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Abstract. This study is aimed at improving the ride quality of the driving passenger
with the proposed procedure of a nonlinear disturbance observer-based backstepping-like
control for an active quarter car suspension system. The design procedure involves trans-
forming the quarter-car suspension model to a lower triangular nonlinear system, which
can be used with backstepping-like scheme directly. The proposed control law with some
auxiliary terms is synthesized via backstepping-like method. Such terms obtained from
the disturbance observer design are included to eliminate the adverse effect arising from
the inescapable road disturbance. Then, the overall closed-loop stability analysis with the
result of the road disturbance is investigated. The developed control design is validated in
the MATLAB environment. The efficacy of the proposed control is verified through sim-
ulation and compared with uncontrolled system (passive suspensions) and backstepping-
like approach. Despite the presence of a road disturbance, the results indicate that the
presented strategy offers better dynamic performances and a satisfactory disturbance re-
jection ability as compared with other two controllers above.
Keywords: Backstepping-like control, Nonlinear disturbance observer, Active suspen-
sions, Passive suspensions

1. Introduction. In automobiles design, there have been focuses on various important
factors; the ride quality becomes one of the most challenging factors to improve ride
comfort for driver and passengers. Many attempts are to design an effective and effi-
cient vehicle suspension system which is capable of isolating road disturbance, improving
driving and riding comfort, and enhancing vehicle’s performance.

Recently published reports in the literature are mostly related to design in different
kinds of passive, active, and semi-active vehicle suspensions via various control strate-
gies. In the past two decades, the control design techniques for the vehicle suspension
systems have drawn researchers’ attention. However, the particular interest is the use of
an advanced nonlinear control technique to achieve performance requirement for vehicle
suspensions which include: i) isolating passengers from vibration and shock occurring
from road roughness; ii) suppressing the hop of the wheels to maintain firm and uninter-
rupted contact of wheels to road; and iii) keeping suspension strokes within an allowable
maximum [1].
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To the best knowledge of the authors, there are some relevant instance of nonlinear
schemes employed in this field such as sliding mode control [2-4], backstepping control [5-
7], immersion and invariance control [8], feedback linearization control [9, 10], predictive
control [11], and adaptive control [12-14].

In most engineering systems, disturbances are not practically avoidable which con-
sequently degrade the desired control performances of the closed loop dynamics. Such
disturbances include external disturbances, parametric uncertainties and unknown non-
linear terms. Therefore, it is necessary to include the disturbance dynamics in the desired
control design method so as to get rid of the effects of aforementioned disturbances. A
recent disturbance observer method is designed to compensate the effects of external dis-
turbances and mismatched disturbances/uncertainties. This method is widely accepted
and it was used to estimate the system disturbances. Currently, disturbance observer
design combined with nonlinear control methods has been developed [15-22]. The dis-
turbance observer-based control is a promising method due to its capability to reject
external disturbance and improve robustness against uncertainties [15]. Besides that it
is an effective means to handle external disturbances and system uncertainties [15-18]
simultaneously. In addition, disturbance observer design method can be further used for
several control systems [19-22]. In [19], an adaptive backstepping control combined with
disturbance observer method was proposed for a class of nonlinear systems with multi-
ple mismatched disturbances containing both single harmonic and constant disturbances.
With the help of a combination of finite time integral sliding mode scheme and nonlin-
ear disturbance observer technique, a composite anti-disturbance design [20] for a missile
system was reported to obtain a good disturbance rejection performance and reject other
types of disturbances. Kim et al. [21] proposed a nonlinear position tracking controller
with a disturbance observer. The proposed controller was able to track the desired posi-
tion despite the disturbance for electrohydraulic actuators. Recently, Kanchanaharuthai
and Mujjalinvimut [22] have proposed a disturbance observer based backstepping control
for power systems with external disturbances. The proposed method offered enhanced
transient performances by suppressing system oscillations despite undesired disturbances.
These published works indicate that the combination of advanced nonlinear control meth-
ods and the disturbance observer techniques has numerous advantages: it is a systematic
method that ensures the closed-loop stability, offers superior transient performances, and
has the rejection disturbance ability as compared with nonlinear control method alone.

