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Abstract—Many spectral unmixing approaches ranging from
geometry, algebra to statistics have been proposed, in which
nonnegative matrix factorization (NMF) based ones form an
important family. The original NMF based unmixing algorithm
loses the spectral and spatial information between mixed pixels
when stacking the spectral responses of the pixels into an
observed matrix. Therefore, various constrained NMF methods
are developed to impose spectral structure, spatial structure, and
spectral-spatial joint structure into NMF to enforce the estimated
endmembers and abundances preserve these structures. Com-
pared with matrix format, the third-order tensor is more natural
to represent a hyperspectral data cube as a whole, by which
the intrinsic structure of hyperspectral imagery can be losslessly
retained. Extended from NMF based methods, a matrix-vector
nonnegative tensor factorization (NTF) model is proposed in this
paper for spectral unmixing. Different from widely used tensor
factorization models such as Canonical Polyadic decomposition
(CPD) and Tucker decomposition, the proposed method is derived
from block term decomposition (BTD) which is a combination of
CPD and Tucker decomposition. This leads to a more flexible
frame to model various application-dependent problems. The
matrix-vector NTF decomposes a third-order tensor into the
sum of several component tensors, with each component tensor
being the outer product of a vector (endmember) and a matrix
(corresponding abundances). From a formal perspective, this
tensor decomposition is consistent with linear spectral mixture
model. From an informative perspective, the structures within
spatial domain, within spectral domain, and cross spectral-
spatial domain are retreated inter-dependently. Experiments
demonstrate that the proposed method has outperformed several
state-of-the-art NMF based unmixing methods.

Index Terms—Hyperspectral imagery, Spectral unmixing, Ten-
sor factorization, Spectral-spatial structure

I. INTRODUCTION

Hyperspectral imagery (HSI) has drawn much attention
from various applications. It provides information about both
spectral and spatial distributions of distinct objects owing to
its numerous and continuous spectral bands. In an HSI, each
pixel represents the spectral irradiance of the corresponding
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object materials. Due to limited spatial resolution of HSI and
complicated material constitution, a pixel often covers several
different materials. Therefore, the spectral irradiance is a com-
bined outcome of several materials according to their distribu-
tions and configurations, leading to the existence of “mixed”
spectra in some pixels. Hence, hyperspectral unmixing, which
decomposes a mixed pixel into a collection of constituent
spectra, or endmembers, and their corresponding fractional
abundances, becomes an important task for hyperspectral data
analysis.

Many hyperspectral unmixing methods have been proposed,
ranging from geometry, algebra to statistics [1], [2]. Most of
them are based on linear spectral mixture model, i.e., the
spectrum of a pixel is a linear combination of endmembers
with corresponding abundances. If pure pixels are assumed
to exist in an HSI, convex geometry based approaches such
as Pixel Purity Index (PPI) [3], N-FINDR [4], and vertex
component analysis (VCA) [5], to name just a few, are
used to estimate endmembers. However, in many cases such
assumption is not met or pure pixels have been contaminated
by various factors from environment and devices. Minimum
volume based algorithms [6] can partly tackle this problem. In
other cases, if the endmembers in an HSI are known in advance
or a library of spectral signatures including all endmembers
in the HSI can be obtained, fully constrained least-squares
(FCLS) [7] and sparse regression algorithms [8] can be used.

If very little prior knowledge is available, unmixing can be
considered as a blind source separation (BSS) problem from
the statistics perspective [2], [9]-[11]. Among a number of
BSS methods, nonnegative matrix factorization (NMF) and its
variations have been widely used due to its clear physical,
statistical, and geometric interpretation, flexible modeling, and
less requirement on prior information [12], [13]. NMF usually
provides a part-based representation of data, i.e., NMF based
spectral unmixing decomposes an HSI into two nonnegative
matrices that represent fractional abundances and spectral
endmembers respectively. Though effective, however, NMF
faces some difficulties in real applications. The solution space
of NMF is always very large, which, added to the fact that
the cost function is also not convex, makes the algorithm
prone to noise corruption and computationally demanding. To
reduce solution space, extensions of NMF including symmetric
NMF, semi-NMF, convex NMF, and multi-layer NMF have
been proposed [14]. More recently, sparse NMF assumes that
most of the pixels are the mixtures of only a small number of
endmembers [15]-[17]. This implies that a number of entries
in the abundance map are zeros or very small. In the literature,



Lo, L1, and L, /2 norms have all been utilized to define the
sparsity constraint.

Another problem of NMF based methods is the loss of
spatial location information when unfolding an HSI cube into
a matrix, i.e., the spectral signatures of pixels are stacked as
rows in this matrix, so that the spatial positions of pixels
cannot be fully preserved in the row indices. Furthermore,
the relations between the spatial and spectral domains are
also deteriorated. To address this problem, various constrained
NMF models are proposed [13], [18]-[21]. In [13], sparse
NMF with piecewise smoothness constraint was proposed, in
which the piecewise smoothness of endmember signatures and
abundance fractions was embedded into NMF to overcome
their discontinuity and noise. In [18], a spatial similarity
constraint was added into NMF, by which the abundance
of a pixel was promoted to be consistent with the average
abundance of its surrounding pixels. To make use of the
spectral-spatial joint information, Mei et al [19] presented
a neighborhood preserving regularization approach that was
based on the assumption that each pixel could be linearly
reconstructed by its spatial neighboring pixels. This regulariza-
tion was added into NMF to keep the local geometric structure
of HSI. Lu et al [20] assumed that pixels with similar spectral
signatures often imply similar abundances with respect to the
given endmembers, leading to a manifold regularizer based
NME. Wang et al [21] constructed a hypergraph to accurately
capture the spectral-spatial joint structure of HSI, and added
this hypergraph to NMF as a constraint. These approaches not
only address the lacking of structural information of NMEF,
but also improve the stability of matrix decomposition and
the robustness to noises. However, under matrix factorization
framework, the spectral and spatial structures are employed by
adding the corresponding constraints into NMF model, which
is not straightforward and is not able to convey a complete
HSI structure.

To overcome the limits of NMF and constrained NMEF,
extending matrix factorization to tensor factorization is a
potential way. An HSI data cube can be represented as
a third-order tensor without any information loss, therefore
compared with matrix factorization based unmixing methods,
tensor factorization is a more natural and structural model.
Tensors (or multi-way arrays) are highly suitable for multi-
dimensional data such as HSI, video, social network, array
signal, and so on [22]. Tensor analysis methods, especially
the models and efficient algorithms for tensor decompositions,
have been extensively studied and applied to many real-world
problems ranging from psychometrics and chemometrics to
signal processing, computer vision, neuroscience, and data
mining [23]-[26]. In the field of HSI processing and analysis,
tensor decompositions have been used for data compres-
sion [27], [28], denoising [29]-[31], feature extraction [32],
change detection [33], [34] and classification [35], [36].
All these approaches use a low-rank tensor representation
to approximate the original HSI data. The low-rank tensor
representation can reduce memory storages, remove noises,
and extract discriminative features. Among them, Canonical
Polyadic decomposition (CPD) and Tucker decomposition (or
called higher-order singular value decomposition) are two

widely-used tensor factorization models.

