set of samples from an unknown speaker {xt}thl. Each test
corresponds to a short spoken sentence (1-2 seconds) by the speaker.
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where @ is the unit step function which detects when
(v (n) =y (n)) < 0. The cost function will assign a value
(cost) when v() (n) is smaller than y()(n) (i.e., an error oc-
curred). However, the derivative of this function is not de-
fined in all points making difficult any optimization proce-
dure. For this reason, we use a sigmoid translated function
as a cost function defined as

: 1
16 = — 17
1 +exp (—z()(n)) 17

which is derivable in all points.

4.3 Parameter Adjustment using Descendent Methods

After obtaining the cost function and the measure of misclas-
sification, we would perform an optimization with respect to
the parameters of the GMM specifically the weights in or-
der to find the most discriminative weights for each mixture
component.
First, we define a vector containing the weights of the i-th
speaker super-GMM component W'/ = [WE')W;')...WI(&)].
Using a GPDM method (e.g., the Gauss Newton
method [12]), we can find the optimal weights.

WO (r+ 1) = %O (r) + eHO (%) Y0, (18)

where ¢ is the step size, r is the iteration time and H() (W)
is defined as

HO (V~V(i>) - (HT(i) (W(i))H(i) (W(i)))fl 1= A (W(i>),
‘ ‘ (19)
i.e., HO (%) is the gradient of the probability of error with
respect to the weighting vector of each speaker model.

. . oYW 9z gyl
Oy =22 27
[H (W )}k az(i) av(i) QW,({i) . (20)
In order to be a GMM, the weighting vector w(!) must
fulfill (5).

5. EXPERIMENTAL EVALUATION

5.1 Database Description

The experiments were conducted using the 137 speakers of
the YOHO database [13], 2 independent databases were cre-
ated: training and evaluation. The training database consists
of the first two folders in the enrollment session (48 files for
each speaker). The evaluation database consists of the ver-
ify session obtaining 40 tests for each speaker. Each speech
file, after removing silence at the beginning and end, was seg-
mented into frames of 25 ms length with an overlap of 10 ms.
Each frame was pre-emphasized and Hamming windowed.
Then 12-th (truncated from 23-th) dimensional MFCCs were
created. The MFCCs obtained from the training database are

used to train 16 and 32-mixture GMMs. For the discrimi-
native training, we use the same training database described
above (i.e., 48 files for each speaker).

5.2 Experiments Implementation

To create the speaker super GMM, we concatenate the 16 and
32-mixture GMMs of the 137 speakers, respectively. Then,
we retrain the weights of the super-GMM using the training
database and the weighting EM algorithm.

Finally, to train the discriminative speakers super-
GMMs, we apply the Gauss Newton algorithm defined in the
previous section to the weights obtained from the EM esti-
mation. The algorithm searches sequentially for the weights
with better discriminative properties for each speaker, begin-
ning with the first speaker until the 137-th speaker. The al-
gorithm is repeated until convergence is achieved.

5.3 Experimental Results

From the results obtained, we observe that we have an im-
provement in the performance compared to the baseline. Ta-
ble 2 shows the probability of error for the different ap-
proaches. The second column shows the probability of error
for the baseline system. On the third column, we show the
probability of error using the weighting EM algorithm. Fi-
nally, the fourth column shows the probability of error using
jointly the discriminative approach and the weighted EM ap-
proach. We observe that the best performance is achieved
with the joint use of the discriminative approach and the
weighted EM since this method considers the information
from the i-th real speaker and other speaker models to create
the speaker models, attaining a maximum of 20% compared
to the baseline system.

Figure 1 shows an example of the super-GMM compo-
nent weights after the retraining with the EM algorithm. We
can observe large component weights defining the speaker
model. As mentioned before, this type of retraining can only
provide maximum likelihood estimates and non discrimina-
tive training.

Figure 2 shows an example of the weighting after the dis-
criminative training . We can observe that the larger weights
(Wy) correspond to the mixtures defining the speaker and
the smaller component contains the discriminative proper-
ties. Figure 3 shows the weights for the super-GMM mixture
components of all the 137 speakers enrolled in the database.
We can observe the difference between the discriminative
components and the components defining the speaker.

Table 2: Performance results of the super-GMM for a SID
system.

No P. P. P.
Mixtures | Baseline | weighting | Discriminative
EM & EM
16 .0566 0.0504 0.0465
32 .0347 0.0325 0.0308

6. CONCLUSIONS

Being able to train a speaker GMM which tackles the inter
and intraspeaker variabilities is of great importance in SID
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Figure 1: Example of the weighting for the GMM mixture
component after the EM algorithm.
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Figure 2: Example of the weighting for the GMM mixture
component after the discriminative approach.

systems. In this paper, we show a new speaker super-GMM
which achieves better performance compared to the baseline
system, while the complexity in the classification phase is
similar to the baseline. Moreover, this is an ongoing research
since the discriminative training is done only on the weights
of the mixture components, the means and the variances of
the super-GMM could be retrained to enhance the discrimi-
native properties of the super-GMM.
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