For vehicle active suspension systems of which is the particular interest, less attention
has been paid for the combination of the advanced nonlinear method with the disturbance
observer design [23-26]. This is due to some auxiliary terms from disturbance observer
design capable of eliminating the undesired effect from the road disturbances. In [23, 24],
a disturbance observer based sliding mode control method has been applied to active sus-
pension systems. The presented control law not only can reduce the acceleration of the
sprung mass via sliding mode control, but also is able to estimate the effects of the uncer-
tain, nonlinear spring and damper, load variation, and the unknown road disturbances,
simultaneously. Even though the developed scheme is a promising and effective scheme,
the resulting controller leads to the chattering issues in the system responses. In [25], a
super-twisting controller of second-order sliding mode control has been developed for ac-
tive suspensions. The proposed control method can improve the over control performance
and reduce the chattering problem in the control input arising from the conventional slid-
ing mode control [23, 24]. A disturbance observer based optimal control [26] for active
suspensions has been proposed by using an LMI optimization technique. The proposed
controller can minimize L2 gain of the closed-loop system from disturbances to regulated
outputs.
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This paper continues this line of investigation and concentrates on the design of non-
linear disturbance observer based backstepping-like control for an active quarter-car sus-
pension system. According to the disturbance observer based control method [15-18], it
can be observed that sliding mode method and backstepping method are often used to
combine with disturbance observer design. However, although both methods have many
advantages and can be successfully applied to numerous control systems, they have im-
portant disadvantages. The sliding mode control has the undesired effect arising from a
discontinuous control signal, resulting in inevitable chattering issues. For backstepping,
its obvious drawbacks are the problem of “explosion of complexity” and how to select a
suitable virtual control used in each design step to find out the final controller. In order
to avoid these drawbacks from two control strategies above, a backstepping-like control
[27, 28] is used to combine with the disturbance observer design because the resulting
control law has not the effect of chattering problems and does not require finding virtual
control as used in backstepping.

Therefore, this paper deals with the design of a nonlinear feedback stabilizing control
law on the basis of a backstepping-like control combining with the disturbance observer
design to improve the ride quality of driver and passengers in spite of the effects of road
disturbances.

As the above discussion, the followings are the major contributions of this work.

• The design procedure based on a combination of a nonlinear disturbance observer
technique and backstepping-like control design is proposed to improve the ride qual-
ity for active suspension in the presence of inevitable road disturbances which has
not yet been investigated.

• Although there is the road disturbance, the overall closed-loop system is input-to-
state stable.

• In the absence of disturbances, the proposed scheme has the property of faster nom-
inal performance recovery as compared to a backstepping-like control without the
disturbance observer and passive suspensions (uncontrolled system). Further, the
overall closed-loop system is asymptotically stable.

• The proposed design also offers better dynamic performances and a satisfactory
disturbance rejection ability, thereby leading to ride-comfort improvement for driver
and passengers.

The latter part of the paper is organized as follows. Section 2 is a brief presentation
of dynamic model of an active quarter-car suspension incorporated with assumption and
two significant lemmas, and the problem statement. Section 3 is about controller design
and stability analysis. Simulation results are discussed in Section 4 and finally the paper
is concluded in Section 5.

2. Dynamic Model Description and Preliminaries.

2.1. Quarter suspension system model. In this subsection, a quarter-car suspension
model considered in this paper is shown in Figure 1. This system consists of two parts.
One is the single wheel connected to the quarter portion of the car body through a
combination of a linear spring (Ka), a linear damper (Ca) and an actuator force (u),
respectively. The other is the tire that in this work is assumed to be a simple spring (Kt)
without damping. Thus, with the help of Newton’s second law, we can derive the motion
equations of this system as follows:{

Mbẍs + Ka(xs − xw) + Ca(ẋs − ẋw) − u = 0

Musẍw + Ka(xw − xs) + Ca(ẋw − ẋs) + Kt(xw − r) + u = 0,
(1)
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where Mb and Mus denote the masses of car body and wheel, respectively. xs and xw

represent the displacement of car body and wheel. Ka and Kt are the spring coefficients.
Ca denotes the damper coefficient and r is the road disturbance.