To our best knowledge, the research on tensor factoriza-
tion based spectral unmixing is relatively under explored. In
2007, Zhang et al [37] applied tensor factorization to spectral
unmixing for the first time, and then they published a more
comprehensive paper [38] on tensor based HSI data analysis
for a space object material identification study including
unmixing problem. In their method, nonnegative CPD firstly
decomposes a tensor into a sum of component rank-one
tensors, then these rank-one tensors are grouped by clustering
method according to their similarity. Finally, the rank-one
tensors in each group are combined to form an endmember and
its corresponding abundances. Following this work, Huck et
al [39] proposed that nonnegative Tucker decomposition also
could unmix hyperspectral data. From then on, the studies on
tensor factorization based unmixing seldom appear. Recently,
the use of compression-based nonnegative CPD to analyze HSI
data in temporal series or in multi-angular acquisitions was
presented [40], [41]. In this approach, a third-order tensor
is used to represent several related HSI data sets with one
of its modes denoting the time/angle dimension, i.e., each
HSI cube is still represented by matrix. In [42], a new tensor
based nonlinear mixing model was presented, which extended
the existing bilinear mixing models to an infinite number of
reflections. However, the tensor was used to represent the
multilinear interaction among materials and multiple light
scattering effects, but not for describing the spectral-spatial
structure of HSIL

As we know, HSI data compression, dimension reduction,
feature extraction and noise removal mainly focus on da-
ta reconstruction with minimal error, but spectral unmixing
pays more attention to whether the decomposed factors are
consistent with the physical mechanism of mixing process.
Whichever CPD or Tucker decomposition based unmixing
algorithm is used, its link with linear mixing spectral model is
not as explicit as that of matrix factorization. The CPD based
rank of a tensor is defined as the minimum of rank-one tensors
that are summed to express this tensor, but this tensor rank
cannot be considered as the number of endmembers, which
makes the endmember detection and the corresponding abun-
dance estimation to be not easy. For Tucker decomposition
based algorithm, the spectral mode rank can be directly equal
to the number of endmembers, but orthogonality between
the components does not conform to the characteristics of
endmembers. Moreover, the strong interaction between modes
in Tucker decomposition destroys the properties of part-based
representation and nonnegativity in linear spectral mixture
model. Therefore, it is necessary to develop an effective and
explicit technique to apply tensor factorization for spectral
unmixing.

Under tensor notation, the linear spectral mixture model can
be rewritten so that an HSI data tensor is approximated by
sum of the outer products of an endmember (vector) and its
corresponding abundance map (matrix). This form of tensor
factorization exactly corresponds to matrix-vector (slab-fiber)
third-order tensor factorization which decomposes a tensor
into a sum of component tensors, and each component tensor
is a matrix-vector outer product. The matrix-vector third-order



tensor factorization can be seen as a specific case of block term
decompositions (BTD) [43]-[45]. BTD is a combination of
CPD and Tucker decomposition. It decomposes a tensor into
a sum of component tensors as CPD, while each component
tensor is factorized as Tucker decomposition. BTD overcomes
the limit of CPD that each of its component tensor must
be rank-one, meanwhile it lifts the restriction of Tucker
decomposition that there is just one component tensor. BTD
provides a flexible frame to construct tensor decomposition
models according to their application-dependent physical inter-
pretation. The matrix-vector third-order tensor decomposition
lets each component tensor be an outer product of a vector (an
endmember) and a matrix (the corresponding abundance map),
by which we construct a straightforward link between tensor
decomposition and linear spectral mixture model. Therefore,
this type of tensor factorization has explicit physical inter-
pretation under the assumption of linear spectral mixture, as
well as preserves a complete spectral-spatial structure without
any information loss. In this paper, we propose a matrix-
vector nonnegative tensor factorization (NTF) based spectral
unmixing method, give its solving algorithm, and discuss
its distinct properties. The main contribution of our work is
cleaning off some very pivotal obstacles when tensor methods
walks into spectral unmixing application.

The rest of the paper is organized as follows. In Section II,
we briefly introduce the linear spectral mixture model and the
background of tensor factorization. This section emphatically
analyzes the limitation of existing tensor-based unmixing
algorithms and leads to the matrix-vector tensor factorization.
In section III, the model and algorithm of matrix-vector
NTF based spectral unmixing are described in detail, and the
uniqueness of model and the convergence of optimization are
also discussed. Results on the synthetic and real-world data are
reported in Sections I'V. Finally, Section V draws conclusions
and suggests future research.

II. BACKGROUND AND MOTIVATION

Unmixing aims at detecting the existence of the contributing
materials in a scene and estimating their proportions. To do
so, the mixing/unmixing models are crucial, which should
consider the interpretation of the image formation process,
be physically meaningful, statistically accurate, and compu-
tationally feasible. In this section, we introduce the linear
spectral mixing model and its link with tensor decompositions.
In particular, we give the motivation behind the matrix-vector
tensor decomposition based unmixing method.

A. Notations and concepts

In this paper, scalars are denoted by lowercase letter, e.g.,
x, vectors are written in boldface lowercased, e.g., x, matrices
correspond to boldface capitals, e.g., X, and high-order tensors
(order three or higher) are denoted by Euler script letters, e.g.,
X. A matrix is a second-order tensor, a vector is a first-order
tensor, and a scalar is a tensor of order zero. A tensor can be
represented as a multidimensional array of numerical values.
In this representation, the elements in a k-th order tensor
are identified by a k-tuple of subscripts, e.g., ;, i,,....i,- The
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operations upon tensor is based on multilinear algebra. Some
important operations and concepts of matrix and tensor that are
used in this paper are listed here, and the others are introduced
later when they appear.

Definition 1: Different dimensions of an array are called
modes. A matrix has two modes (column mode and row
mode), and a kth-order tensor X has k modes.

Definition 2: A tensor fiber is a one-dimensional fragment
of a tensor, obtained by fixing all indices except for one.

Definition 3: A tensor slab is a two dimensional section
(fragment) of a tensor, obtained by fixing all indices except
for two indices.

Definition 4: Unfolding a tensor is the process of reordering
the elements of a kth-order tensor into a matrix. For a third-
order tensor X € RI*/*K  three matrices unfolded from this
tensor are defined by

(XJEXI)(=1)K+k,i Tijk )
(XKIxT)(k=1)I+ij Tijk 2)
(XrixK)(i-1)J+jk = Tijk 3)

Definition 5: Given two matrices A € R/*7 and B ¢

REXL  their Kronecker product is a matrix denoted as A ®
B e RIEXJL g4 is defined as

a11B a12B a1sB
a21B  a2B as;B

A®B= . . 4)
annB apB ars/B

Definition 6: The Khatri-Rao product of two matrices A €
RI*7 and B € RE*7 with the same number of columns .J is
a matrix denoted as A © B € RIE*Y and is defined as

a;®@b; ) (5

Definition 7: The k-mode (matrix) product of a tensor X €
RY1 1215 with a matrix A € R7*!x is denoted by X x; A
and is of size [y X --- Iy X J X Ip41 X - -- Ix. The elements
of this product are

A@B:(al®b1 a2®b2

Iy
(X 5k A)iy i rjingnine = D Tirinire iy, (6)
=1
Definition 8: The outer product of two tensors A €
RIxf2x--xIp and B € R71*7/2%--%JQ ig the tensor Ao B €
R 2 xIpxJixJ2x...xJq and its elements are defined by

(A0 B)iyiy..ipjijo.jq = iriz...ipbjrjs.jo )

For example, the outer product of a matrix A and a vector b
is a third-order tensor.

B. Linear spectral mixture model

The linear mixture model represents the spectrum of a pixel
of K wavelength-indexed bands in the observed scene based
upon R endmembers and their corresponding abundances. It
is given by

x=Ms+uv )

where x denotes a K x 1 vector of the observed pixel spectrum
in an HSI, s is a R x 1 vector of abundance fractions for



each endmember, v is a K x 1 vector of an additive noise
representing the measurement errors, and M is a K X R
spectrum matrix whose columns correspond to an endmember
spectrum.