Figure 1. Quarter car model

In accordance with the result reported in [29], let us introduce the following state
variables:

y1 = Musxw + Mbxs, y2 = ẏ1, y3 = xs − xw, y4 = ẏ3. (2)

Differentiating the state variables (2), we have the dynamic equations capable of gov-
erning the motions of active suspension systems with the road disturbances (r) expressed
as an affine nonlinear system as follows:

ẏ = f(y) + g(y)u(y) + gr(y)d(t), (3)

with 

f(y) =


f1(u)

f2(y)

f3(y)

f4(y)

 =


y2

β1y1 + β2y3

y4

β3y1 + β4y3 + β5y4

 ,

g(y) =


0

0

0

g4(y)

 =


0

0

0(
1

Mb
+ 1

Mus

)
 , gr(y) =


0

g2r

0

g4r(y)

 =


0

Kt

0

− Kt

Mus

 ,

d(t) = d1(t) = d2(t) = r,

(4)

where β1 = − Kt

Mb+Mus
, β2 = KtMb

Mb+Mus
, β3 = Kt

Mus(Mb+Mus)
, β4 = −

[
Ka

(
1

Mb
+ 1

Mus

)
+ β3Mb

]
and β5 = −Ca

(
1

Mb
+ 1

Mus

)
.

For the sake of simplicity, the active suspension system considered in (3) and (4) can
be expressed as follows. 

ẏ1 = y2,

ẏ2 = β1y1 + β2y3 + Ktd1(t),

ẏ3 = y4,

ẏ4 = f4(y) + g4(y)u + g4r(y)d2(t).

(5)
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Assumption 2.1. The road disturbance d(t) and its first derivative are bounded. Addi-
tionally, the road disturbance considered throughout this work also satisfies the condition
of limt→+∞ dj(t) = limt→+∞ ḋj(t) = 0, (j = 1, 2).

2.2. Preliminaries. In this subsection, some important lemmas are mentioned as follows
for convenience of the reader. Consider the following system

ẏ = f(t, y, u), y ∈ Rn, u ∈ Rm. (6)

Definition 2.1. [31] A continuous function α : [0, a) → [0, +∞) belongs to class K if it
is strictly increasing and α(0) = 0. It belongs to class K∞ if a = +∞ and a(r) → +∞ as
r → +∞.

Lemma 2.1. [31] Let V : [0,∞)×Rn → R be a continuously differentiable function such
that

α1(||y||) ≤ V (t, y) ≤ α2(||y||)
∂V

∂t
+

∂V

∂y
f(t, y, u) ≤ −W3(y), ∀||x|| ≥ ρ(||u||) > 0,

for all (t, y, u) ∈ [0,∞)×Rn ×Rm, where α1 and α2 are class K functions, ρ is a class K
function, and W3(y) is a continuous positive definite function on Rn. Then, system (6)
is input-to-state stable (ISS).

Lemma 2.2. [31] Consider the following system (6). If the following conditions are
satisfied

• system ẏ = f(t, y, u) is input-to-state stable,
• limt→+∞ u = 0,

then the states of the system (5) will asymptotically converge to zero, that is, limt→+∞ y(t)
= 0.

Problem statement: The objectives of this paper are to stabilize the active suspension
system (5) with the external (road) disturbance d and to obtain more comfortable riding,
which can be formulated as follows: with the help of the nonlinear disturbance observer-
based backstepping-like control technique [16], find out, if possible, a stabilizing (state)

feedback controller u(y) and disturbance estimation d̂ as follows: u = ϕ
(
y, d̂

)
˙̂
d = φ

(
y, u, d̂

) (7)

such that the overall closed-loop systems (5) and (7) are input-to-state stable, where d̂ is
the estimate of d.

For the developed design procedure in the next section, a combination of the backstep-
ping-like method and disturbance observer design will be presented to obtain a composite
nonlinear controller (7). In comparison with the conventional backstepping-like method,
the proposed approach will introduce the disturbance estimation terms into control vari-
ables. These terms are also used for compensating the external disturbances at each step,
and the estimation error dynamics are included for the closed-loop stability analysis.