Using matrix notation, the mixing model above for the N
pixels in the image can be rewritten as

X=MS+T 9)

where the matrices X € REXN § ¢ REXN gpnd T € REXN
represent, respectively, hyperspectral data, the abundances of
all pixels on all endmembers, and additive noise.

Two properties are usually added to the linear spectral
mixed model. The first is nonnegativity which assumes that
the contribution from endmembers should be larger than or
equal to zero, and the spectral irradiance of any material is also
nonnegative, i.e., the matrices M and S are nonnegative. The
second is sum-to-one of s which assumes that the proportional
contributions from the endmembers to every mixed pixel
should be added up to one.

C. The link between linear spectral mixture model and tensor
factorization

Equation (9) can be seen as a matrix factorization problem.
Many matrix factorization based unmixing algorithms have
been proposed. The main trend of this family of approaches
is to incorporate physical and mathematical constraints into
matrix factorization models. Among these constraints, various
spatial and spectral structures such as local and nonlocal
similarity have been proved to be very helpful [19]-[21]. How-
ever, these constraints cannot fully and accurately compensate
for the structure loss during HSI to 2D matrix conversion.
Tensor is a natural extension of matrix to represent multi-
dimensional arrays. Obviously, the third-order tensor is a
lossless representation of an HSI, which directly embeds the
inherent spectral-spatial structure of an HSI into its own struc-
ture and operations. In theory, it provides a more consistent
and comprehensive framework for unmixing problem against
matrix based methods.

Similar to matrix factorization which is an important tool
of linear algebra for two-dimensional data analysis, tensor
factorization is used to analyze the intrinsic/hidden structure
of multi-dimensional array with multi-linear algebra. Here we
briefly introduce two widely adopted and foundational tensor
factorization methods, CPD and Tucker decomposition, and
their applications to spectral unmixing.

Definition 9: The CPD factorizes a tensor into a sum of
component rank-one tensors. For example, the CPD of a third-
order tensor X € R!*/*X ig defined as

R

X = Zwr(ar ob,oc,)

r=1

(10)

The CPD for a third-order tensor is illustrated in Fig. 1(a).
Definition 10: The rank of a tensor X is the minimal number

of rank-one tensors that yield X in a linear combination. A

kth-order tensor is a rank-one tensor if and only if it equals

the outer product of k£ nonzero vectors. The factor matrices
associated with the CPD in Equation (10) can be expressed as

A = J[a,...,ag] € RI¥E (11)
B = [by,...,bg] e R/*E (12)
C = Jci,...,cp] € REXE (13)

so that Equation (10) can be equivalently written in the form
of unfolded matrices

Xrixx = (A®B)CT (14)

One can observe that Equation (14) and the linear spectral
mixture model under matrix notation in Equation (9) seem to
be identical in form without the noise term, i.e., (A © B)
is a matrix with the size of IJ x R representing the abun-
dances of all pixels on all endmembers, and C”" contains the
endmembers.

Definition 11: The Tucker decomposition factorizes a tensor
to the k-mode product of a small core tensor and factor ma-
trices. For example, given a third-order tensor X € RIXIXEK
find a core tensor § € ROXT*V with the indices Q < I,
T <« J, and V <« K, and three factor matrices: A =
[al,ag, R 7aQ] S RIXQ, B = [bl,bg, ey bT} S RJXT,
and C = [cy,Ca,...,cy] € REXV o that
Z Y9qtv (aq © bt o Cu) (15)

which also can be expressed in a compact matrix form using
mode-£ multiplications

X=Gx1Ax,Bx3C (16)
Equation (16) can be equivalently unfolded as
Xisxk = [(A®B)Ggrxv]|CT )

The Tucker decomposition for a third-order tensor is illus-
trated in Fig. 1(b). We find that Equations (17) and (9) are
also similar in form, i.e., [(A ® B)Ggrxv| is a matrix with
the size of I.J x R representing the abundances of all pixels
on all endmembers, and C7T is the endmembers.

However, compared with matrix factorization, from the view
of physical interpretation, the link between tensor decomposi-
tion and linear spectral mixture model is still not clear. Fur-
thermore, there are a lot of difficulties in the implementation of
these two tensor factorization algorithms for unmixing. CPD
based unmixing method requires the a priori knowledge of
the tensor rank R. There is no straightforward algorithm to
determine the rank of a given tensor. In fact, this is an NP-
hard problem. In most cases, the number of endmembers can
be obtained by means of statistical/geometrical methods or
domain knowledge, but this estimated number of endmembers
can not be used as tensor rank because it is much smaller
than the real rank. In practice, for simplicity, max (I, J, L)
or its severalfold value is used as the tensor rank R in
CPD. Consequently, each column of C is not identified as
an endmember as in NMF based unmixing methods. In [37]
it is assumed that a group of similar columns in C match
to the same material so that the average or central vector of



a group can represent an endmember, and the corresponding
abundance matrix of this endmember is the summation of
the columns of A ® B in the same group. The groups are
generated by clustering method. Although the mathematical
justification of this assumption is not very solid, the exper-
imental results on synthetic hyperspectral data sets reported
in [38] are promising. However, it has been not applied to
real HSI data. On the other hand, Tucker decomposition is a
high order extension of singular value decomposition (SVD)
of matrix. Firstly, SVD is not a suitable matrix decomposition
for unmixing problem because its main property, orthogonality,
does not match the physical mechanism of spectral mixing,
i.e., the spectra of endmembers or abundance matrices in an
HSI are not orthogonal to each other. Secondly, the core tensor
G 1is related to all three mode factors A, B and C, but how
to divide G into abundance and endmember respectively is not
straightforward and its physical mechanism remains uncertain.
Thirdly, the nonnegative property of mixture model is not
easy to be imposed on Tucker decomposition. Hence, Tucker
decomposition based unmixing method is more difficult to
interpret than CPD based method [39].

A main difference between CPD and Tucker decompositions
is that CPD treats all tensor modes equally and processes them
identically while Tucker decomposition can distinguishes the
modes of tensor according to their application-dependent phys-
ical interpretation. Although an HSI can be represented and
processed as a third-order tensor, its modes are distinguishable
in the spectral-spatial manner, in which two spatial indices are
distinguished from a spectral mode. On the other hand, Tucker
decomposition does not clearly divide a tensor into a sum of
a set of component tensors, so that it is difficult to directly
link it to the linear mixture model. Fortunately, several groups
of researchers have proposed models that combine aspects of
CPD and Tucker [22]. Among them, block term decompo-
sitions (BTD) is a typical one for modelling more complex
tensor structures than CPD and Tucker decomposition [43],
[44].

Definition 12: The BTD factorizes a tensor into a sum
of component tensors (or called terms), and each component
tensor is defined as the k-mode product of the core tensor

and factor matrices. For example, given a third-order tensor
X ¢ RIXIXK

R
xzzgrxlAr x2 B, x3 C,

r=1

(18)

The BTD for a third-order tensor is illustrated in Fig. 1(c).
Compared with CPD, it does not require that each component
tensor is rank-one. Compared with Tucker decomposition, it
is a sum of several component tensors rather than just one.
Therefore, BTD is the generalization of CPD and Tucker
decomposition, which has been used for decoupling mul-
tivariate polynomials [46], blind deconvoluting DS-CDMA
signals [47], separating mixed audio signal, and so on [45].