Remark 2.1. In the literature, disturbance observer techniques are often combined with
two main nonlinear control schemes: sliding mode and backstepping. The former depends
upon selecting a suitable sliding surface, and to overcome the effect of disturbances, the
obtained control law includes a discontinuous function, thereby resulting in the unavoidable
chattering problem. Although the latter is an effective method, it is based on selecting
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recursively appropriate virtual inputs for lower dimension subsystems of the overall system
and the Lyapunov functions are designed for each stable virtual controller [30, 31]. In
addition, as the dynamic model of interest becomes higher, the appropriate selection of
virtual control in each design step and the problem of “explosion of complexity” are more
complicated. In this paper, by using backstepping-like method, we add and subtract some
terms systematically in each design step, but such terms can be chosen easier than the
virtual control in backstepping approach. For this work, we combine the advantage of
the backstepping-like method with the disturbance rejection ability of disturbance observer
design to mitigate the effect of road disturbances unavoidably arising in vehicle suspension
systems.

3. Controller Design and Stability Analysis. This section is aimed to determine the
control laws for stabilizing the active quarter-car suspension system. The proposed design
procedure comprises the following three parts.

• The first part introduces a nonlinear disturbance observer technique to online es-
timate the unknown, but bounded, disturbances and to compensate for the road
disturbance.

• The second part proposes an approach consisting of the backstepping-like control
method and the result of the disturbance estimator from the first part to find the
desired controller in each design step.

• The last part shows that Lyapunov stability theorem is used to analyze the overall
closed-loop system stability. Despite having the disturbance in the system, the
results indicate that it is able to achieve both the system stability and the desired
control performances by the obtained controller.

3.1. Nonlinear disturbance observer design. The aim of designing the disturbance
observer is to estimate the road (external) disturbance and other uncertainties so that
the effect of disturbances is removed and the whole system performance can be enhanced.
The disturbance observer proposed in [15, 16] is used to estimate the disturbance and is
applied with the control input.

Therefore, the nonlinear disturbance observer for the system (5) is designed as
d̂i = λi(yj − pj), i = 1, 2, j = 2, 4,

ṗ2 = β1y1 + β2y3 + Ktd̂1,

ṗ4 = f4(y) + g4(y)u + g4rd̂2,

(8)

where λj > 0 is a design parameter. Thus, based on (8) the disturbance estimation
dynamics can be expressed in the following form:

˙̂
dj = λi(ẏj − ṗj) = λ(dj − d̂j), j = 1, 2. (9)

Let us define the disturbance estimation error as ej = dj − d̂j, and the estimation error
dynamics can be expressed as follows.

ėj = −λjej + ḋj. (10)

3.2. Backstepping-like design. According to the concept reported in [16], the stabi-
lization problem for the system (5) is solved by designing a backstepping-like control. The
design procedure is developed step by step as follows.

Step 1: We start from focusing on the first subsystem (5), and then a Lyapunov function
candidate is chosen as

V1 =
1

2
y2

1. (11)
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Then the time derivative of V1 along the system trajectories becomes

V̇1 = y1ẏ1 = y1y2 = −c1y
2
1 + y1(c1y1 + y2), (12)

where c1 > 0 is a design parameter.
Step 2: From (12), it is observed that the second term can be neither positive nor

negative. Thus, we can eliminate the result from the aforementioned equation by choosing
the Lyapunov function candidate as:

V2 =
1

2
y2

1 +
1

2
(c1y1 + y2)

2 +
1

2
e2
1. (13)

After calculating the derivative of (13), we have

V̇2 = − c1y
2
1 + y1(c1y1 + y2) + (c1y1 + y2) (c1ẏ1 + ẏ2) + e1

(
−λ1e + ḋ1

)
= − c1y

2
1 + (c1y1 + y2)

(
(1 + β1)y1 + c1y2 + β2y3 + Ktd̂1

)
− λ1e

2
1 + e1ḋ1

+ (c1y1 + y2)Kte1. (14)

It is observed that the last term of (14) can be straightforwardly computed by using
Young inequality as

(c1y1 + y2)Kte1 ≤
1

4ϵ1

K2
t (c1y1 + y2)

2 + ϵ1e
2
1 = ĉ2(c1y1 + y2)

2 + ϵ1e
2
1. (15)

After adding and subtracting c̄2(c1y1 + y2) where c̄2 = c2 + ĉ2, c2 > 0, ĉ2 =
K2

t

4ϵ1
, ϵ1 > 0,

into the equation above, we have

V̇2 = − c1y
2
1 − c2(c1y1 + y2)

2 + (c1y1 + y2)
(
− c̄2(c1y1 + y2) + (1 + β1)y1

+ c1y2 + β2y3 + Ktd̂1

)
− (λ1 − ϵ1)e

2
1 + e1ḋ1

≤ − c1y
2
1 − c2(c1y1 + y2)

2 + (c1y1 + y2)M− (λ1 − ϵ1)e
2
1 + e1ḋ1, (16)

where M = γ1y1 + γ2y2 + γ3y3 + Ktd̂1, γ1 = c1c̄2 + β1 + 1, γ2 = c1 + c̄2, γ3 = β2. In the
same manner, it can be seen that the third term of (16) is not always negative. So, one
needs to cancel this term.

Step 3: Let us define the Lyapunov function of Step 2 as

V3 = V2 +
1

2
M2. (17)

Then the time derivative of V3 along the system trajectories turns into as follows:

V̇3 = − c1y
2
1 − c2(c1y1 + y2)

2 + (c1y1 + y2)M

+M
(

∂M
∂y1

ẏ1 +
∂M
∂y2

ẏ2 +
∂M
∂y3

ẏ3 +
∂M
∂d̂1

˙̂
d1

)
− (λ1 − ϵ1)e

2
1 + e1ḋ1

= − c1y
2
1 − c2(c1y1 + y2)

2 + M
[
c1y1 + y2 +

∂M
∂y1

y2 +
∂M
∂y2

(
β1y1 + β2y3 + Ktd̂1

)
+

∂M
∂y3

y4

]
− (λ1 − ϵ1)e

2
1 + e1ḋ1 + M

(
∂M
∂y2

Kt +
∂M
∂d̂1

λ1

)
e1. (18)

On the basis of Young inequality, the last term in (18) can be directly computed as

M
(

∂M
∂y2

Kt +
∂M
∂d̂1

λ1

)
e1 ≤

1

4ϵ1

(
∂M
∂y2

Kt +
∂M
∂d̂1

λ1

)2

M2 + ϵ1e
2
1 = ĉ3M2 + ϵ1e

2
1. (19)
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Then substituting (19) into the last term of (18) together with adding and subtracting

c̄3M, where c̄3 = c3 + ĉ3, c3 > 0, ĉ3 = 1
4ϵ1

(
∂M
∂y2

Kt + ∂M
∂d̂1

λ1

)2

, ϵ1 > 0, into (18); therefore,

we will obtain

V̇3 ≤ −c1y
2
1 − c2(c1y1 + y2)

2 − c3M2 + MP − (λ1 − 2ϵ1)e
2
1 + e1ḋ1, (20)

where P = c̄3M + α1y1 + α2y2 + α3y3 + α4y4 + αrd̂1, α1 = c1 + β1
∂M
∂y2

, α2 = 1 + ∂M
∂y1

,

α3 = β2
∂M
∂y2

, α4 = ∂M
∂y3

and αr = Kt
∂M
∂d̂1

.

Step 4: From (20), it is obvious that the fourth term can either be positive or negative.
In order to eliminate it, the Lyapunov function is applied in (21).

V4 = V3 +
1

2
P2 +

1

2
e2
2. (21)

Based on (20), the derivative of (21) becomes

V̇4 = − c1y
2
1 − c2(c1y1 + y2)

2 − c3M2 + P
(
M + Ṗ

)
− (λ1 − 2ϵ1)e

2
1 − λ2e

2
2 +

2∑
i=1

eiḋi

= − c1y
2
1 − c2(c1y1 + y2)

2 − c3M2 + P
[
M + M1y2 + M2

(
β1y1 + β2y3 + Ktd̂1

)
+M3y4 +

∂P
∂y4

(
f4(y) + g4(y)u(y) + g4rd̂2

) ]
− (λ1 − 2ϵ1)e

2
1 − λ2e

2
2 +

2∑
i=1

eiḋi

+P
(
M2 + Md̂1

λ1

)
e1 + P

(
∂P
∂y4

g4r

)
e2, (22)

where Mi = c̄3
∂M
∂yi

+ ∂P
∂yi

, i = 1, 2, 3 and Md̂1
= c̄3

∂M
∂d̂1

+ ∂P
∂d̂1

.