According to linear spectral mixture model, it is expected
that an HSI tensor can be approximated by a sum of com-
ponent tensors in which each component tensor is the outer
product of a matrix and a vector (endmember). This matrix

represents abundances of corresponding endmember at each
pixel. As the spatial position information of pixels is kept in
this matrix, it is also called abundance map. To this end, we
only need to set G, € RE-*LrX1 to be an identity matrix,
A, € RIXLr B, € R/*Lr and ¢, € REXL leading to a
specific BTD.

Definition 13: The matrix-vector tensor decomposition fac-
torizes a third-order tensor into a sum of component tensors.
Each component tensor is defined as the outer product of a
matrix E,. and a vector c,, and E, is the product of two
matrices A, and B,.

R R
JC:ZAT-B%FOC,,:ZETOCT
r=1

r=1

19)

The matrix-vector tensor decomposition is illustrated in Fig.
1(d), which is also named as BTD in rank-(L,, L,.,1) terms.
CPD is a specific BTD with rank-(1,1, 1) terms.

For matrix-vector tensor decomposition based unmixing, c,
can be considered as the rth endmember and E,. is the corre-
sponding abundance map. Now a straightforward link between
matrix-vector tensor decomposition and linear spectral mixture
model has been set up.

III. MATRIX-VECTOR NONNEGATIVE TENSOR
FACTORIZATION BASED UNMIXING MODEL

In the last section, we have built a link between matrix-
vector tensor factorization and linear spectral mixture model
on their form of representation. However, the same form
between them cannot guarantee that the endmembers and
abundances of all the materials could be recovered by such ten-
sor decomposition. Therefore, besides the same factorization
form, matrix/tensor factorization should add some physical
mechanism based conditions to make the result fit in a specific
goal. Among them, nonnegativity based factorization solution
is attractive because it usually provides a part-based repre-
sentation of the data, making the decomposition factors more
intuitive and interpretable. In particular, part-based represen-
tation strongly agrees with the physical mechanism of spectral
mixture. The effectiveness of NMF based unmixing has been
demonstrated in many published literatures [12], [13], [18]-
[20]. Inspired by NMF based unmixing, we add nonnegativity
into matrix-vector tensor factorization. Nonnegativity enables
the tensor decomposition to be a part-based representation as
NMEF, leading the factorization result to meet the requirement
of spectral unmixing.

Combining matrix-vertex tensor factorization and nonneg-
ativity property, a spectral unmixing model under tensor
notation can be derived.

R R
X=> Eoc,+N=Y A, Bl oC,+N

r=1

(20)

r=1

st. A,,B,,c.>=0

We call it the matrix-vertex NTF based unmixing model,
in which X € R’/¥ is a third-order HSI tensor with the
spatial size of I x J and the number of spectral bands K,
c, is considered as an endmember, and the matrix E, as its
corresponding abundance map.
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Fig. 1. Four tensor decomposition models of a third-order tensor.

If the noise term N is ignored, the matrix representation of
Equation (20) can be written as

Xixk = [(A1®B1)lg, - (Agr®Bg)ly,] ClI)
Xjkxr = (B&C)-AT (22)
Xgrixs = (COA)-BT (23)
in which A = [A;...Ag], B = [B;...Bg], and C =

[c1...cg]. 11, is an all-one column vector with length L.
Definition 14: The operation © is a generalized Khatri-Rao
product for partitioned matrices with the same number of sub-

matrices. For example, both matrices A and B have R sub-
matrices, so their generalized Khatri-Rao product is defined
as

AGB = 24

(A1 ®B;...Ap®Bg)

The matrix-vector NTF based unmixing is to estimate c,
and E,.,r =1,..., R, which can be defined as an optimization
problem of minimizing the mean square error (MSE) with
nonnegative constraints

R
mme)C ZE oc,|% s.t.

r=1

Ar,Br,c, 20 (25

in which Frobenius norm of a third-order tensor is defined as

Xl = \/ﬁ

Alternating least square minimization algorithm is used
to solve this optimization problem [48], [49], i.e., the cost
function is minimized in an alternating way for each factor
matrix while the others are fixed. If we fix B and C, the
sub-optimization problem is

(26)

min [ X ks — (BOC) - AT st. A=0  (27)
We deduce the multiplicative update rule using the method
of Lagrange multipliers. Let S = B®C, and the Lagrange

function W is given by

U= |Xsxxr—S-AT|Z +BA (28)

Taking the partial derivatives of U with respect to A, we get

VaVl = (SA" — X k.1)'S+ 0 (29)

According to the Karush-Kuhn-Tucker (KKT) conditions,
O©A = 0, the multiplicative update rule for A is obtained.

A A xXT ;S./(ASTS) (30)

Similarly, the sub-optimization problem and its multiplicative
update rule for B are

mén||XK1XJ—(C©A)~BT||2F st. B>0 (31

B+ B.x X%, ;S./(BSTS) (32)

where S = COA.
The sub-optimization problem and the multiplicative update
rule for C are

min [X7xx~[(A1 ©Bi)lr, - (Ar ©Br)lr,] - CTll%

st. C>=0
(33)

C<+ C.xX7F, rS./(CSTS)

where S = [(Al ® Bl)lLl cee (AR ® BR)]-LR]-

The alternating least square optimization algorithm for
Equation (25) is shown in Algorithm 1. Step 4 is used to avoid
the overflow or underflow of A and B during computation
process of Algorithm 1.

(34)



Algorithm 1 Alternating least square algorithm for matrix-
vector NTF
Input: An HSI cube (third-order tensor) X
Parameters R, L,, r = 1,..., R. For simplicity, L, = L
for all r.
QOutput: A, B, and C.
1: Initialize A, B and C.
2: Update A with Equation (30)
3: Update B with Equation (32)
4: Column scaling of A and B.
A = Ai/[[A]L B <= Be - [[AL|
Update C with Equation (34)
6: Repeat steps 2-5 until convergence of the cost function in
Equation (25).

W

The number of endmembers R can be determined a prior
by domain knowledge or endmember extraction methods [50],
[51].

L, is an important parameter, which controls the rank of
abundance matrix of the rth endmember. As we know the
rank of E, = A, - BT is not always equal to parameter
L, where L, < min(7,J). Instead, the rank of E, must be
equal to or less than L,., because the rank of the product of
two matrices is less than the smaller rank of these two factor
matrices, and the rank of A, or B, is also equal to or less
than L,.. Therefore, in theory L, is only required to be equal
to or larger than the actual rank of abundance matrix E, and is
equal to or less than min (7, J). However, from the perspective
of implementation, closer value of L, and the actual rank of
E, leads to more stable and accurate results of optimization,
because the sizes of A, and B, (number of variables need to
be estimated) become small when L, approximates the actual
rank of abundance matrix. In practice, accurate determination
of the rank of abundance matrix E,. of the rth endmember is
impossible. We only know this matrix has low-rank or sparse
property in most real cases due to its spatial correlation and
sparse distribution. On the other hand, in general the ranks
of the all abundance matrices E, for r = 1,2,..., R are not
the same, so determination of these ranks is a more difficult
task. Therefore, we can assign a relative small value to L,
compared with I and J. For simplicity, L, is set the same
value for » = 1,..., R. In the experiments, we will analyze
the unmixing performance with respect to different values of
L,.