From (22), the following suitable control law is selected so as to accomplish the desired
control performance.

u = − 1
∂P
∂y4

g4(y)

[
c̄4P + M + M1y1 + M2f2

(
y, d̂

)
+ M3y4 +

∂P
∂y4

f4

(
y, d̂

) ]
, (23)

where c̄4 = c4 + ĉ41 + ĉ42, c4 > 0, ĉ41 = 1
4ϵ1

(
M2 + Md̂1

λ1

)2
and ĉ42 = 1

4ϵ2

(
∂P
∂y4

g4r

)2

,

f2

(
y, d̂

)
= β1y1 + β2y3 + Ktd̂1, and f4

(
y, d̂

)
= f4(y) + g4rd̂2.

Once the developed control law (23) is substituted into (22), it gives

V̇4 = − c1y
2
1 − c2(c1y1 + y2)

2 − c3M2 − c̄4P2 − (λ1 − 2ϵ1)e
2
1 − λ2e

2
2 +

2∑
i=1

eiḋi

+P(M2 + Md̂1
λ1)e1 + P

(
∂P
∂y4

g4r

)
e2. (24)

Seemingly, with the help of Young inequality, the last two terms of (24) can be trans-
formed into the following inequalities:

P
(
M2 + Md̂1

λ1

)
e1 ≤ 1

4ϵ1

(
M2 + Md̂1

λ1

)2 P2 + ϵ1e
2
1 = ĉ41P2 + ϵ1e

2
1, (25)

P
(

∂P
∂y4

g4r

)
e2 ≤ 1

4ϵ2

(
∂P
∂y4

g4r

)2

P2 + ϵ2e
2 = ĉ42P2 + ϵ2e

2
2. (26)
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Combining the inequalities (25) and (26) with (24), it will then become

V̇4 ≤ −c1y
2
1 − c2(c1y1 + y2)

2 − c3M2 − c4P2 − (λ1 − 3ϵ1)e
2
1 − (λ2 − ϵ2)e

2
2 +

2∑
i=1

eiḋi. (27)

The stability analysis of the closed-loop dynamics with the proposed control law (23)
is presented in the next section.

Remark 3.1. Note that on the basis of the idea reported in [16] the control law (23) con-
sists of some auxiliary terms ĉ2, ĉi1, . . . , ĉ42 introduced to deal with the crossing terms aris-
ing from the effect of disturbances, compensation errors, and system states. In contrast,
these auxiliary terms are not introduced into the conventional backstepping-like scheme,
thereby leading to unsatisfactory control performances.

3.3. Stability analysis. In this subsection, the proposed control law (23) ensures the
overall closed-loop stability of suspension systems (5). Therefore, the following theorem
can be summarized.

Theorem 3.1. Under Assumption 2.1, the nonlinear disturbance observer-based backstep-
ping-like controller (23) can guarantee that the overall closed-loop system combining the
system (5) with the disturbance observer error dynamics (10) and the presented control
law is input-to-state stable. Besides, after the disturbance input vanishes, the origin of
the system is asymptotically stable.

Proof: To demonstrate the closed-loop stability of the presented control strategy, let
us define the following Lyapunov function for the closed-loop system.

V4 =
1

2

(
y2

1 + (c1y1 + y2)
2 + M2 + P2 + e2

1 + e2
2

)
. (28)

After computing the time derivative of the Lyapunov function candidate (28), the
closed-loop system can be expressed as

V̇4 ≤ − c1y
2
1 − c2(c1y1 + y2)

2 − c3M2 − c4P2 − (λ1 − 3ϵ1)e
2
1 − (λ2 − ϵ2)e

2
2 +

2∑
i=1

eiḋi. (29)

We choose λ1 = a01 + 3ϵ1, λ2 = a02 + ϵ2, a0j > 0, (j = 1, 2) to obtain

V̇4 ≤ − c1y
2
1 − c2(c1y1 + y2)

2 − c3M2 − c4P2 −
2∑

j=1

a0je
2
j +

2∑
j=1

ej ḋj

≤ − c1y
2
1 − c2(c1y1 + y2)

2 − c3M2 − c4P2 − a0∥e∥2 + ∥e∥
∥∥∥ḋ

∥∥∥ , (30)

where e = [e1, e2]
T , ḋ =

[
ḋ1, ḋ2

]T

, a0 = min{a01, a02}.