The convergence of the cost function in Equation (25) is
easy to prove. The cost functions in Equations (27), (31)
and (33) are non-increasing under the update rules (30),
(32), and (34) respectively, which has been proved in the
convergence analysis of NMF algorithm with multiplicative
update rules [52], as their update rules are identical. Obvi-
ously, iteratively using these update rules, the cost function
in Equation (25) will converge to a point and then cease to
decrease.

Moreover, the uniqueness of matrix-vector NTF is also
an interesting probelm. In [49], several conditions are giv-
en, under which essential uniqueness of BTD with rank-
(L, Ly, 1) orrank-(L, L, 1) terms is guaranteed. For example,
one condition of them for BTD with rank-(L,L,1) terms

is that min(/,J) > LR and C does not have proportional
columns. This condition is sometimes satisfied for spectral
unmixing in application. The number of endmembers R is
limited, and the rank of abundance matrix L is less than
the length I or width J of the image due to the assumption
that the abundance map can be low-rank represented, so that
min(Z,J) > LR may be satisfied. At the same time there
is not any pair of endmembers whose spectra are totally the
same but only have scaling difference, which means there is
not any pair of columns of C being proportional. Although
by now a strict condition to guarantee the uniqueness of
the proposed matrix-vector NTF has not been derived, i.e.,
nonnegative BTD with rank-(L, L,1) terms, some research
works have shown that the conditions of uniqueness for a
specific tensor decomposition can be relaxed to its nonnegative
version [53]. Therefore, the uniqueness of matrix-vector NTF
can be achieved in some cases of spectral unmixing.

No matter whether the uniqueness exists or not, the final
solution of the optimal problem in Equation (25) based on
alternating minimization technique and multiplicative update
rule is dependent on the initialization due to its non-convex
property. Random initialization is usually used, in which A,
B and C are initialized by setting their entries to random
values in the interval [0, 1]. However, it does not well control
the quality of the final unmixing result. In some methods,
an alternative unmixing approach is selected to generate the
initialized result [13], [21], which guarantees an acceptable
final unmixing result. In this paper, in order to objectively eval-
uate the performance of matrix-vector NTF algorithm without
introducing external factors, we use random initialization for
the experiments, and ten times are run to generate an average
result for any experiment.

Besides the nonnegativity constraint, sum-to-one property is
also widely considered. As the method proposed in [16], [21]
for NMF based unmixing model, the sum-to-one constraint can
be embedded into the matrix-vector NTF model in a similar
way, therefore, the cost function in Equation (25) is modified
nto

R R
min || X "B, oc,|f + 0] Y Er — Ll
° r=1 r=1

AT7 B’I‘7C’I‘ i O

(35)
s.t.

where the parameter § controls the impact of sum-to-one
constraint on the cost function, 1;.; is the all-one matrix
with the size of I x J.

Now three sub-optimization problems in alternating mini-
mization algorithm become

min || Xk« —(BOC) - A%+ 6|ABT — 11,17
st. A>0

(36)

: OAAY . T2 T 2
min X y—(COA) - B |[p +0|ABY — 115 37
st. B>0

min IXrsxx—[(A1 ©@Bi)1y, -+ (Ag ©Bg)1y,]- CT %

st. C+0
(38)



Their corresponding multiplicative update rules are

A A (XL S+01;.B)./(ASTS +§ABTB) (39)
B« B.x (X%, ;S+017, ,;A)./(BSTS + 6BATA) (40)

C+ C.xXF, ,S./(CSTS) (41)
Accordingly, in each update step of Algorithm 1, we can
replace Equations (30), (32) and (34) with Equations (39), (40)
and (41) respectively. In general, sum-to-one is an optional
constraint. As the linear spectral mixture model is just an
approximate model in real applications, sum-to-one is also an
approximate constraint. Therefore, with or without sum-to-one
is dependent on the HSI data and their acquisition condition.

Finally, we briefly analyze the computational complexity
of the proposed algorithm. According to Algorithm 1, each
iteration mainly contains three updating steps of Eq. (30),
(32), (34) for three sub-optimization problems respectively.
For Eq. (30), the number of floating-point operations needed
is RL(2I + 2IJK 4+ 2JKRL + 2IRL + JK); for Eq.
(32) the number of floating-point operations is RL(2J +
2IJK + 2IKRL + 2JRL + IK); and for Eq.(34) it is
R(2K 4+ 2IJK + 2IJR + 2K R + 3IJL). Therefore, given
that the algorithm terminates after m iterations, the overall
computational complexity of Algorithm 1 is O(mIJKRL +
mIKR2L? + mJKR?L?), in which I, J and K are the
width of image, the height of image, and the number of
bands respectively, R is the number of endmembers, and
L is the rank parameter of abundance matrix. It can be
found that the complexity is linear with the size of HSI cube
(I x J x K), which is the same as that of standard NMF
algorithm, because three sub-optimization problems are the
same as NMF problem. For very large HSIs, accelerated hier-
archical alternating least squares, random block-wise methods
and GPU processing schemes can be used.

IV. EXPERIMENTS AND DISCUSSIONS

Having presented our method in the previous sections, we
now turn our attention to demonstrate its utility for unmixing.
A series of experiments on synthetic and real-world HSI data
have been done. We compare the proposed matrix-vector NTF
method with several alternative methods including the basic
NMF method (NMF), L/, sparsity regularized NMF (L /5-
NMF) [16], and manifold regularized sparse NMF (MRS-
NMF) [20]. NMF is a baseline method, and all other ap-
proaches in the experiments are extended from it. Ly /o-NMF
has been known as one of the best sparse NMF models for
spectral unmixing. MRS-NMF is derived from L, ,,-NMF by
adding spectral-spatial manifold constraint. The main goal
of the experiments is to demonstrate that matrix-vector NTF
itself has the advantage of preserving the spectral and spatial
structure of HSI. On the contrary, in NMF based algorithms
the spectral, spatial or their joint structures must be introduced
from outside as constraints.

The unmixing performance is measured using spectral angle
distance (SAD) and root mean squared error (RMSE). The

SAD evaluates the dissimilarity of the rth endmember signa-
ture €, and its estimated signature c,, which is defined as
T/\
SAD, = arccos (CTC:> (42)
l[exlllfex |l
The RMSE measures the error between the real abundance
map E, of rth endmember and its estimated map E,., which
is defined as
RMSE, — [ |E, — E, |? : (43)
T N T T
where N = I x J is the number of pixels in the image. In
the experiments, we use the average SAD of all endmembers
and the average RMSE of all abundance maps to indicate
the unmixing performance, which are defined as SAD =

+ 25:1 SAD, and RMSE = & Zf’zl RMSE, over ten runs
with random initialization.

A. Experiments on synthetic data

The synthetic data are generated by the following steps [16]:
1) Six spectral signatures (Carnallite, Ammonio-jarosite, Al-
mandine, Brucite, Axinite and Chlonte) are chosen from
the United States Geological Survey (USGS) digital spectral
library. The selected spectral signatures contain 224 spectral
bands with wavelengths from 0.38 pm to 2.5 um. Fig. 2 shows
the signatures of them. These six spectral signatures are used
as the endmembers to create mixed pixels. 2) A synthetic
image with size 22 x 22 is partitioned into z2 blocks, and each
obtained block has z x z pixels. 3) Each block is assigned
a randomly selected endmember to fill with all the pixels
therein. 4) The image is processed using a (2z+1) x (2z+1)
mean filter to generate the mixed pixels. 5) The pixels with
fractional abundance that is larger than a specified threshold
0 will be replaced by a mixture of all endmembers with
equal abundances, so that the pixels are highly mixed, and
no pure pixel exists. 6) With steps 2-5, the abundance maps
of the synthetic HSI are constructed, so that the clean synthetic
HSI is generated. 7) To evaluate the robustness to noise, the
obtained clean HSI is disturbed by zero-mean white Gaussian
noise having pre-specified signal-to-noise ratio (SNR) that is
defined as -

E
SNR = 1010g,, 2 Y]

EleTe]
where y and e are the clean signal and the noise at a pixel.
E[-] denotes the expectation operator.

We have done a number of experiments to analyze the
properties of matrix-vector NTF algorithm and its unmixing
performance against other methods under various situations.

1) Parameter setting: The matrix-vector NTF based unmix-
ing method has two forms: one without sum-to-one constraint
and the other with this constraint. For simplicity, we abbreviate
them as MV-NTF and MV-NTFE-S respectively. Here we will
compare MV-NTF and MV-NTF-S on synthetic data to see the
effect of sum-to-one constraint. Therefore, we first present in
Fig. 3 the result of MV-NTF-S on clean synthetic data (z = 8
and 0 = 0.7) with respect to the parameter ¢ that controls
the impact of sum-to-one constraint on the cost function in

(44)
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Fig. 2. The spectral signatures of six endmembers used in synthetic data.

Equation 35. It should be noted that MV-NTF-S with § = 0
equals to MV-NTF without sum-to-one constraint. From Fig.
3, we can see that when § < 1, SAD has very little change,
and RMSE is stable when 0.2 < § < 1. In the following
experiment, we set § = 0.4 for MV-NTF-S.
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Fig. 3. SAD and RMSE with respect to the impact of sum-to-one constraint.

For matrix-vector NTF based unmixing algorithm, the num-
ber of endmembers R and the rank of abundance matrix L,
are two important model parameters. In practice, the number

of endmembers can be obtained by the domain knowledge
or other estimation methods, so here we only discuss the
impact of L, on the unmixing performance. A lot of studies
have demonstrated that the distribution of abundances in an
HSI is always low rank, so L, is a good index to reflect
the distribution of abundance. Here we evaluate the unmixing
performance with respect to rank changes. For simplicity, we
let L, = L for r = 1,2,..., R, which can greatly reduce
the complexity of model. In the experiment, we set z = 8§,
SNR = 30 and 6 = 0.7 for the synthetic data.

Fig. 4 shows the unmixing results with different ranks of
abundance matrix, from which we find that both SAD and
RMSE do not simply decrease or increase with the rank
changes, but have little oscillations. However, in a large range
of 20 < L < 60, the unmixing performance is basically
stable on a high level (some oscillations might be caused by
initialization of optimization and noise disturbance), which
implies that the determination of the parameter L is not a
difficult problem for the matrix-vector NTF based unmixing
algorithm. The spatial size of the synthetic HSI is 64 x 64,
i.e., the maximal rank of the abundance matrix is 64. The
experimental results give us a simple guidance on choosing
the value of rank: except for very large or very small ranks, all
other values can be accepted. Compared with other sparsity or
low rank based unmixing algorithms, the parameter setting of
our method is much easier in real applications. In the following
experiments, we set L ~ 2 min(I, J).

2) Method comparison under different noise levels: In this
experiment, we compare the unmixing performance of four
methods NMF, L;/5-NMF, MRS-NMF, MV-NTF and MV-
NTF-S under different noise levels. Adding Gaussian noise
into clean HSI might cause some pixels to have negative values
in their spectral signatures, especially the noise level is high.
In this case, these negative values are simply reset to zero.

The parameters z = 8 and 6 = 0.7 are set for all noisy data.
In order to ensure fair comparison, we first randomly initialize
A, BT r = 1,...R for matrix-vector NTF, and then use
ArBf as the initialized abundance maps of NMF, L, /2-NMF,
and MRS-NMF. At the same time, all five methods have
the same randomly initialized endmembers. The comparison
results are shown in Tables I and II, and Fig. 5, from which
it can be found that matrix-vector NTF is much better than
other algorithms under different noise levels. As expected,
NMF delivers the worst results in terms of both SAD and
RMSE because it does not have a sparsity regularizer and
misses spectral-spatial structure. L;/o-NMF and MRS-NMF
have very similar SAD results, but MRS-NMF has less RMSE
than L;/,-NMF, which shows the spectral-spatial informa-
tion embedded in MRS-NMF is beneficial to the abundance
estimation of a whole image. Meanwhile, their L,,, norm
based sparsity constraint is very helpful to both endmember
and abundance estimation. Our matrix-vector NTF not only
preserves the intrinsic spectral-spatial joint structure of an HSI,
but also allows low-rank representation for abundance maps,
which makes it more effective than other unmixing methods
such as Ly ,o-NMF and MRS-NMF that externally enforce the
constraints of spectral-spatial structure and sparsity into NMF
model. In general, the performance of all unmixing methods
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Fig. 4. SAD and RMSE with respect to the rank of abundance matrix.
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Fig. 5. SAD and RMSE with respect to the noise level.

TABLE 1 TABLE IIT
SAD OF THE UNMIXING METHODS WITH RESPECT TO THE NOISE LEVEL. SAD OF THE UNMIXING METHODS UNDER DIFFERENT MIXING LEVELS.
SNR 15 20 25 30 35 Inf 0 0.5 0.6 0.7 0.8 0.9
NMF 0.3373  0.3275 03189 0.2738 0.2736  0.2734 NMF 0.2383  0.2580 0.2528 0.2485  0.2871
L1/2—NMF 0.2187 0.2022 0.2015 0.1813 0.1806 0.1816 Ll/g-NMF 0.2071 0.1920 0.1855 0.1967 0.1936
MRS-NMF  0.2152  0.2020 0.2016  0.1807 0.1795 0.1794 MRS-NMF  0.2064 0.1902 0.1848  0.1967  0.1937
MV-NTF 0.1747 0.1732  0.1689 0.1520 0.1525 0.1512 MV-NTF 0.1921 0.1922  0.1781 0.1724 0.1903
MV-NTEFE-S 0.1757 0.1700 0.1648 0.1519 0.1526 0.1512 MV-NTF-S 0.1875 0.1887 0.1794 0.1709 0.1788
TABLE II TABLE IV
RMSE OF THE UNMIXING METHODS WITH RESPECT TO THE NOISE LEVEL. RMSE OF THE UNMIXING METHODS UNDER DIFFERENT MIXING LEVELS.
SNR 15 20 25 30 35 Inf 0 0.5 0.6 0.7 0.8 0.9
NMF 0.1509 0.1485 0.1486 0.1481 0.1480 0.1480 NMF 0.1219  0.1411 0.1426  0.1423 0.1346
L1/2—NMF 0.1450 0.1393 0.1367 0.1357 0.1349 0.1348 L1/2-NMF 0.1421 0.1363  0.1356  0.1331 0.1319
MRS-NMF  0.1435 0.1371 0.1357 0.1346 0.1328 0.1231 MRS-NMF  0.1197 0.1321 0.1332  0.1322 0.1318
MV-NTF 0.1018 0.1021 0.1026 0.0972 0.1012 0.1035 MV-NTF 0.1121 0.1161 0.1152  0.1134 0.1149
MV-NTF-S 0.0925 0.0901 0.0906 0.0868 0.0865 0.0887 MV-NTF-S  0.1139 0.1142 0.1121  0.1090 0.1180

is becoming worse as the noise level increases, but both of
MV-NTF and MV-NTF-S are more robust to the noise than
other methods.