According to Assumption 2.1, one can employ the term −a0∥e∥2 to dominate ∥e∥
∥∥∥ḋ

∥∥∥
in (30); subsequently, we rewrite the foregoing inequality as

V̇4 ≤ − c1y
2
1 − c2(c1y1 + y2)

2 − c3M2 − c4P2 − (1 − θ)a0∥e∥2 − θa0∥e∥2 + ∥e∥
∥∥∥ḋ

∥∥∥ , (31)

where 0 < θ < 1. Then,

V̇4 ≤ −c1y
2
1 − c2(c1y1 + y2)

2 − c3M2 − c4P2 − (1 − θ)a0∥e∥2, ∀∥e∥ ≥

∥∥∥ḋ
∥∥∥

a0θ
. (32)



2300 T. SUTHISRIPOK, C. WONGRATTANAPORNKUL, S. POONYANIRAN ET AL.

Thus, the conditions of Lemmas 2.1 and 2.2 are satisfied with α1(r) = c1r
2, α2(r) = c2r

2,
and ρ(r) = (1/a0θ)r, and we can conclude that the overall closed-loop system is input-
to-state stable. Furthermore, when the road disturbance input vanishes from the system,
it implies that both d and d̂ converge to zero together with ḋ → 0. With the help
of Lyapunov stability theory [31], it is not difficult to indicate that limt→+∞ y1 = 0,

limt→+∞(c1y1 + y2) = 0, limt→+∞M = limt→+∞

(
γ1y1 + γ2y2 + γ3y3 + Ktd̂1

)
= 0, and

limt→+∞P = limt→+∞

(
c̄3M + α1y1 + α2y2 + α3y3 + α4y4 + αrd̂1

)
= 0 as well. After

combining Lemma 2.2 with Assumption 2.1, it follows that all trajectories of yi, (i =
1, 2, 3, 4) and ej, (j = 1, 2) of the closed-loop dynamics converge to zero. This means that
yi → 0 and ej → 0 as t → +∞. This completes the proof.

4. Simulation Results. In this section, simulation results of active suspensions from the
proposed controller are discussed to indicate the effectiveness of the developed strategy.
The performance of the proposed control scheme is evaluated and verified in the MATLAB
environment.

To carry out the simulation, the physical parameters, the control parameters, and the
initial condition under consideration are given as follows.

• The physical parameters used in the simulation are the same as those used in [7] as
follows:

Mb = 290 kg, Mus = 59 kg, Ka = 16, 812 N/m,

Kt = 190, 000 N/m, Ca = 1, 000 N/(m/sec).

• The controller parameters are set as ϵj = 0.001, ci = 40, λj = 200, (j = 1, 2, i =
1, 2, 3, 4).

• The initial states of the system are selected as y0 = [0, 0, 0, 0]T , p = [0, 0]T , d̂0 =
[0, 0]T , and e = [0, 0]T .

To illustrate the performance achieved by the proposed controller, we select the road
disturbance as an isolated bump in a smooth road surface represented in the following
form:

r = d1(t) = d2(t) =

{
0.025(1 − cos(8πt)), 0.5 ≤ t < 0.75,

0, otherwise
.

The time domain simulations are carried out to investigate the system stability en-
hancement and the dynamic performance of the designed controller, as given in (23), in
the system in the presence of the road disturbance. To evaluate the effectiveness of the
proposed controller (nonlinear disturbance observer-based backstepping-like controller),
both an uncontrolled system and a conventional backstepping-like controller are used in
the simulation study for the purpose of comparison.

• The uncontrolled system is set as u = 0.
• The conventional backstepping-like controller is designed as

u = − 1

α4g4(y)
(c4P + M + c3M + α1y2 + α2f2(y) + α3y4 + α4f4(y)), (33)

where M =
∑3

i=1 γiyi, γ1 = c1c2+1+β1, γ2 = c1+c2, γ3 = β2, P = c3M+
∑4

j=1 αjyj,
α = c1 + γ2β2, α2 = 1 + γ1, α3 = γ2β2, α4 = γ3. cj > 0 are design parameters. The
controller parameters of this scheme are chosen as cj = 40, (j = 1, 2, 3, 4).
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The simulation results are presented and discussed as follows. Time trajectories of the
body acceleration, body travel, suspension travel, together with wheel travel under three
controllers are presented in Figures 2(a)-2(d).