3) Method comparison under different mixing levels: This
experiment aims at evaluating the performance of five unmix-
ing algorithms in the synthetic HSI data with different mixing
levels. The mixing level is controlled by the parameter 6 in
data generation, i.e., a larger 6 implies smaller mixing level. In

the experiment, we set z = 8 and SN R = 25 for all synthetic
HSI data. The SAD and RMSE of five unmixing methods
in the synthetic HSI data with 6 0.5,0.6,0.7,0.8,0.9
respectively are shown in Tables III, IV and Fig. 6. We found
that both of MV-NTF and MV-NTF-S are better than other
three methods in terms of SAD and RMSE. Generally, all
five methods under comparison are not sensitive to the mixing
level.
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Fig. 6. SAD and RMSE with respect to the mixing level.

TABLE V
SAD OF THE UNMIXING METHOD UNDER DIFFERENT IMAGE SIZES.

Sample Size 1296 2401 4096 6561 10000
NMF 0.3515 0.2619 0.2528 0.2614  0.2693
Ly/>-NMF 02567 0.2479  0.1855  0.1994  0.1771
MRS-NMF  0.2592  0.2509 0.1848  0.1997 0.1741
MV-NTF 0.2256  0.2091  0.1781  0.1720  0.1503
MV-NTFE-S  0.2021  0.2008 0.1794  0.1716  0.1355

4) Method comparison under different image sizes: This
experiment is used for evaluating five unmixing methods in
the synthetic data with different sizes of image (number of
pixels in an HSI). The sizes of image are chosen as 36 x 36,
49x 49, 64 x 64, 81 x 81, and 100 x 100 respectively. The other
parameters are set as SINR = 25 and 6§ = 0.7. Tables V, VI
and Fig. 7 show the unmixing performance of all methods in
terms of SAD and RMSE. It can be seen that their performance
becomes to be better as the image size increases, which
demonstrates that the spectral, spatial, and their joint structures
of an HSI is very helpful to solve the unmixing problem. Large
image size implies the richness of the structural information
within it. Under all image sizes, MV-NTF and MV-NTF-S are
better than the other three approaches.

After comparing the above experiments results, it can be
found that MV-NTF and MV-NTF-S are very similar and both
of them are better than NMF, L; /5-NMF and MRS-NMF.

TABLE VI
RMSE OF THE UNMIXING METHODS UNDER DIFFERENT IMAGE SIZES.
Sample Size 1296 2401 4096 6561 10000
NMF 0.1573 0.1447 0.1426  0.1434  0.1259
L1/2-NMF 0.1556 0.1388 0.1356  0.1375 0.1133
MRS-NMF 0.1536 0.1368 0.1332  0.1353  0.1077
MV-NTF 0.1260 0.1047 0.1152  0.0805  0.0900
MV-NTF-S 0.1189  0.1093 0.1121  0.1020  0.0968
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Fig. 7. SAD and RMSE with respect to the image size.

B. Experiments on real-world Data

Three real-world data sets were used to evaluate the pro-
posed matrix-vector NTF method: Urban, Jasper, and Cuprite.
These three HSI data have different numbers of endmembers,
sizes of image, and acquisition sensors, which help us compre-
hensively evaluate the unmixing performance. Four unmixing
methods NMF, L, /,-NMF, MRS-NMF, and VCA-FCLS [5]
were chosen for comparison. The parameter settings of these
algorithm were according to their original papers. As the
unmixing performance of MV-NTF-S is slightly better than
MV-NTF on synthetic data, we use matrix-vector NTF with
sum-to-one constraint algorithm for real-world data.

1) HYDICE Urban Data set: This data set was generated
by the Hyperspectral Digital Imagery Collection Experiment
(HYDICE) on an urban area. Its size is 307x 307 and it has 210
spectral channels with spectral resolution of 10nm acquired
in the 400nm and 2500nm range. After low SNR bands had



Fig. 8. The 80th band image of HYDICE Urban data set.

been removed, 162 bands remained for the experiments. Fig. 8
shows its 80th band image. We set the number of endmembers
as 4, including roof, grass, asphalt and tree.

In order to give quantitative evaluation results, we use the
method in [16], [17] to obtain the reference endmembers
and abundances of HYDICE Urban data set. The reference
endmember spectra of various materials are manually chosen
from the hyperspectral data itself, e.g., the spectrum in the
coordinate position of (78,220) in HYDICE Urban image is
selected as the asphalt spectrum, which is very similar to the
asphalt spectrum in the spectral library. Once the reference
endmembers are determined, their corresponding reference
abundances are computed by the method of least squares,
subject to sum-to-one and positivity constraints [7].

The SAD results of the unmixing methods are shown in
Table VII. It can be seen that matrix-vector NTF is better than
the other four methods. Fig. 9 shows the estimated endmember
signatures of matrix-vector NTF against references. We found
that the estimated endmember signatures are very close to
their corresponding reference ones. Fig. 10 shows the reference
abundance maps and estimated abundance maps respectively.
All these results demonstrate that the proposed matrix-vector
NTF can achieve a competitive unmixing performance com-
pared with the state-of-the-art unmixing approaches on this
data set.

2) Jasper Ridge Data set: Jasper Ridge data set was col-
lected by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) over Jasper Ridge in central California, USA. It
contains 224 bands covering the wavelengths from 0.38um to
2.5um, with a 10 nm spectral resolution. The size of original
image is 512 x 614. We only used a part of it with the size of
100 x 100, whose 80th band image is shown in Fig. 11. We
removed some low SNR and water-vapor absorption bands so
that 198 bands were retained. Four endmembers are assumed
in the image, which are soil, water, tree and road. Its reference
endmembers and abundances are obtained by the same method
used for HYDICE Urban data.

The comparative SAD results of five methods are given
in Table VIII. Matrix-vector NTF and MRS-NMF are better
than other methods. Matrix-vector NTF outperforms MRS-
NMF in terms of the mean SAD of all four endmembers.
The estimated endmember signatures of matrix-vector NTF
against the references are shown in Fig. 12, from which we
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Fig. 9. Endmembers of HYDICE Urban estimated by matrix-vector NTF.
Solid lines denote the reference endmembers and dashed lines denote the
estimated endmembers.

Fig. 11. The 80th band image of Jasper Ridge data set.

can see that their difference is very small. All abundance maps
generated by five algorithms are shown in Fig. 13.

3) Cuprite Data set: The third real HSI was acquired
by AVIRIS over Cuprite in southern Nevada, USA. As the
minerals are highly mixed in the scene and the number of
main materials is up to 10, this data has been widely used to
investigate the performance of various unmixing algorithms.
The cuprite data contains 224 bands with the wavelength from
0.4pm to 2.5um. In the experiments, a region with the size of
250 x 191 selected from the original data set was used. Fig. 14
shows the 80th band image of this data set. After removing
the low SNR and water vapor absorption bands, 188 bands
remained for the experiments.

For Cuprite data set, the reference endmembers and abun-
dances about this scene have been reported in [54] which used
the spectral correlation between a scaled laboratory reference
spectrum and ground calibrated Cuprite data for each pixel,
and the library spectrum with the highest correlation is chosen
as the best match. The library spectra of the main minerals in
the scene are selected as the ground truth of endmembers, and
the quality of fit for each mineral is calculated for each pixel
and the results are considered as the reference abundances.



TABLE VII
MEANS AND STANDARD DEVIATIONS OF SAD ON HYDICE URBAN DATA.