From all these figures, it is overall observed that time trajectories eventually tend to
their steady-state respectively as time goes to infinity after the road disturbance vanishes.
Clearly, the oscillations in bump responses are slowly damped by the uncontrolled system
(passive suspensions). On the other hand, the active controller (the proposed controller
and the conventional backstepping-like controller) improves significantly, that is, better
transient dynamic performance on ride comfort (lower peak and shorter setting time in
the car body acceleration), and suspension travel. Obviously, for the proposed design,
the body acceleration is reduced by almost 40%, and the body travel by almost 90% as
compared with passive suspensions. It is known well that the car body acceleration is
directly associated with the ride quality. Though the road disturbance exists in the sys-
tem, the active control can achieve satisfactory disturbance rejection ability and clearly
improve the ride quality. From Figure 2(a), with an inclusion of the road disturbance,
the developed control law not only exhibits a fast response to mitigate the adverse effect,
but also provides the desired control performance such as small overshoot magnitudes
and rapidly suppressing system oscillations. In addition, the conventional backstepping-
like control offers the control performance superior to the uncontrolled system. However,
it still has a poor disturbance rejection performance and brings undesired control per-
formance, such as an unsatisfactory overshoot magnitude in the car body acceleration

(a) (b)

(c) (d)

Figure 2. Controller performance: (a) body acceleration (ẍs), (b) body
travel (xs), (c) suspension travel (xs−xw), (d) wheel travel (xw) (Solid: the
proposed control, Dashed: backstepping-like control, Dotted: no control)
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and slowly suppressing system oscillations as compared with the developed scheme are
observed.

Figures 2(b)-2(d) indicate that the body travel, suspension travel, and wheel travel
from the proposed design are less than those from both the conventional backstepping-
like control and uncontrolled system. Besides, it can be seen that during 0 ≤ t < 0.5 s and
t > 0.75 s when there is no road disturbance, the proposed strategy has the property of
rapidly nominal performance recovery. Even if the conventional backstepping-like control
and uncontrolled system has also this property, both provide rather undesirable transient
control performances. Thus, the presented scheme provides significant improvement in
the car body acceleration over both the conventional backstepping-like control and passive
suspensions. This is due to an inclusion of the disturbance observer strategy utilized for
estimating the inevitably road disturbance.

Figure 3. Road disturbance input (d1 & d2) and disturbance estimation (d̂1 & d̂2)

Figure 3 demonstrates time histories of road input disturbances and the estimate value
of disturbances. This indicates that the developed disturbance observer effectively es-
timates the road disturbances and quick approaches to the disturbances with very fast
convergence rates without oscillations. Thus, it can be concluded that the disturbance
observer design used has a reference tracking performance because the road disturbance
is compensated by the estimated value in the control input signal. Figure 4 shows the
control input for the two controllers used to stabilize the closed-loop system. It is also
evident that the control energy of the proposed control is clearly less than that of the
conventional backstepping-like control.

From the above simulation results, it is evident that a combination of the backstepping-
like control and the disturbance observer scheme applied to the active quarter-car sus-
pension system provides the following advantages over the conventional backstepping-like
control and passive suspensions.

• The developed design has the potential to improve the ride quality such as much
overshoot magnitude reduction in the body acceleration and the body travel.
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Figure 4. Control input (u(t))

• The proposed strategy offers highly satisfactory transient performances and reject
effectively unavoidable disturbances.

• The design procedure adds some auxiliary terms into each step of finding the de-
sired controller. These terms are utilized to mitigate the adverse effect arising from
the road disturbance. On the other hand, these terms are not included in the
backstepping-like method alone, thereby leading to unsatisfactory control perfor-
mances.

5. Conclusion. In this paper, a nonlinear disturbance observer-based backstepping-like
control strategy is proposed for active quarter car suspension systems. The developed
scheme offers satisfactory disturbance rejection performance and achieves improved dy-
namic performances. Closed-loop stability analysis with the result of the road disturbance
is investigated. To validate the proposed scheme, the simulation results have indicated
that the developed control method provides an improved transient performance and capa-
bility of rejecting road disturbances rapidly superior to the backstepping-like control and
uncontrolled system. In particular, the presented control law is able to suppress rapidly
the system oscillations and effectively reject inescapable disturbances. Consequently, it
provides an opportunity to significantly improve the ride comfort of the driving passenger.
Future study will be devoted to an inclusion of the effect of hydraulic actuator dynamics
into our design procedure.
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