Algorithm NMF Ly ,5-NMF MRS-NMF VCA-FCLS MV-NTF
Asphal 0.1347 + 4.05% 0.1089+0.74% 0.1223+1.21% 0.4307+44.08%  0.1638 £ 0.87%
Grass 0.8479 + 45.40% 0.1604-+ 4.67% 0.1716£7.93% 0.41.33+0.00%  0.2268 4+ 13.64%
Tree 0.1331 + 0.68% 0.2869 + 6.83% 0.2229412.20% 0.3083£6.57% 0.1054+3.26 %
Roof 0.9176 +13.21%  0.4438 +13.33%  0.4346+£15.59%  0.7443+14.89% 0.3707+2.33%
Mean 0.5083+ 13.50% 0.2500+ 5.04% 0.2378 £ 6.62%  0.4742+7.67% 0.2167+ 2.25%

(a) MV-NTF

(b) NMF (©) Ly /2-NMF

(d) MRS-NMF (e) VCA-FCLS (f) Reference

Fig. 10. Estimated abundance maps by five unmixing algorithms on the HYDICE Urban data set. From top to bottom, the rows are the abundance maps of

asphalt, grass, tree, roof.

TABLE VIII
MEANS AND STANDARD DEVIATIONS OF SAD ON JASPER RIDGE DATA
Algorithm NMF Ly /5-NMF MRS-NMF VCA-FCLS MV-NTF
Tree 0.2199 +2.91% 0.1142 + 7.40%  0.0833+6.93% 0.2576 +4.58%  0.2126+ 1.74%
Water 0.3372+3.42% 0.1515+0.73% 0.1275+0.57 % 0.2517+0.31% 0.2519+0.86%
Soil 0.1514+£5.25% 0.1111£3.53% 0.0671+1.39% 0.4483+20.76% 0.1504+ 7.77%
Road 1.162648.33% 0.7793+2.31% 0.7993+7.98% 0.5371+1.08% 0.2180+14.98 %
Mean 0.4678+3.64% 0.2891+£2.95% 0.2693+2.73% 0.3737+5.09% 0.2082+ 6.00%

The SAD results of five methods are given in Table IX.
It can be found that the mean SAD of the proposed matrix-
vector NTF based unmixing method is slightly smaller than the
results of other methods. The estimated endmember signatures
of matrix-vector NTF and their references are shown in
Fig. 15. From the experiments on Cuprite data, we can see that
matrix-vector NTF still has a good performance even though
this data set is relatively difficult to process due to a large

number of endmembers.

C. Discussion

Through the experiments on the above synthetic and real
HSI data sets, the proposed matrix-vector NTF demonstrates
competitive unmixing performance against several state-of-
the-art NMF based methods. Both matrix-vector NTF and
basic NMF have not introduced any constraint on spectral,



(a) MV-NTF (b) NMF (¢) Ly/2-NMF

(d) MRS-NMF (e) VCA-FCLS

(f) Reference

Fig. 13. Estimated abundance maps by five unmixing methods on the Jasper Ridge data set. From top to bottom, the rows are the abundance maps of tree,

water, soil, and road.

TABLE IX
MEANS AND STANDARD DEVIATIONS OF SAD ON CUPRITE DATA.

Algorithm NMF L1 /o-NMF MRS-NMF VCA-FCLS MV-NTF
Alunite 0.1408+4.31%  0.1464+5.45% 0.1380+2.68%  0.1109+3.07 % 0.1410+£3.05%
Andradite 0.1341+£8.96%  0.0828+2.73% 0.0805+2.40%  0.0684+1.22% 0.1120+£6.87%
Buddingtonite 0.1656+0.67%  0.1507+£0.95% 0.1495+0.81%  0.0752+5.52%  0.0835+ 0.26%
Dumortierite 13.964+1.32% 0.11754+2.56 % 0.121942.25% 0.172242.89% 0.1514+1.35%
Kaolinite 0.1990+6.04%  0.1962+4.65%  0.0561+0.27 % 0.2139+1.81% 0.0932+2.26%
Montmorillonite  0.1002+0.34%  0.0943+1.40% 0.1526+7.58% 0.1770+£1.47% 0.1633+£2.65%
Muscovite 0.1416+0.08%  0.14564+0.87%  0.11101+2.53% 0.20444+2.61% 0.1376+1.13%
Nontronite 0.0818+0.34%  0.115443.94%  0.1490+ 8.68%  0.0670+2.87% 0.0793+0.18%
Pyrope 0.0631£1.87%  0.0731+£0.41% 0.0729+0.43% 0.0963+6.58%  0.0547+0.55%
Sphene 0.0594+1% 0.0962+0.52% 0.1063+1.90% 0.0703+6.08%  0.1017£3.29 %
Mean 0.1225+0.63%  0.1218+1.16% 0.1138+1.30% 0.1255+0.38%  0.1118+1.24%

spatial, or spectral-spatial structures of an HSI, while other
two NMF based methods use abundance sparsity and spectral-
spatial manifold information as constraints. The experimental
results confirm that the matrix-vector NTF can preserve the
HSI structure as it treats an HSI cube as a whole processing
frame. It overcomes the drawback of NMF based unmixing
models that the structural information is lost when unfolding
an HSI cube into a matrix. L s2"NMF and MRS-NMF as
typical constrained NMF based unmixing methods aim to
embed the spatial and spectral structures of an HSI into NMF
model, and have been proved to generate more reasonable
unmixing results. Different from their external and explicit

method, matrix-vector NTF achieves this aim by the intrinsic
structure and the operations of tensor decomposition, which
is more interpretable and easier to complete. Furthermore, its
performance is somehow better than these two approaches. In
summary, our proposed method provides an alternative and
effective technique for blind spectral unmixing.

V. CONCLUSION

In this paper, a new tensor decomposition based unmixing
method, matrix-vector NTF, is proposed. Tensor is a more
natural and accurate representation method for HSI cube than
matrix. However, building a link between tensor decompo-
sition and linear spectral mixture model is not an easy task.
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Fig. 12. Endmembers of Jasper Ridge estimated by matrix-vector NTF. Solid
lines denote the reference endmembers and dashed lines denote the estimated
endmembers.

Fig. 14. Cuprite hyperspectral dataset at band 80.

We firstly introduce two popular tensor decomposition models,
CPD and Tucker decomposition, analyze their relationship
with linear spectral mixture model, and point out their lack
of straightforward link with linear spectral mixture model in
the view of physical and mathematical mechanisms. After
that, the matrix-vector tensor decomposition as a special BTD
is proposed for unmixing, which is fully consistent to the
linear spectral mixture model under tensor notation, leading
to clear physical and mathematical interpretation and easy
implementation. In order to satisfy the nonnegative property of
endmember and abundance, matrix-vector NTF is presented,
and its alternating least square optimization algorithm is
derived. Moreover, the uniqueness of matrix-vector NTF and
the convergence of optimization algorithm are also discussed.
The experiments on synthetic and real data sets demonstrated
the advantages of our unmixing method against a number of
alternatives, i.e., NMF, L /2-NMF, and MRS-NMF. The main
object of this paper is to extend NMF based unmixing method
to tensor frame, so we just give a basic matrix-vector NTF
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Fig. 15. Endmembers of Cuprite estimated by matrix-vector NTF. Solid
lines denote the reference endmembers and dashed lines denote the estimated
endmembers.

model. It should be emphasised that like NMF based unmixing
model, the proposed NTF model is quite general in nature,
S0 it can incorporate other information or constraints such as
sparsity, nonlinear mixture, local consistence, and insensitive-
ness to noise. New unmixing models and approaches can be
developed based on it.
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